
 

 

FACETS 
FP6-2004-IST-FETPI 15879 

Fast Analog Computing with Emergent Transient States 

 

 

 

D13: Identification of Standardized Compartmental Topology for 
each Cell Type 

 

 

 

 

 

 

Report Version: 1.0 

Report Preparation: Rajnish Ranjan, Shaul Druckmann, Albert Gidon, Yoav Banitt, Felix Schuermann, 
Henry Markram, Idan Segev, Wulfram Gerstner.   

Classification: PU 

Contract Start Date: 01/09/2005  Duration: 4 Years 

Project Coordinator: Karlheinz Meier (Heidelberg) 

Partners: U Bordeaux, CNRS (Gif-sur-Yvette, Marseille), U Debrecen, TU Dresden, U Freiburg, TU Graz, 
U Heidelberg, EPFL Lausanne, Funetics S.a.r.l., U London, U Plymouth, INRIA, KTH Stockholm 

 

 

Project funded by the European Community under 
the “Information Society Technologies” 
Programme 

 



 

DELIVERABLES TABLE 

 
Project Number: FP6-2004-IST-FETPI 15879  

Project Acronym: FACETS 

Title: Fast Analog Computing with Emergent Transient States 

 

Del. No. Revision Title Type1 Classifi-
cation2 

Due Date Issue Date 

13 1.0 D13 : Identification of standardized compartmental 
topology for each cell type 

R PUB 31/08/06 15/09/06 

       

       

       

       

       

       

1 R: Report;  D: Demonstrator;  S: Software;  W: Workshop; O: Other – Specify in footnote 
2 Int.:  Internal circulation within project (and Commission Project Officer + reviewers if requested) 
  Rest.:  Restricted circulation list (specify in footnote) and Commission SO + reviewers only 
  IST:  Circulation within IST Programme participants 
  FP5:  Circulation within Framework Programme participants 
  Pub.:  Public document



DELIVERABLE SUMMARY SHEET 

 

Project Number: FP6-2004-IST-FETPI 15879 

Project Acronym: FACETS 

Title: Fast Analog Computing with Emergent Transient States 

 

Deliverable N°:  13 

Due date: 31/08/06 

Delivery Date: 15/09/06 

 

Short description: 

 

Biologically realistic single neuron modeling mainly depends on morphology, passive properties, ion channel 
combination, density and distribution. Here we report a modeling effort to replicate different electrical classes in 
detailed models of reconstructed excitatory and inhibitory neurons from the rat somato-sensory cortex. The 
robustness of these models is examined under different conditions including varying current stimulation, and 
changing morphology. We have observed that in most cases dendritic morphology does not strongly affect the 
electrical behavior.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Partners owning: 

8b (EPFL – LNMC) 

 

Partners contributed: 

8a (EPFL –LCN), 8b (EPFL – LNMC) 

Made available to:  

 

 



Single neuron modeling 
 
Introduction 
Biologically realistic single neuron modeling mainly depends on morphology, passive 
properties, ion channel combination, density and distribution. It is quite challenging and 
sometimes technically very difficult to obtain these parameters experimentally.  
Therefore we have chosen a progressive approach where we start with a model with known 
parameters and successively integrate other experimental details as and when they are 
available. Here we report a modeling effort to replicate different electrical classes (Fig. 1) that 
were recently categorized under a standard nomenclature in the Petilla 2005 Convention [1]. 

 
The first version of this model (Minimum Somatic model) includes detailed morphologies of 
different cell types from experiments, passive properties from the literature and six generic 
ion channels distributed only in the soma to generate different firing patterns [2].  

Figure 1 

Ion channel densities in the soma are explored using a hand made tool in NEURON [3] and 
initial results match gene expression data of different firing patterns. Work on an automatic 
fitting algorithm of ion channel densities is in progress and we aim to extend it for a greater 
number of ion channels as well as spatial distributions. The scope of this report goes beyond 
D13 as it includes not just compartment topology but also modeling of different electrical 
celltypes including ion channels in soma. 



Materials and methods 
Morphology 

Figure 2 

All neuron models begin with a structural 
framework, either assumed or based on 
an actual neuronal morphology. We use 
neuron morphology from cortical slices, 
obtained using Neurolucida software. To 
comprehensively recover morphology of 
a reconstructed neuron, the same is 
repaired using statistics of the complete 
part of the neuron [4]. In a preparatory 
step, the algorithm unravels the 
reconstructed neurons (correcting a 
shrinkage artifact) while maintaining 
their morphological structure (branches 
connectivity and angles). The application 
then re-grows cut branches using the following approach: A 'probability cloud' inspired by the 
Sholl analysis is computed for the complete part of the neuron. The space is divided into 
concentric layers whose surfaces vary with the distance from the soma center. Bayesian 
statistics in each region between 2 layers are computed (e.g.: probability that a branch 
entering this region will end knowing that it is of order i). Using the statistical distributions in 
each region the branches are re-grown segment by segment.  Figure 2 shows one example of 
un-repaired and repaired neuron morphology. 
 
Passive properties  
Informed estimates for membrane and cytoplasmic electric constants (Rm, Ra, Cm) are 
essential towards neuronal modeling. Although direct measurement of these parameters is 
difficult, experimental measurements combined with compartment models provide indirect 
estimates. Recent studies based on tight-seal whole cell recordings have generally arrived at 
estimates in the following ranges: Rm = 20-100 kΩ cm2, Cm = 0.5-1.5μF cm-2, Ra = 50-200 
Ω cm.  
 
Compartmentalization  

Figure 3 

Approximating the cable equation by a series of compartments 
connected by resistors is known as compartmentalization. The main 
assumption in the compartmental approach is that small pieces of the 
neuron can be treated as isopotential elements, so that the essentially 
continuous structure of the neuron can be approximated by a linked 
assemblage of discrete elements. Figure 3 shows a schematic diagram 
of a neuron divided into many isopotential compartments. Various 
strategies have appeared in the literature as aids to the use of judgment 
in choosing a spatial grid. We have used “d_lambda rule” [3], which 
predicts the spatial grid based on the AC length constant λf computed 
at a frequency f that is high enough for transmembrane current to be 
primarily capacitive, yet still within the range of frequencies relevant 
to neuronal functions. 



Equations : 
No of compartments = int((L/(0.1*lambda_f(100)) + 0.9)/2)*2 + 1 
lambda_f(y)  = 1e5*sqrt(diam/(4*PI*y*Ra*Cm)) 
 
Following table describes relationship between morphological class, neuron size and number 
of compartments it is divided into. 
Morph Type Area(Sq Micron) Total Length(Micron) Number of 

compartments 
L5CSPC 45589.32 16319.29 704 
MC 12871.1 5901.92 202 
DBC 8870.58 4483.76 194 
LBC 19047.78 8466.30 368 
BTC 8809.96 4529.04 204 
ChC 5372.25 2797.9 118 
NBC 9251.13 4293.49 156 
 
Ion channel model  
The shape of an action potential depends upon kinetics of inward/outward ionic membrane 
currents. In recent years, numerous ionic membrane currents have been described [5]. These 
differ in principal carrier, voltage and time dependence, dependence on internal calcium and 
susceptibility to modulation by synaptic input and second messengers. 
In our models we have used Na, K, A, CaT, CaP and KCa ion channels. These ion channels 
are implemented in NEURON using NMODL a high level language implemented for 
NEURON by Michael Hines [6].  
 
 
Following table describes kinetics of each ion channels used in our models. 
Channel 
Name 

E Rev 
(mv) 

gates  Kinetics 

α =  -0.01 * (Vm + 50)/(exp(-(Vm+50)/10) – 1) K+ (Basic 
potassium 
channel) 

-72 n4 β = 0.125 * exp(-(Vm+60)/80 ) 

α =  -0.1 * (Vm + 35)/(exp(-(Vm+35)/10) – 1) M3 β = 4 * exp(-(Vm+60)/18 ) 
α =  0.07 * exp(-(Vm+60)/10) 

Na+ (Basic 
Sodium 
channel) 

55 
H β = 1 / (exp(-((Vm+30)/10)+1) ) 

minf  =  
(0.0761*(exp((Vm+94.22)/31.84))/(1+exp((Vm+1.17)/28.93)))^(1/3) M3 
mtau  = (0.3632+(1.158/(1+exp((Vm+55.96)/20.12)))) 
hinf  =  (1/(1+exp((Vm+53.3)/14.54))^4) 

A Channel -75 
H htau  =  (1.24 + 2.678/(1+exp((Vm+50)/16.027))) 

minf = 1/(1+exp(-((Vm +57)/(6.2)))) M2 mtau = (0.612+(1/(exp(-(Vm +132)/16.7)+exp((Vm +16.8)/18.2)))) 
hinf = 1/(1+exp(-((Vm +81)/4))) T Type Ca ---- 

H htau = (28+exp(-(Vm +22)/10.5)) 
minf = 1/(1+exp(-((Vm +57)/(6.2)))) M2 mtau = (0.612+(1/(exp(-(Vm +132)/16.7)+exp((Vm +16.8)/18.2)))) 
hinf = 1/(1+exp(-((Vm +81)/4))) P Type Ca ---- 

H htau = (28+exp(-(Vm +22)/10.5)) 
ninf =  1.25*(10^8)*(cai)*(cai)/(( 1.25*(10^8)*(cai)*(cai))+ 2.5) 

KCa -72 n2 ntau = 1000/((1.25*(10^8)*(cai)*(cai)) + 2.5) 
 



Ion channel density/distribution 
A serious problem in models that include a variety of ion channels spread non-uniformly 
across the neuron is the huge number of parameters available to describe channel densities. 
Therefore in the first version of this model (Minimum Somatic model) we have restricted our 
models to six ion channels distributed only in the soma. These ion channels are distributed 
using a hand made tool (Figure 4) in NEURON [3].  
Using the six aforementioned ion 
channels, we fit both the density 
of channels and the specific form 
of the voltage dependency. We 
allow ourselves to do so for two 
reasons. Firstly, real neurons 
often have considerably more 
than just these six channels. 
Hence each channel in our 
selection might have to stand in 
for other non represented 
channels and as such cannot be 
expected to perform with the 
experimental parameters. 
Secondly, the values of the 
parameters of the voltage 
dependency of these channels are 
still under dispute among 
experimentalists. 
The main idea behind Minimal 
Somatic model is to restrict the 
number of free parameters. Work to replace this manual tool with automatic fitting algorithm 
is in progress and we aim to extend it for a large number of ion channels as well as for spatial 
distribution. 

Figure 4 

 
Observation 
In this preliminary phase we find that in most cases dendritic morphology does not strongly 
affect the electrical behavior. This is not surprising considering the current stage of modeling 
in which we use passive dendrites and an excitable soma whose size is quite similar across 
morphologies. This effective similarity is further enhanced by the nature of the dendritic 
arbors. The dendritic arbors of the various morphologies are as a rule not very large and not 
strikingly different from one another. Thus, one would expect a similar excitable zone 
burdened with a sink that does not differ wildly to exhibit qualitatively the same behavior. 
 
Results 
We succeeded in simulating to a reasonable degree of accuracy all of these electrical classes 
(including bursting, long delayed, non-adapting behavior from almost flat depolarization) in 
detailed models of reconstructed excitatory and inhibitory neurons from the rat somato-
sensory cortex. The robustness of these models is examined under different conditions 
including varying current stimulation, changing morphology etc. Following result pages 
shows stimulus response of nine different models of electrical types (bAD, bFS, bNa, cAD, 
cFS, cNA, dNA, rBs, tBS) tested with different possible morphologies keeping ion channel 
densities same in the soma. 
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 bAD 
 
 
 
 
 
 

Fig 1 Burst adapting firing pattern 
Possible morphologies: BTC, DBC, LBC, 
MC, NBC.  
Characteristics: burst onset, 2 or more 
spikes, onset ISI<<steady state ISI. 
 Figure 1 shows ion channels used to 
model this firing pattern. Figures 2-9 
shows results for 3 different morphologies. 

 

BTC cell

Figure 2 and 3 shows 
response of bAD 
model to step 
currents. 
Amplitude of 
stimulus Just above 
threshold (Fig. 2) 
1.5 times threshold 
(Fig. 3) 

Fig 2 

Fig 3 

Fig 4 

Fig 5 

Figure 4 and 5 shows 
response of bAD model 
to SineSpec wave 
generated by using 
function w(x) = 
sin(exp(exp(x/5))). Ex.  

Amplitude of stimulus 
Just above threshold 
(Fig. 4) 
1.5 times threshold  
(Fig. 5) 



 

NBC cell

Figure 6 and 7 shows 
response of cAD model 
in Nest basket cell to 
step currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 6) 
1.5 times threshold  
(Fig. 7) 

Fig 6 

Fig 7 

Fig 8 

Fig 9 Figure 8 and 9 shows 
response of bAD model 
in Large basket cell to 
step currents. 

LBC cell

Amplitude of stimulus 
Just above threshold 
(Fig. 8) 
1.5 times threshold  
(Fig. 9) 
 



bFS 
 
 
 
 
 
 
 

Fig 1 

Fig 2 

Fig 3 

Fig 4 

Fig 5 

Burst fast spiking 
Possible morphologies: SBC. 
Characteristics: Burst onset, 2 or more 
spikes, onset ISI<<steady state ISI, fast 
spiking, 100-500H. 
 Figure 1 shows ion channels used to 
model this firing pattern. Figures 2-7 
shows results for 2 different morphologies. 

SBC cell

Figure 2 and 3 shows 
response of bFS model 
to step currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 2) 
1.5 times threshold  
(Fig. 3) 
 

Figure 4 and 5 shows 
response of bFS model 
to SineSpec wave 
generated by using 
function w(x) = 
sin(exp(exp(x/5))). Ex.  

Amplitude of stimulus 
Just above threshold 
(Fig. 4) 
1.5 times threshold  
(Fig. 5) 



 
Fig 6 

Fig 7 

SBC cell

Figure 6 and 7 shows 
response of cAD model 
in Small basket cell to 
step currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 6) 
1.5 times threshold 
(Fig. 7) 



bNA 
 Burst non adapting slow spiking. 

Possible morphologies: BTC, DBC, LBC, 
SBC, BP, MC.  
Characteristics: Burst onset, 2 or more 
spikes, no spike adaptation, slow spiking, 
<100Hz. 
 Figure 1 shows ion channels used to 
model this firing pattern. Figures 2-9 
shows results for 3 different morphologies. 

 
 
 
 
 

Fig 1 

 Fig 2 

Fig 3 

Fig 4 

Fig 5 

BTC cell

Figure 2 and 3 shows 
response of bNA model 
to step currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 2) 
1.5 times threshold  
(Fig. 3) 

Figure 4 and 5 shows 
response of bNA model 
to SineSpec wave 
generated by using 
function w(x) = 
sin(exp(exp(x/5))). Ex.  

Amplitude of stimulus 
Just above threshold 
(Fig. 4) 
1.5 times threshold  
(Fig. 5) 



 

DBC cell
Figure 6 and 7 shows 
response of bNA model 
in Double bouquet cell 
to step currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 6) 
1.5 times threshold  
(Fig. 7) 

Fig 6 

Fig 7 

Fig 8 

Fig 9 Figure 8 and 9 shows 
response of bNA model 
in LMartinotti cell to 
step currents. 

MC cell

Amplitude of stimulus 
Just above threshold 
(Fig. 8) 
1.5 times threshold  
(Fig. 9) 
 



cAD 
 
 
 
 
 
 

Fig 1 Continuous adapting firing pattern. 
Possible morphologies: HC, CRC, PC, 
MC, BTC, DBC, BP, NGC, LBC, NBC, 
SBC, ChC. 
Characteristics: Steady state ISI increases 
more than 20% in a 2 second train. 
Figure 1 shows ion channels used to model 
this firing pattern. Figures 2-9 shows 
results for 3 different morphologies. 

 Fig 2

Fig 3 

Fig 4 

Fig 5 

L5CSPC cell 

Figure 2 and 3 shows 
response of cAD model 
to step currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 2) 
1.5 times threshold (Fig. 
3) 
 

Figure 4 and 5 shows 
response of cAD model 
to SineSpec wave 
generated by using 
function w(x) = 
sin(exp(exp(x/5))). Ex.  

Amplitude of stimulus 
Just above threshold 
(Fig. 4) 
1.5 times threshold  
(Fig. 5) 



 

MC cell

Figure 6 and 7 shows 
response of cAD model 
in Martinotti cell to 
step currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 6)  
1.5 times threshold  
(Fig. 7) 

Fig 6 

Fig 7 

Fig 8 

Fig 9 
Figure 8 and 9 shows 
response of cAD model 
in Double bouquet cell 
to step currents. 

DBC cell

Amplitude of stimulus 
Just above threshold 
(Fig. 8) 
1.5 times threshold  
(Fig. 9) 
 



cFS 
 
 
 
 
 
 
 

Fig 1 

Fig 2 

Fig 3 

Fig 4 

Fig 5 

Continuous fast spiking. 
Possible morphologies: HC, CRC, LBC, 
SBC, NBC, ChC, MC, BTC, DBC.  
Characteristics: Non-adapting spiking, 
fast spiking, 100-500Hz. 
 Figure 1 shows ion channels used to 
model this firing pattern. Figures 2-9 
shows results for 3 different morphologies. 
 

BTC cell

Figure 2 and 3 shows 
response of cFS model 
to step currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 2) 
1.5 times threshold  
(Fig. 3) 
 

Figure 4 and 5 shows 
response of cFS model 
to SineSpec wave 
generated by using 
function w(x) = 
sin(exp(exp(x/5))). Ex.  

Amplitude of stimulus 
Just above threshold 
(Fig. 4) 
1.5 times threshold  
(Fig. 5) 



 

NBC cell
Figure 6 and 7 shows 
response of cFS model 
in Nest basket cell to 
step currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 6) 
1.5 times threshold  
(Fig. 7) 

Fig 6 

Fig 7 

Fig 8 

Fig 9 Figure 8 and 9 shows 
response of cFS model 
in Large basket cell to 
step currents. 

LBC cell

Amplitude of stimulus 
Just above threshold 
(Fig. 8) 
1.5 times threshold  
(Fig. 9) 
 



cNA 
 
 
 
 
 
 
 

Fig 1 

Fig 2 

Fig 3 

Fig 4 

Fig 5 

Continuous non adapting firing pattern. 
Possible morphologies: BTC, DBC, MC, 
BP, LBC, NBC, SBC.  
Characteristics: No spike adaptation, 
slow spiking, <100Hz. 
 Figure 1 shows ion channels used to 
model this firing pattern. Figures 2-9 
shows results for 3 different morphologies. 
 

SBC cell

Figure 2 and 3 shows 
response of cNA model 
to step currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 2) 
1.5 times threshold  
(Fig. 3) 
 

Figure 4 and 5 shows 
response of cNA model 
to SineSpec wave 
generated by using 
function w(x) = 
sin(exp(exp(x/5))). Ex.  

Amplitude of stimulus 
Just above threshold 
(Fig. 4) 
1.5 times threshold  
(Fig. 5) 



 

BTC cell

Figure 6 and 7 shows 
response of cNA model 
in Bitufted cell to step 
currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 6) 
1.5 times threshold  
(Fig. 7) 

Fig 6 

Fig 7 

Fig 8 

Fig 9 Figure 8 and 9 shows 
response of cNA model 
in Large basket cell to 
step currents. 

LBC cell

Amplitude of stimulus 
Just above threshold 
(Fig. 8) 
1.5 times threshold  
(Fig. 9) 
 



dNA 
 
 
 
 
 
 
 
 

Fig 1 

Fig 2 

Fig 3 

Fig 4 

Fig 5 

Delayed non adapting firing pattern. 
Possible morphologies: NGC, ChC.  
Characteristics: Delayed onset of spiking, 
no spike adaptation, slow spiking, <100H. 
 Figure 1 shows ion channels used to 
model this firing pattern. 
Figures 2-5 shows results for different 
stimulus on a ChC cell. 

ChC cell
Figure 2 and 3 shows 
response of dNA model 
to step currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 2) 
1.5 times threshold  
(Fig. 3) 
 

Figure 4 and 5 shows 
response of dNA model 
to SineSpec wave 
generated by using 
function w(x) = 
sin(exp(exp(x/5))). Ex.  

Amplitude of stimulus 
Just above threshold 
(Fig. 4) 
1.5 times threshold  
(Fig. 5) 



rBS 
 
 
 
 
 
 
 

Fig 1 

Fig 2 

Fig 3 

Fig 4 

Fig 5 

Repetitive bursting. 
Possible morphologies: Not known.  
Characteristics: Produces repetitive bursts 
riding on depolarization’s. 
 Figure 1 shows ion channels used to 
model this firing pattern. Figures 2-9 
shows results for 3 different morphologies. 
 

SBC cell

Figure 2 and 3 shows 
response of rBS model 
to step currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 2) 
1.5 times threshold  
(Fig. 3) 
 

Figure 4 and 5 shows 
response of rBS model 
to SineSpec wave 
generated by using 
function w(x) = 
sin(exp(exp(x/5))). Ex.  

Amplitude of stimulus 
Just above threshold 
(Fig. 4) 
1.5 times threshold  
(Fig. 5) 



 

BTC cell

Figure 6 and 7 shows 
response of rBS model 
in Bitufted cell to step 
currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 6) 
1.5 times threshold  
(Fig. 7) 

Fig 6 

Fig 7 

Fig 8 

Fig 9 Figure 8 and 9 shows 
response of rBS model 
in Large basket cell to 
step currents. 

LBC cell

Amplitude of stimulus 
Just above threshold 
(Fig. 8) 
1.5 times threshold  
(Fig. 9) 
 



tBS 
 
 
 
 
 
 
 

Fig 1 

Fig 2 

Fig 3 

Fig 4 

Fig 5 

Transient bursting. 
Possible morphologies: Not known.  
Characteristics: Produces only one burst 
riding on a depolarization followed by a 
strong hyperpolarization and no further 
spiking. 
 Figure 1 shows ion channels used to 
model this firing pattern. Figures 2-9 
shows results for 3 different morphologies. 

MC cell

Figure 2 and 3 shows 
response of rBS model 
to step currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 2) 
1.5 times threshold  
(Fig. 3) 
 

Figure 4 and 5 shows 
response of rBS model 
to SineSpec wave 
generated by using 
function w(x) = 
sin(exp(exp(x/5))). Ex.  

Amplitude of stimulus 
Just above threshold 
(Fig. 4) 
1.5 times threshold  
(Fig. 5) 



 
 
 

NBC cell

Figure 6 and 7 shows 
response of rBS model 
in Nest basket cell to 
step currents. 
Amplitude of stimulus 
Just above threshold 
(Fig. 6) 
1.5 times threshold  
(Fig. 7) 

Fig 6 

Fig 7 

Fig 8 

Fig 9 Figure 8 and 9 shows 
response of rBS model 
in Small basket cell to 
step currents. 

SBC cell

Amplitude of stimulus 
Just above threshold 
(Fig. 8) 
1.5 times threshold  
(Fig. 9) 
 


