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I. OVERVIEW 
 

This report details the execution of the Task2 described in WP6. For this task, neuron 

models that will be implemented in hardware have to be defined, as a collaborative effort 

between biologist that evaluate their biological relevance, computational neuroscientist that 

process preliminary simulations of the models, and physicist that will design the VLSI 

circuits computing the models in hardware. We will describe in this report first the Hogkin-

Huxley formalism and the chosen neural element model, then how this formalism has been 

integrated into an ASIC (Application Specific Integrated Circuit) called “Galway”. At last, 

we propose several new specifications for the future ASICs generations, to better fit 

different neuron activities. 

II. HOGKIN-HUXLEY FORMALISM 
 

The electrical activity of a neuron is the consequence of the diffusion of ionic species 

through its membrane. This activity is characterized by a membrane potential which is the 

voltage differential between the outside and the inside of the cell. Ions flow through the cell 

membrane through an ion-specific channel, generating ionic currents. An equilibrium 

potential is associated with each ion type, according to the difference between the 

intracellular and extracellular concentrations. For each ion type, the fraction of the opened 

channels determines the global conductance of the membrane of that ion. This fraction 

results from the interaction between time and voltage dependent activation and inactivation 

processes.  

The Hodgkin-Huxley formalism proposes a set of equations and an electrical equivalent 

circuit (Fig. 1) that describe these phenomena. The current flowing across a membrane is 

integrated on the membrane capacitance, following the electrical equation (1),  
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where VMEM is the membrane potential, CMEM the membrane capacitance and IS stimulation 

and synaptic current 

IION is the current passing through the specific ionic channels, IION is given by (2), in which 

gmax is the maximal conductance value, m (opening/activation) and h (closing/inactivation) 



are the dynamic functions describing the permeability of membrane channels to this ion, 

VEQUI  the equilibrium potential and p,q integers. 
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As shown in (3), m converges to its associated steady-state value m∞, which is a sigmoïdal 

function of VMEM. The time constant for the convergence is τm. VOFFSET is the activation 

sigmoïde offset and VSLOPE the activation sigmoïde slope. The variable h follows the same 

dynamics, with an inversely sigmoïdal steady-state value h∞ . 
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Fig. 1: Neuron electrical equivalent circuit 

 

III. NEURAL ELEMENT 
 

The chosen structure of the neural element presents digital inputs and one digital output 

while all the variables represented by membrane voltage and ionic or synaptic currents are 

analog and computed in continuous time. The structure of a neuron unit is shown in Fig. 2. 

The pre-synaptic signal named ‘ Synaptic Trig’ is triggering the synaptic currents. The 

action potentials output by this analog neuron are then detected and used to generate an 

output digital signal, called S (“neuron activity”). A configuration data bus is also present to 

be able to tune the parameters values of both synaptic and ionic currents. 

  

 



Fig. 2 : Neural element structure 

 

A computer is used to collect and dispatch the digital signals according to the connectivity 

rules, which are completely software-controlled. As analog neurons are integrated 

separately, and perform parallel computation, the size limitation (number of neurons) of the 

system only depend of the computer constraints (data transfer latency and software). 

In the equation (1) of Hogkin-Huxley formalism, two main different types of current are 

presents : ionic currents and synaptic currents 

Each ionic current generator (or conductance) is built according to synoptic Fig.3, where 

each parameter input is connected to its electrical image in an internal way for voltages and 

currents, in an external way for any time constant. 
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Fig. 3 :  Modular structure of the integrated ionic current generator 

 

One limitation we have introduced in our integrated model is to fix the value of time 

constants τh and τm, that are no more depending of the membrane potential. 

 



We chose to model synaptic interactions using “exponential” synapses, where the synaptic 

conductance increases of a given “quantal conductance” when a presynaptic spike occurs, 

then relaxes exponentially to zero (Destexhe and al., 1994). The associated post-synaptic 

current ISYN is given in (4) and (5), where gMAX is the maximal conductance, ESYN the 

reverse synaptic potential, VMEM the post-synaptic membrane potential, r the fraction of 

receptors in open state, α and β voltage-independent forward and backward rate constants, 

[T] the transmitter concentration 

)EV(rgI SYNMEMMAXSYN −=  (4)        r)r1(]T[
dt
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Fig. 4 illustrates the time-variation of the synaptic conductance g when a transmitter 

concentration pulse [T] occurs, assuming that the transmitter is released when a presynaptic 

action potential appears. As the quantum ∆g is proportional to the ∆t pulse width, this later 

parameter will be exploited to modulate ∆g.  

 
Fig. 4: Exponential decay synapse principle 

 
Furthermore, synaptic summation, which occurs when multiple pre-synaptic spikes are 

simultaneously presented, will be handled naturally by the integration of successive 

transmitter pulses. The time constants and quantum sizes can be adjusted to fit experimental 

recordings of excitatory (glutamatergic, AMPA) and inhibitory (GABAergic) synaptic 

currents. The encoding of the conductance quantum, which represents the synaptic strength, 

is done by modulating the pulse duration. The modulation is digitally controlled. As long as 

the signal is active on the input, the synaptic conductance increases. When the input signal 

stops (end of the ‘pulse’), the conductance decreases exponentially. This synapse model is 



particularly well adapted for an electronics implementation: it aggregates multiple synaptic 

inputs in a unique mechanism, and therefore limits the hardware connections.  

IV. ASIC INTEGRATION 
 

We have decided to use austriamicrosystems (AMS) BiCMOS 0.35µm technology to 

integrate all the ASICs designed during FACETS contract. This choice has been motivated 

by the permanence of this technology and by a reasonable cost (around 1000€ per mm² of 

design). The first ASIC is called “Galway” and we will detail its content in this paragraph. 

To improve the dynamics of the electrical simulator, we have chosen to multiply the 

biological value of ionic currents and voltages by different ratios. The values of these ratios 

are indicated in Table 1. Time scale is not modified, so time constants keep the same value 

for both biological and electrical models. 

 Biological Electrical Ratio 

Currents 1nA 50nA x50 

Voltages 100mV 500V x5 

Conductances 1mS 10mS x10 

Capacitances 1nF 10nF x10 

Table 1 

Let us notice that the ratios of conductance and capacitance are deducted from the two 

previous ones.  

Keeping in mind that the area of the integrated cells is 0.00022cm2 (which corresponds to a 

value for the membrane capacitance CMem=1µF/cm2), the membrane capacitor has a value 

CMEM=0.22nF in the biological domain, so we connect a 2.2nF capacitor to the VMEM output 

of our circuit. 
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Fig.5: Numerical simulation of inhibitory neuron (FS) Fig. 6: Numerical simulation of excitatory neuron (RS) 
 

We used 2 generic models for excitatory and inhibitory neurons based, according to the 

classification of Connors and Gutnick (1990). All the neurons contain a leak conductance 

and voltage-dependent Na and K conductances, necessary to generate action potentials. This 

model reproduces the "fast spiking" phenotype (Fig. 5), which represents the major class of 

inhibitory neurons in different cortical areas as well as in many other parts of the central 

nervous system. Another important class of neurons in the cerebral cortex is the one of 

excitatory neurons (“regular-spiking” phenotype - Fig. 6). Their model includes an 

additional slow voltage-dependent K current (IM) responsible for spike-frequency 

adaptation. Simulations are run using the NEURON software (Hines et al., 1997) 

As precise models and types of neurons were not available during the design of “Galway”, 

the circuit is organized to provide to user a large variety of configurations for the simulated 

neural network. As the neural activity is generated by a sum of ionic and synaptic currents 

on a membrane capacitance, we decided to integrate a set of generic blocks, each able to 

compute a conductance-based model of ionic or synaptic current. During the configuration 

phase, the user will also set the topology of the network, i.e. define the blocks connectivity. 

A set of connected blocks will form a neural element, with their respective currents summed 

on an external capacitor. The structure of “Galway” chip is described in Fig. 7.  



Fig.7: structure of “Galway” chip Fig.8 : layout of “Galway” chip 

 

The Galway chip we present here comprises (Fig 7):  

- a set of conductance modules, each able to generate an ionic or synaptic current 

following the conductance-based model 

- spike-detection modules, to code on 1-bit the neuron membrane voltage  

- Vmem analog output for each neuron 

- a set of synaptic input modules, that activate synaptic conductance modules with a 

digitally-controlled weight 

- an analog memory cells array, to store the model parameters 

- a matrix of switches, to control the neurons topology (i.e. the arrangement of the 

conductance and synaptic modules that form the artificial neuron)  

- digital functions to control data transfer from and to external devices.  

All the parameters of the model card of any type of inhibitory or excitatory neurons are 

stored into an internal analog memory cell array except the time constants that required 

external capacitors. The analog memory cells are refreshed every 2ms via a serial input 

managing the model parameters input. The analog functions like sigmoid, integrator and 

multiplier had been designed in such a way that their inputs are compatible with the full 

range variation of parameters. 



 

 “Galway” integrates 5 neural elements, each of them has 3 synaptic current – one for 

inhibitory input, one for excitatory input and one for background noise activity. 

Due to the biological ratio of inhibitory and excitatory cells, we have integrated, as shown 

in the layout of “Galway” depicted in Fig.8 : 

- 1 Fast Spiking cell (N1) constructed with 3 conductances Ileak, INa, IK 

- 3 Regular Spiking cells (N2,N3,N4) with 4 conductances Ileak, INa, IK, IM 

- 1 Regular Spiking cell (N5) with a fifth conductance identical to IM. 

- 1 extra conductance identical to IM, that can be connected either to N4 either to N5 

- the memory cell array storing the parameters of the neuron model card 

The area of the chip is 10.5 mm2, and it is composed by 47000 devices. 

At this moment, we perform functional tests on “Galway” and we obtain good behavior. 

Fig. 9 and Fig. 10 respectively illustrates spiking activity with typical value of parameters 

and exponential decay synapse waveform. 

Fig. 9: spiking activity of neurons N2, N3 & N5 of 
“Galway” 

Fig. 10: A) digital synaptic weight 

B) exponential decay wave form of a synapse 

 

V. SPECIFICATION OF NEXT GENERATION ASIC 
 

The ASICs of the next generation will have to fit different electrical activities that are 

described below. These models had been provided at the Facets Plasticity Workshop by 

Alain Destexhe. 



In the category of inhibitory cells (Fig. 11), we may observe the classical Fast Spiking 

neuron composed by 3 conductances Ileak, INa, IK ; adding an anomalous rectifier channel 

called Ih we obtain the Slow Firing activity ; adding two currents  a low threshold calcium 

current called ICaT and a transient potassium current called Isi we obtain stuttering activity. 

In the category of excitatory cells (Fig. 12), we may observe the classical Regular spiking 

neuron composed by Ileak, INa, IK, IM ; adding one more current i.e. a low or high threshold 

calcium current ICaT or ICaL we obtain  different activities called Intrinsically Bursting or 

Rebound Bursting or Repetitive Bursting. 

Many of these neurons need 5 conductances. Moreover, as our integrated model only 

manages fixed time constant for τh and τm , we have tried to find such value. In the case of 

Isi and Ih the best fit is obtained using a step function and not a fixed value; for instance Isi,  

τh = 20 ms for Vmem ≤ -49 mV and τh = 80 ms for Vmem > 49 mV. 

So, in conclusion, the next generation of ASIC should integrate : 

- more neurons with 5 conductances 

- step functions for specific time constant. 

 
Fig. 11 : different activities for Fast Spiking (inhibitory)  cells 

 



Fig. 12 : different activities for Regular Spiking (excitatory) cells 
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