
FACETS

FP6-2004-IST-FETPI 15879

Fast Analog Computing with Emergent Transient States

Concept of a common data model for
neuroscience simulations

Report Version: 1.0 (Revision : 213)

Report Preparation: Andrew Davison, Eilif M�uller and T. Vi�eville

Classi�cation: PU

Contract Start Date: 01/09/2005 Duration: 4 Years

Project Co-ordinator: Karlheinz Meier (Heidelberg)

Partners: U Bordeaux, CNRS (Gif-sur-Yvette, Marseille), U Debrecen, TU Dresden, U Freiburg,
TU Graz, U Heidelberg, EPFL Lausanne, Funetics S.a.r.l., U London, U Plymouth,
INRIA, KTH Stockholm

Project funded by the European Community

under the \Information Society Technologies' Programme

D
E
L
IV

E
R
A
B
L
E
S
T
A
B
L
E

P
r
o
je
c
t
N
u
m
b
e
r
:
F
P
6
-2
0
0
4
-I
S
T
-F
E
T
P
I
1
5
8
7
9

P
r
o
je
c
t
A
c
r
o
n
y
m
:
F
A
C
E
T
S

T
it
le
:
F
a
st

A
n
a
lo
g
C
o
m
p
u
ti
n
g
w
it
h
E
m
e
r
g
e
n
t
T
r
a
n
si
e
n
t
S
ta
te
s

D
el
.
N
o.

R
ev
is
io
n

T
it
le

T
y
p
e1

C
la
ss
i�
ca
ti
on

2
D
u
e
D
at
e

Is
su
e
D
at
e

23
1.
0

C
on
ce
p
t
of

a
co
m
m
on

d
at
a
m
o
d
el
fo
r
n
eu
ro
sc
ie
n
ce

si
m
u
la
ti
on
s

R
P
U

M
on
th

12
12
/1
0/
20
06

1
R
:
R
ep
o
rt
;
D
:
D
em

o
n
st
ra
to
r;

P
:
P
ro
to
ty
pe
;
O
:
O
th
er

{
S
pe
ci
fy

in
fo
o
tn
o
te

2
P
U
:

P
u
bl
ic

P
P
:

C
ir
cu
la
ti
o
n
w
it
h
in

p
ro
gr
a
m
m
e
pa
rt
ic
ip
a
n
ts
,
in
cl
u
d
in
g
th
e
C
o
m
m
is
si
o
n
S
er
vi
ce
s

R
E
:

R
es
tr
ic
te
d
ci
rc
u
la
ti
o
n
li
st

(s
pe
ci
fy

in
fo
o
tn
o
te
),

in
cl
u
d
in
g
th
e
C
o
m
m
is
si
o
n
S
er
vi
ce
s

C
O
:

C
o
n
�
d
en
ti
a
l,
o
n
ly

fo
r
m
em

be
rs

o
f
th
e
co
n
so
rt
iu
m
,
in
cl
u
d
in
g
th
e
C
o
m
m
is
si
o
n
S
er
vi
ce
s

ii

DELIVERABLE SUMMARY SHEET

Project Number: FP6-2004-IST-FETPI 15879

Project Acronym: FACETS

Title: Fast Analog Computing with Emergent Transient States

Deliverable No: 23

Due date: Month 12

Delivery Date: 12/10/2006

Short Description:

One FACETS goal is to build a common data model for describing neuroscience simulation
models. The FACETS project provides an ideal infrastructure for this important task by :
- re-using existing speci�cations to simulate WP4 and WP6 outcomes at the `neuron' level
- developing a new set of speci�cations to simulate WP5 and WP7 outcomes, restraining our
development to event based (spiking) neuronal assemblies.
It was agreed that after the 1st year we will attempt to integrate this initiative with the NeuroML
project (considering \event-based" network models).
After this �rst 12 months of the project the consortium has provided and evaluated a declarative
(FacetsML) and a procedural (PyNN) description of neurons and networks within the scope of
this project. Both speci�cations are available as cooperative open-source document bundles,
FacetsML being in a software forge and PyNN being in an internal FACETS repository. As
a step further, a prototype WYSIWYG editor for FacetsML has been developed, and requires
evaluation not only by computer scientists but also by other colleagues. All speci�cations are
computer language independent, written in XML (XSD schema and XSL transformation) and
based on W3C standards. Utility tools are developed in Java for maximal portability. Technical
tools are developed in Python which is the language used by most existing simulators within the
consortium. Integration between Java and Python components is straightforward, using existing
tools.

Partners owning: CNRS(a), UHEI and INRIA

Partners contributed: CNRS(a), UHEI, INRIA

Made available to: public

iii

Contents

1 Introduction 2

1.1 The value of multiple simulators . 2

1.2 Simulator-independent model speci�cation . 2

1.3 General requirements . 3

2 NeuroML data model 5

2.1 Declarative model speci�cation using NeuroML . 5

2.2 Entity/object types . 8

2.2.1 NetworkML . 8

2.2.2 Population . 8

2.2.3 Projection . 8

2.2.4 CellInstance . 9

2.2.5 PopulationLocation . 9

2.2.6 RandomArrangement . 9

2.2.7 SynapseProperties . 9

2.2.8 ConnectivityPattern . 10

2.2.9 Connection . 10

2.2.10 SynapticLocation . 10

2.2.11 PotentialSynapticLocation . 10

3 Extensions to the NeuroML data model 11

3.1 Modi�cations to existing types . 11

3.1.1 Connectivity patterns . 11

3.1.2 Spatial location of cells . 12

3.2 Limits and units for parameters . 13

3.3 Dynamic parameter and parameter variability . 15

3.3.1 Random distribution . 16

3.3.2 Dynamic parameter . 16

3.4 Threshold models . 16

3.5 Plasticity mechanisms . 17

3.5.1 Facilitation, depression . 17

3.5.2 Long-term plasticity . 17

3.6 Further Extensions . 18

4 Implementation 1: FACETS-ML 19

4.1 Introduction to FacetsML . 19

4.2 Fundamentals . 19

4.2.1 Basic Structure . 19

4.2.2 Rules for FacetsML documents . 20

4.2.3 Rules for Processor behavior . 21

4.3 Mapping to speci�c simulators . 21

iv

CONTENTS

5 Implementation 2: PyNN 22

5.1 Programmatic model speci�cation using Python . 22
5.2 API . 23

5.2.1 Data . 23
5.2.2 Functions . 23
5.2.3 Classes . 24

6 Future developments 28

1

1

Introduction

1.1 The value of multiple simulators

There are many freely-available, open-source, well-documented tools for simulation of networks of spiking
neurons. Within the FACETS project, seven di�erent such tools are in active use.1 There is considerable
overlap in the classes of network that each is able to simulate, but each strikes a di�erent balance between
e�ciency, exibility, scalability and user-friendliness, and the di�erent simulators encompass a range of
simulation strategies. This makes the choice of which tool to use for a particular project a di�cult
one, and we would argue moreover that using just one simulator is an undesirable state of a�airs. This
follows from the general principle that scienti�c results must be reproducible to be valid, and that any
given instrument may have aws or introduce systematic bias: the simulators used in computational
neuroscience are complex software packages, and may have hidden bugs or unexamined assumptions that
may only be apparent in particular circumstances. Therefore it is desirable that any given model should
be simulated using at least two di�erent simulators and the results cross-checked.

This, however, is more easily said than done. The con�guration �les, scripting languages or graphical
interfaces used for specifying model structure are very di�erent for the di�erent simulators, and this,
together with subtle di�erences in the implementation of conceptually-identical ideas, makes the conver-
sion of a model from one simulation environment to another an extremely non-trivial task; as such it is
rarely undertaken.

We believe that the �eld of computational neuroscience in general, and the FACETS project in
particular, would gain greatly from the ability to easily simulate a model with multiple simulators. First,
it would greatly reduce implementation-dependent bugs, and possible subtle systematic biases due to use
of an inappropriate simulation strategy. Second, it would facilitate communication between investigators
and reduce the current segregation into simulator-speci�c communities; this, coupled to a willingness to
publish actual simulation code as well as the more traditional model description, would perhaps lead to
reduced fragmentation of research e�ort and an increased tendency to build on existing models rather
than redevelop them de novo. Third, it would lead to a general improvement in simulator technology
since bugs could be more easily identi�ed, benchmarking greatly simpli�ed, and hence best-practice more
rapidly propagated.

1.2 Simulator-independent model speci�cation

To easily simulate models with multiple simulators, we require a common language in which to express
neuroscience models. In order to develop such a language, we need to itemize all of the concepts and
objects that are used in computational neuroscience simulations, and the relationships between these
them. The outcome of such a process of organizing the information about a particular domain is often
referred to as a data model.

Existing data models are for instance:

1The seven are NEURON, NEST, CSIM, SPLIT, NCS, MVASpike and MONSTER.

2

1.3. GENERAL REQUIREMENTS

� BrainML list of terms (http://brainml.org/) { tries to cover the whole of computational neuro-
science, but is not yet published.

� NeuroML { more compact, fully de�ned for a limited scope, that scope is close to what we want to
do.

We thus use the NeuroML standard as the basis of our data model and modify/extend it as required.
NeuroML is introduced in more detail in Section 2.

1.3 General requirements

In order to be acceptable a system of speci�cation has to be:

� Theoretically well founded. For example, algorithms provided by the system should have a formal
speci�cation (pre- and post-conditions). The complexity of the algorithms should be known. Data
structures should also be described formally. Concurrency and real-time control should be based
on established theory.
Simplicity eases the development of a formal model of the system to be able to analyze its behaviour,
predict its properties, etc..

� Strati�ed. It is crucial for such a system to be properly decomposed and layered, with well-de�ned
interfaces to every part of the implementation, so that it will be possible to choose alternative im-
plementations for some aspects. One reason for choosing an alternative implementation is increased
e�ciency, another is integration and compatibility with other systems.
For the same reason, the implementation must not contain anything that could just as well be
implemented in add-on libraries (here: strati�cation = hierarchy + modularity).

� Hierarchy-based. In order to organize and structure such a system, we require the concept of
hierarchy (a system is hierarchical if each entity can be used as a component of another entity)
where objects are only de�ned via their interface, while the physical implementation is independent
(here abstraction = interface + implementation) and the interface is realized via parameterisation,
i.e either values or pure functions.

� With maximal parameterisation. As much as possible, the system parameters have to be de�ned as
a static set of structured data (instead of \put-in-the-code"), thus yielding to the design of generic
software modules. Here, a parameter is not only a \datum" but also a symbolic function: e.g.
the operator of a general �ltering mechanism, the cost function of a criterion to be minimized, a
measurement equation, etc.

� Really modular in practice. Many existing systems contain deep type hierarchies with a single root.
In such systems, all useful function tends to drift towards the root, whose interface quickly gets
fat. The single root also makes it virtually impossible to combine the type hierarchy with other
systems. In contrast, new object-oriented systems tend to contain small, shallow, orthogonal type
hierarchies which are combined with multiple inheritance (mix-in techniques).

� With weakly coupled components. In order to manage mechanisms of huge complexity, a system is
modular if it is built of simple uniform entities (e.g. objects, cells, atoms, etc.) which are weakly
coupled (e.g. independent, distributed, etc.).
Modularity implies the ability to use what has been developed in the past and what will be developed
in the future. It is important to create embedded applications for which you do not need to
\download" more than what is actually used. The fact that each entity is simple and independent
makes it more likely that implementation can be fast and easy to control.

� Open ended. There is no way that a system can provide support for every conceivable algorithm.
Since such a system tries to cover applications, it will tend to be too large, monolithic, and hard

3

1. INTRODUCTION

to use and support if not modular.
Therefore, such a system must consist of a small kernel to which problem-oriented code is added
as modules.

� Well engineered. The �sthetic aspect of a system should not be underestimated. Most successful
software packages are good compromises between generality, e�ciency, and size. The concepts are
often simple and straight-forward. The software is usually built with standard components, as far
as possible, and uses wide-spread, well suited programming languages.

� With a progressive learning scheme. This is also important in order to create embedded applications
where you do not need to \download" more than what is actually used. Moreover, it could enable
a \progressive learning scheme" so that a newcomer does not need to learn more than is basically
needed for his application to get started.

� Based on mainstream technology. Some systems invent their own speci�cation languages, scripting
languages, graphical interface, when there are existing, generally accepted alternatives. The use of
mainstream components increases the probability that the system will be accepted and used.

� With support for development. Several existing systems lack adequate tools for testing and de-
bugging new applications. The system must be robust and, e.g., detect crashed processes and
communication problems. It must be possible to monitor program execution, especially in dis-
tributed systems, and to trace events.

In other words: small is beautiful, but not only this: it is also more manageable, easy to learn, more
reliable, cheaper and faster.

Implementation of the common data model

Although NeuroML uses XML for model speci�cation, we attempt to make our data model independent
of the particular implementation technology. We therefore present two alternative/complementary imple-
mentations, a speci�cation using XML-Schema, called FacetsML (Section 4), and an API using Python,
called PyNN (Section 5).

4

2

NeuroML data model

As noted above, we have chosen to base our common data model on that developed by the NeuroML
project, and to extend it where necessary. Therefore, we here summarise the NeuroML project and data
model.1

2.1 Declarative model speci�cation using NeuroML

The NeuroML project is an open-source collaboration whose stated aims are:

1. To support the use of declarative speci�cations for models in neuroscience using XML.

2. To foster the development of XML standards for particular areas of computational neuroscience
modeling.

The following standards have so far been developed:

� MorphML: speci�cation of neuroanatomy (i.e. neuronal morphology)

� ChannelML: speci�cation of models of ion channels and receptors (see Figure 2.1 for an example)

� Biophysics: speci�cation of compartmental cell models, building on MorphML and ChannelML

� NetworkML: speci�cation of cell positions and connections in a network.

The common syntax of these speci�cations is XML (Extensible Markup Language). This has the ad-
vantages of being both human- and machine-readable, and standardized by an international organization,
which in turn has led to wide uptake and developer participation.

Other XML-based speci�cations that have been developed in neuroscience and in biology more gen-
erally include BrainML for exchanging neuroscience data, CellML for models of cellular and subcellular
processes and SMBL for representing models of biochemical reaction networks.

Although XML has become the most widely used technology for the electronic communication of
hierarchically structured information, the real standardisation e�ort is orthogonal to the underlying
technology, and concerns the structuring of domain-speci�c knowledge, i.e. a listing of the objects
and concepts of interest in the domain and of the relationships between them, using a standardised
terminology. To achieve this, NeuroML uses the XML Schema Language to de�ne the allowed elements
and structure of a NeuroML document. The validity of a NeuroML document may be checked with
reference to the schema de�nitions. The NeuroML Validation service provides a convenient way to do
this.

1Note that this section refers to version 1.3� of the NeuroML standards.

5

http://www.neuroml.org/, {protect elax protect elax protect edef n{it}protect xdef OT1/cmr/bx/n/14.4 {OT1/cmr/m/n/10.95 }OT1/cmr/bx/n/14.4 spaceskip z@ gdef {}size@update enc@update Crook et al}., 2005
http://www.w3.org/XML
http://brainml.org
http://www.cellml.org
http://sbml.org
http://www.w3.org/XML/Schema
http://morphml.org:8080/NeuroMLValidator

2. NEUROML DATA MODEL

<?xml version="1.0" encoding="UTF-8"?>

<channelml xmlns="http://morphml.org/channelml/schema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:meta="http://morphml.org/metadata/schema"

xsi:schemaLocation="http://morphml.org/channelml/schema ../../Schemata/v1.1/Level2/ChannelML_v1.1.xsd"

units="Physiological Units">

<ion name="k" default_erev="-77.0" charge="1"/> <!-- phys units: mV -->

<channel_type name="KChannel" density="yes">

<meta:notes>Simple example of K conductance in squid giant axon.

Based on channel from Hodgkin and Huxley 1952</meta:notes>

<current_voltage_relation>

<ohmic ion="k">

<conductance default_gmax="36"> <!-- phys units: mS/cm2-->

<gate power="4">

<state name="n" fraction="1">

<transition>

<voltage_gate>

<alpha>

<parameterised_hh type="linoid" expr="A*(k*(v-d))/(1 - exp(-(k*(v-d))))">

<parameter name="A" value="0.1"/>

<parameter name="k" value="0.1"/>

<parameter name="d" value="-55"/>

</parameterised_hh>

</alpha>

<beta>

<parameterised_hh type="exponential" expr="A*exp(k*(v-d))">

<parameter name="A" value="0.125"/>

<parameter name="k" value="-0.0125"/>

<parameter name="d" value="-65"/>

</parameterised_hh>

</beta>

</voltage_gate>

</transition>

</state>

</gate>

</conductance>

</ohmic>

</current_voltage_relation>

</channel_type>

</channelml>

Figure 2.1. Example of Hodgkin-Huxley K+ conductance speci�ed in ChannelML, a component of
NeuroML.

6

2.1. DECLARATIVE MODEL SPECIFICATION USING NEUROML

Using NeuroML for specifying network models

In order to use NeuroML to specify spiking neuronal network models we require detailed descriptions of

1. point spiking neurons (integrate and �re neurons and generalisations therefore)

2. compartmental models with Hodgkin-Huxley-like biophysics

3. large networks with structured internal connectivity related to a network topology (e.g.: full-
connectivity, 1D or 2D map with local connectivity, syn�re chains patterns, .. with/without ran-
domness) and structured map to map connectivity (e.g.: point-to-point, point-to-many, ..)

At the time of writing, NeuroML supports the second and third items, but not the �rst. Speci�cation
of Hodgkin-Huxley-type models uses the MorphML, ChannelML and Biophysics standards of NeuroML
(see Fig. 2.1 for an example), and for the FACETS project we adopt these in their entirety. Where we
need to go beyond the NeuroML data model is in speci�cation of networks, and so in the remainder of
this section we introduce the NetworkML standard, with notes on its current limitations, while in the
next section we present our proposed extensions.

A key point in understanding NetworkML is that a set of neurons and network connectivity may be
de�ned either by extension (providing the list of all neurons, parameters and connections), for example:

<population name="PopulationA">

<cell_type>CellA</cell_type>

<instances>

<instance id="0"><location x="0" y="0" z="0"/></instance>

<instance id="1"><location x="0" y="10" z="0"/></instance>

<instance id="2"><location x="0" y="20" z="0"/></instance>

. . .

</instances>

</population>

(note that CellA is a cell model described earlier in the NeuroML document) or by speci�cation, i.e. an
implicit enumeration, for example:

<population name="PopulationA">

<cell_type>CellA</cell_type>

<pop_location>

<random_arrangement>

<population_size>200</population_size>

<spherical_location>

<meta:center x="0" y="0" z="0" diameter="100"/>

</spherical_location>

</random_arrangement>

</pop_location>

</population>

Similarly, for connectivity, one may de�ne an explicit list of connections,

<projection name="NetworkConnection1">

<source>PopulationA</source>

<target>PopulationB</target>

<connections>

<connection id="0">

<pre cell_id="0" segment_id = "0"/>

<post cell_id="1" segment_id = "1"/>

</connection>

<connection id="1">

<pre cell_id="2" segment_id = "0"/>

<post cell_id="1" segment_id = "0"/>

</connection>

. . .

</connections>

</projection>

or specify an algorithm to determine the connections:

7

2. NEUROML DATA MODEL

<projection name="NetworkConnection1">

<source>PopulationA</source>

<target>PopulationB</target>

<connectivity_pattern>

<num_per_source>3</num_per_source>

<max_per_target>2</max_per_target>

</connectivity_pattern>

</projection>

2.2 Entity/object types

Here we list the types of object that are de�ned in the NetworkML speci�cation, excluding those types
(Populations, Projections, Instances) that essentially only contain lists of entities of other types.2

The attributes of each type are given as name : attribute type pairs. Optional attributes are coloured
pale blue, required attributes dark blue. Note that we do not use attributes in the narrow XML sense,
but in the general sense of a named object or other data structure contained within a higher-level object.
In the XML implementation, these attributes may be either XML attributes or XML elements.

We do not list the other NeuroML speci�cations (ChannelML, MorphML, etc.) for reasons of space,
and because the NetworkML speci�cation is most important in understanding our proposed extensions
to the NeuroML data model.

2.2.1 NetworkML

Attributes

name : string

lengthUnits : meta:LengthUnits

volumeUnits : meta:VolumeUnits

populations : list of Populations

projections : list of Projections

This is the container for the entire model.

2.2.2 Population

Attributes

name : string

cell type : string

instances : list of CellInstances

or

pop location : PopulationLocation

A Population is a collection of cells all of the same type. The cell type string must be the name of a cell
model that has been previously de�ned using MorphML, ChannelML and Biophysics. The locations of the
cells in space may be de�ned either through a list of CellInstances or through a PopulationLocation

entity.

2.2.3 Projection

Attributes

2they may also contain meta-data, and the Populations type also has an attribute setting the system of units (\physio-
logical" or SI) to be used.

8

2.2. ENTITY/OBJECT TYPES

name : string

from : string

to : string

synapse properties : SynapseProperties

connections : list of Connections

or

connectivity pattern : ConnectivityPattern

A Projection is a set of connections between two Population entities. from and to are the name at-
tributes of Population entities. The individual connections may be speci�ed either as a list of Connections,
or through a ConnectivityPattern entity.

2.2.4 CellInstance

Attributes

id : integer

location : meta:Point

This speci�es an integer id and a location in space for an individual cell in a Population.

2.2.5 PopulationLocation

Attributes

reference : string

random arrangement : RandomArrangement

or

� � � : � � �

This speci�es which algorithm to use for determining the location of cells in space. It would per-
haps be better to make this an abstract type from which the types for speci�c algorithms (such as
RandomArrangement) can inherit, and then the pop location attribute of Population could have the
speci�c types as values, rather than have this long list (random arrangement,: : :) of alternate attributes.

2.2.6 RandomArrangement

Attributes

population size : integer

spherical location : meta:Sphere

or

� � � : � � �

The attributes are used to specify the number of cells in the Population and the boundaries of the region
of space within which the cells are randomly distributed.

2.2.7 SynapseProperties

Attributes

synapse type : string

delay : double

weight : double

threshold : double

Note that the units of these values is set by the units attribute of the containing Populations entity.
delay and weight should be self-explanatory. The use of threshold assumes that synaptic transmission
is triggered when the pre-synaptic membrane potential crosses a certain threshold.

9

2. NEUROML DATA MODEL

2.2.8 ConnectivityPattern

Attributes

num per source : double

max per target : double

� � � : � � �

This is to be extended, but in principle is used to specify the algorithm to be used to determine the
connections, and the parameters of that algorithm. Again, it may be better to have this as an abstract
type and have types for speci�c algorithms inherit from this.

2.2.9 Connection

Attributes

source : SynapticLocation

target : SynapticLocation

id : integer

Speci�es an integer id, and the pre- and post-synaptic entities.

2.2.10 SynapticLocation

Attributes

cell id : integer

segment id : integer

fraction along : [0 : : : 1]

cell id must correspond to the id attribute of a CellInstance. segment id should correspond to an id
de�ned using the MorphML speci�cation. fraction along speci�es where on that segment the synapse
should be located (the default is presumably the middle of the segment).

2.2.11 PotentialSynapticLocation

Attributes

synapse type : string

group : string

This speci�es a subset of sections on a cell where synaptic connection of a particular type is allowed.
group is a list of groups of sections (from the Biophysics speci�cation), and synapse type is the name
of a previously-de�ned synapse model (using the Biophysics speci�cation).

10

3

Extensions to the NeuroML data model

The NetworkML standard is still at an alpha stage of development, and there are several improvements
that could be made, even within its current scope of application (compartmental models with �xed pa-
rameter values). For the purposes of FACETS, we would like to extend its scope to include `point' or
`threshold' models such as integrate-and-�re models and generalisations thereof, and to allow more so-
phisticated handling of parameters, including speci�cation of the allowed range of values that parameters
can take and the possibility of specifying a random distribution from which parameter values may be
drawn.

3.1 Modi�cations to existing types

3.1.1 Connectivity patterns

It is proposed to make ConnectivityPattern an abstract type, and have types for speci�c connectivity
algorithms inherit from this. Proposed speci�c types (and their attributes):

AllToAll

No attributes. Connect all cells in the presynaptic population to all cells in the postsynaptic population.

OneToOne

No attributes. Where the pre- and postsynaptic populations have the same size, connect cell i in the
presynaptic population to cell i in the postsynaptic population for all i. In fact, despite the name, this
should probably be generalised to the case where the pre and post populations have di�erent dimensions,
e.g., cell i in a 1D pre population of size n should connect to all cells in row i of a 2D post population of
size (n;m).

FixedProbability

Attributes

p connect : [0 : : : 1]

For each pair of pre-post cells, the connection probability is constant.

DistanceDependentProbability

Attributes

d expression : string

For each pair of pre-post cells, the connection probability depends on distance. d expression should be

11

3. EXTENSIONS TO THE NEUROML DATA MODEL

the right-hand side of a valid Python1 expression for probability, involving `d', e.g. \exp(-abs(d))", or
\float(d<3)".

FixedNumberPre

Attributes

n conn : integer

Each presynaptic cell makes a �xed number of connections.

FixedNumberPost

Attributes

n conn : integer

Each postsynaptic cell makes a �xed number of connections.

FromFile

Attributes

filename : string

Load connections from a �le. The �le format will need to be speci�ed.

3.1.2 Spatial location of cells

It is proposed to make PopulationLocation an abstract type, and have types for speci�c location
algorithms, such as RandomArrangement inherit from this. Proposed speci�c types and their attributes:

GridStructure1D

Attributes

size : integer

spacing : double

GridStructure2D

Attributes

sizex : integer

sizey : integer

spacingx : double

spacingy : double

GridStructure3D

Attributes

sizex : integer

sizey : integer

sizey : integer

spacingx : double

spacingy : double

spacingz : double

1Python was chosen because one of our implementations of the common data model is in Python, but mathematical
expressions are anyway almost identical in most modern programming languages. In a later iteration of the data model, we
may use MathML for mathematical expressions, but this would add unnecessary complexity at this stage.

12

3.2. LIMITS AND UNITS FOR PARAMETERS

RandomArrangement

Attributes

size : integer

boundary : meta:Sphere or meta:Polyhedron

HexagonalClosePackedStructure

Attributes

size : integer

spacing : double

3.2 Limits and units for parameters

Currently, units can only be speci�ed on a model-wide basis. This has the advantage of simplicity, but may
require the user to convert values manually. Allowing speci�cation of units on a parameter-by-parameter
basis allows the user to use the units that are most convenient for him/her, but adds complexity. The
ideal situation would be to allow either model-wide or parameter-wise speci�cation of units. This may
or may not be achievable.

Other potentially useful attributes of a parameter besides its numerical value and units are the allowed
range of values, notation, default value, and precision2. These can be used to:

� verify the relevance of a given numerical value,

� automatically generate a graphical user interface to browse/edit such values,

� provide numerical algorithms with required \numerical conditioning" information,

Some examples are given in Table 3.1.

We propose therefore to de�ne a new type PValue that will be used in most places a numerical type,
such as double or integer is used now.

2Standard conditions for numbers At the speci�cation level, a \physical" parameter is always represented though a
vector of bounded quantities, with a precision (so that there is a �nite range of signi�cant values). Such a precision is in
practice very easy to estimate (e.g. 1 mm for a pupil ruler, 1 deg for a protractor, 1 pixel in an image, etc...) and so are
bounds. These quantities are not precise numbers but orders of magnitude.
Following this track, two parameters can be considered as distinct only if their di�erence is higher than some \epsilon-value".
Otherwise, we cannot decide whether these values are the same or di�er by a quantity too small to be measurable. In the
latter cases, we can simply state that they are indistinguishable. When several parameters are taken into consideration
together the underlying assumption is that the related covariance between then has been { up to some linear transformation
{ diagonalized.
Although over-simple, such an speci�cation is very useful at both the theoretical and implementation levels. It has been
observed that there is a real gain in taking this experimental speci�cation into account: with such a speci�cation, \quasi-
static" estimation methods, with step by step variations from an initial estimate towards the problem solution, are powerful
strategies for local estimations (adaptations to limited range variations from a default value, interactive estimation where
a user-provided initial estimate is to be re�ned, e�ciency in tracking tasks, etc.), experimentally more e�cient than the
usual, standard methods, because the stability of the estimation process is easy to control in this case. Furthermore,
the estimation is stopped as soon as the required precision is obtained, whereas for standard methods, convergence to a
non-negligible precision only is not so easy to obtain, so that overhead occurs.

13

3. EXTENSIONS TO THE NEUROML DATA MODEL

value-name notation physical-unit default minimal maximal precision

value value value

membrane-time-constant �m milli-seconds 20.0 0 +1 1e-3
refractory-delay �r milli-seconds 0.0 0 +1 1e-3
refractory-time-constant �r milli-seconds +1 0 +1 1e-3
reset-potential Vreset milli-volts Vrest �1 +1 1e-3
rest-potential Vrest milli-volts -65.0 �1 +1 1e-3
threshold-potential V� milli-volts -50.0 �1 +1 1e-3
excitatory-synaptic-conductance-time-constant �E milli-seconds 2.0 0 +1 1e-3
inhibitory-synaptic-conductance-time-constant �I milli-seconds 5.0 0 +1 1e-3
excitatory-reversal-potential VE milli-volts 0.0 Vrest +1 1e-3
inhibitory-reversal-potential VI milli-volts -75 �1 V� 1e-3
excitatory-synaptic-conductance-initial-value gE0 micro-siemens 0.0 0 +1 1e-3
inhibitory-synaptic-conductance-initial-value gI0 micro-siemens 0.0 0 +1 1e-3
membrane-potential-initial-value Vinit milli-volts Vrest �1 +1 1e-3

Table 3.1. Examples of additional attributes of a numerical parameter besides the numerical value

PValue

Attributes

value : double or integer

units : Units

name : string

notation : string

default value : double or integer

minimal value : double or integer

maximal value : double or integer

precision : double or integer

notation could be a unicode string, a LATEXexpression, or a MathML expression. The Units type is
described below.

The downside to this proposal is that it adds greatly to the verbosity of a model description.
It may therefore be desirable to add subtypes of PValue for which default value, minimal value,
maximal value and precision, together with the dimensions of the quantity if not the speci�c units, are
pre-de�ned and �xed, e.g. MembranePotentialValue, TimeConstantValue, SynapticConductanceValue,
etc.

Units

Attributes

unitlist : list of Units

base unit : Boolean

Unit

Attributes

units : idref

exponent : integer

multiplier : double

offset : double

prefix : UnitPrefix

The use of the Units and Unit types is best explained by an example:

<units name="volt">

14

3.3. DYNAMIC PARAMETER AND PARAMETER VARIABILITY

<unit exponent="2" units="metre" />

<unit units="kilogram" />

<unit exponent="-3" units="second" />

<unit exponent="-1" units="ampere" />

</units>

<units name="ohm">

<unit units="volt" />

<unit exponent="-1" units="ampere" />

</units

<units name="siemenspersquarecentimetre">

<unit exponent="-1" units="ohm" />

<unit prefix="centi" exponent="-2" units="metre" />

</units>

i.e., a new unit is de�ned in terms of a list of existing units, where each component unit in the list is
multiplied together.

The seven base units of the SI system3 are de�ned as, for example,

<units name="ampere" base_unit="True" />

An alternative, probably desirable, system would be to include the base units, plus the named derived
units of the SI system (joule, coulomb, volt, ohm), in the schema de�nition as an enumeration, to avoid
having to de�ne these commonly-used units in every document.

The base unit attribute has default value \False".

The multiplier attribute can be used to pre-multiply the quantity to be converted by any real-valued
scale factor. For instance, a multiplier of 0.45359237 is used to de�ne a pound in terms of a kilogram.
The multiplier attribute has a default value of \1.0"

The offset attribute is used to represent the addition of a constant in the transformation between
the current units and the base units. This should only be necessary for the de�nition of temperature
scales. For instance, an o�set value of \32.0" is needed to de�ne Fahrenheit in terms of Celsius. The
offset attribute has a default value of \0.0".

The prefix attribute can be used to indicate a scale for the referenced units:

yotta zetta exa peta tera giga mega kilo hecto deka
1024 1021 1018 1015 1012 109 106 103 102 101

yocto zepto atto femto pico nano micro milli centi deci
10�24 10�21 10�18 10�15 10�12 10�9 10�6 10�3 10�2 10�1

3.3 Dynamic parameter and parameter variability

A step further, we must be able to allow parameters to be drawn from a random distribution, or to be
speci�ed by an algorithm (e.g. location-dependent).

3SI base units
Name Symbol Quantity

kilogram kg Mass
second s Time
meter m Length
ampere A Electrical current
kelvin K Temperature
mole mol Amount of substance
candela cd Luminous intensity

15

3. EXTENSIONS TO THE NEUROML DATA MODEL

3.3.1 Random distribution

They are to be speci�ed in this context by standard parameters, as sketched here:

Attributes

type : distribution kind

mean : distribution mean

standard-deviation : distribution standard-deviation

skewness : distribution 3rd order momentum (lack of symmetry)

kurtosis : distribution 4rd order momentum ("flatness" of the distribution)

using, e.g., a mixture of two Gaussian or uniform distributions.

3.3.2 Dynamic parameter

As stated in the FKB M8 reference document, values can also be de�ned dynamically using standard
expressions.

3.4 Threshold models

We use `threshold models' to describe spiking neuron models with an `arti�cial' action potential, i.e. one
in which an `action potential' is triggered when some variable or variables (e.g. membrane potential,
rate of change of membrane potential) pass(es) a threshold, rather than being produced from Hodgkin-
Huxley-type equations.

We use this term rather than `point' model or 'non-compartmental model' because it is possible to
have multi-compartmental, multi-point and/or spatially-extended threshold models.4

The NeuroML standards de�ne a biophysical cell model, which consists of a collection of ion channels,
synaptic mechanisms, a compartmental cable model with a de�ned morphology, and a speci�cation of
the spatial distribution of channels/synapses within the morphological structure.

Threshold models share most of this structure. The most complex threshold models may have all of
these, but with the action potential speci�ed by a threshold crossing rather than Hodgkin-Huxley fast
sodium and delayed-recti�er potassium channels. The simplest threshold models will have a morphology
consisting of a single point, no ion channels, and one synaptic mechanism.

We propose, then, to reuse as much as possible of the NeuroML structure for biophysical models.
The NeuroML Level3Cell type contains a biophysics attribute, of type Level3Biophysics, which is
an extension of the Biophysics type de�ned in the Level 2 Biophysics speci�cation. The Biophysics

type has the following attributes:

Biophysics

Attributes

mechanismlist : list of Mechanisms

specificCapacitance : SpecCapacitance

specificAxialResistance : SpecAxialResistance

initialMembPotential : InitialMembPotential

ionProperties : IonProperties

units : Units

(Note that the Units type is not the same as the one de�ned below.) All of these are potentially relevant to
threshold models. The Mechanism type has an attribute type, which may be either a ChannelMechanism
or an IonConcentration. A spiking threshold and reset is arguably a Mechanism, and so we propose to
add a third choice, ThresholdMechanism.

4e.g., a two-compartment integrate-and-�re model with a dendrite compartment and soma compartment, a resistive
connection between dendrite and soma and a threshold mechanism only in the soma.

16

3.5. PLASTICITY MECHANISMS

A ThresholdMechanism could be de�ned either by specifying equations, or simply by specifying
the name of a standard model, e.g. \IntegrateAndFire", \Izhikevich", whose behaviour is not de�ned
within FacetsML, but in the simulators. Allowing speci�cation of equations gives the most exibility and
generality, but also adds great complexity. At least initially, therefore, we propose to de�ne a library of
standard models, each of which will extend the StandardCell type:

StandardCell

Attributes

v rest : PValue

v reset : PValue

t refrac : PValue

cm : PValue

i offset : PValue

For example, IFNeuron has a �xed �ring threshold, and the sub-threshold membrane potential decays
with a single exponential time course, and so adds attributes v thresh and tau m.

3.5 Plasticity mechanisms

3.5.1 Facilitation, depression

Models of facilitation, depression and other forms of short-term mono-synaptic plasticity are an extension
of general synapse models, since they generally a�ect the peak conductance of the synapse. ChannelML
documents may contain elements of type SynapseType:

SynapseType

Attributes

name : string

density : meta:YesNo

doub exp syn : DoubleExponentialSynapse

evidently it is intended to add other synapse models in addition to doub exp syn.

DoubleExponentialSynapse

Attributes

max conductance : double

rise time : double

decay time : double

reversal potential : double

There are two possible options for adding short-term plasticity models. Either de�ne further classes
of synapse, some with plasticity mechanisms, some without, or attempt to dissociate the `static' part of
the synapse model from the plastic part, and have an attribute (or set of attributes) for each part. This
requires considerable further study, and we do not yet make a recommendation.

3.5.2 Long-term plasticity

We need here to distinguish between biophysical and phenomenological models of long-term plasticity
mechanisms. The former can probably be incorporated into ChannelML, or may have to wait for the
planned Level 4 NeuroML speci�cation, to cover subcellular processes such as detailed calcium dynamics
and signaling pathways. The latter probably does not belong in ChannelML, and so could perhaps go in
NetworkML, and be associated with the Projection type.

17

3. EXTENSIONS TO THE NEUROML DATA MODEL

Further complications may be anticipated for non-local/homeostatic mechanisms, which may not be
associated with a single Population or Projection.

Again, further study is required.

3.6 Further Extensions

Higher-order structures So far, we have Populations and Projections as the highest-order structures.
We could add columns, metacolumns, maps, etc.

Non-event inputs Inputs other than spiking ones, e.g., continuous currents are also to be considered

18

4

Implementation 1: FACETS-ML

4.1 Introduction to FacetsML

Many of the extensions to the NeuroML data model that were described in Section 3 have been imple-
mented in the FacetsML language, a declarative implementation of the FACETS data-model described
in the previous sections. FacetsML is an XML-based1 language for describing and exchanging models of
spiking neuron networks, based on NeuroML, for use within the FACETS. It may be considered both as
a test-bed for possible future additions to the NeuroML speci�cation, and a container for components
that are needed in the FACETS project but may be too speci�c for the NeuroML standards, for example
the standard cell models.

When the FACETS project was begun, there was no Level 3 (network) speci�cation in NeuroML,
and so we developed independently a schema for specifying neuronal networks on top of the NeuroML
Levels 1 and 2 standards (FacetsML version 0.8). We are now reimplementing FacetsML to base it on
the NetworkML speci�cation.

FacetsML, like NeuroML, uses XML Schema2 to de�ne the allowed structure, content and semantics
of XML neuronal network descriptions documents.

4.2 Fundamentals

This section of the FacetsML speci�cation introduces some concepts that are used throughout the entire
language.

4.2.1 Basic Structure

De�nition of a valid FacetsML identi�er

The most common use of a FacetsML identi�er is the name attribute required on many basic elements in
FacetsML. The value of this attribute can be used to reference that element from elsewhere in the model
de�nition or from another model de�nition altogether. An object's name can generally be thought of as
a unique identi�er for that object. Although the XML speci�cation de�nes a mechanism for specifying
that the value of an attribute is unique across an entire document (with the ID attribute type), this

1eXtensible Markup Language (XML). XML is a standard published by the World Wide Web Consortium, the orga-
nization responsible for de�ning many internet-related standards, including HTML. XML is essentially a means of adding
structure to text documents, allowing machines to unambiguously associate text or binary data with a particular component
in a document's data model.
XML is an appropriate medium for FacetsML because it is both human and machine readable. A model author can create
a FacetsML document with a text editor or with FacetsML authoring software. XML is a well-de�ned and widely used
speci�cation. Many free software utilities and libraries for the processing of XML already exist, simplifying the development
of FacetsML processing software. XML has also been designed to be usable over the internet, making FacetsML suitable for
the interchange of models between software and databases at di�erent locations.

2XML Schema is a W3C-approved standard which provides a means for de�ning the structure, content and semantics of
XML documents.

19

http://www.facets-project.org

4. IMPLEMENTATION 1: FACETS-ML

functionality is not used in FacetsML 0.8 because an object's name need only be unique across its own
class of objects.

The generation of computer code for running simulations is one of the target applications for FacetsML.
The value of an object's name attribute is intended to be a suitable name for the same object when it
is represented in computer code. For this reason FacetsML identi�ers must consist of only alphanumeric
characters and the underscore character (\ "), and are subject to some additional constraints outlined
below. These names will generally not be the most e�ective way of identifying the object to humans
working with FacetsML models as it is not possible to include whitespace or formatting.

The XML speci�cation is based on the Unicode standard, which de�nes a scheme for 16 bit character
encoding. Thus it is possible to include, for instance, Japanese characters in a valid XML document. In
the interests of making the code generation process as convenient as possible for those using mainstream
programming languages, FacetsML identi�ers are subject to the following constraints:

� An identi�er must consist only of alphanumeric characters from the US-ASCII character set and
underscore characters,

� An identi�er must contain at least one letter, and

� An identi�er must not begin with a digit.

Convenient code generation is also the reason why colons, periods, and hyphens may not appear in
FacetsML identi�ers. FacetsML identi�ers are case sensitive: a variable with an identi�er of ABC is
di�erent from a variable with an identi�er of abc.

Namespaces in FacetsML

Namespaces in XML is a companion speci�cation to the XML 1.0 speci�cation. XML namespaces add
a second level of naming to elements and attributes, allowing processing software to distinguish between
elements and attributes from di�erent languages. A namespace is identi�ed by a Uniform Resource
Identi�er (URI), which has the feature of being unique. The value of a namespace URI need have
nothing to do with the XML document that uses it. However, it typically points to a document that
de�nes the rules for the language. The URI may be mapped to a pre�x, which may then be used in front
of element and attribute names, separated by a colon. If not mapped to a pre�x, the URI sets the default
namespace for the current element and all of its children.

The following table lists the names, URIs and recommended pre�xes of the namespaces referenced
in this speci�cation. For interoperability, the root element of any FacetsML document should set the
default namespace and map the fml pre�x to the FacetsML 0.8 namespace URI.

Namespace Name Namespace URI Recommended Pre�x

FacetsML http://facets-project.org/facetsml/schema fml
FacetsML Metadata http://facets-project.org/metadata/schema fmeta
NeuroML Metadata http://morphml.org/metadata/schema meta
NeuroML Morphology http://morphml.org/morphml/schema mml
NeuroML Biophysics http://morphml.org/biophysics/schema bio
NeuroML Channel http://morphml.org/channelml/schema cml
NeuroML Network http://morphml.org/networkml/schema net

4.2.2 Rules for FacetsML documents

Valid FacetsML identi�ers

A valid FacetsML identi�er must consist of only letters, digits and underscores, must contain at least one
letter, and must not begin with a digit. This can be written using Extended Backus-Naur Form (EBNF)
notation as follows:

letter ::= `a'...`z', `A'...`Z'
digit ::= `0'...`9'
identi�er ::= (` ')* (letter) (letter j ` ' j digit)*

20

4.3. MAPPING TO SPECIFIC SIMULATORS

Figure 4.1. From NeuroML/FacetsML to simulator

Proper use of the FacetsML namespace

A document must not contain elements or attributes in the FacetsML namespace that are not de�ned in
this speci�cation.

Text nodes within FacetsML elements

Any characters that occur immediately within elements in the FacetsML namespace must be either space
(#x20) characters, carriage returns (#xA), line feeds (#xD), or tabs (#x9).

4.2.3 Rules for Processor behavior

Treatment of FacetsML identi�ers

FacetsML processing software must handle identi�ers in a case-sensitive manner.

Treatment of attribute namespaces

FacetsML processing software must treat attributes without an explicit namespace declaration as if they
were in the same namespace as their parent element.

4.3 Mapping to speci�c simulators

To go from FacetsML/NeuroML to code that can be run on a particular simulator, we proceed as follows:

1. edit data-structures using a suitable XML editor,

2. validate (i.e., verify that the related logical-structures are well-formed and valid with respect to the
speci�cation, conditions, etc..)

3. normalize (i.e., translate it an equivalent logical-structure but without redundancy, while some
factorization allows to simplify subsequent manipulation) it.

From this valid norm form translation is e�cient and safe. Translation may take at least two forms.
Either a simulator may accept a NeuroML document as input, and translation from FacetsML/NeuroML
elements to native simulator objects is performed by the simulator, or the XSL Transformation language
may be used to generate native simulator code (e.g. hoc or NMODL in the case of NEURON). For example,
the NeuroML Validator service provides translation of ChannelML and MorphML �les to NEURON and
GENESIS formats. This process is summarized in Figure 4.1.

Mapping to the MVASPIKE and NEST simulators has been designed and implemented while a partial
mapping to NEURON is available in NeuroML.

21

http://www.w3.org/TR/xslt

5

Implementation 2: PyNN

5.1 Programmatic model speci�cation using Python

For network simulations, we may well require more exibility than can easily be obtained using a declar-
ative model speci�cation such as FacetsML, but we still wish to obtain simple conversion between sim-
ulators, i.e. to be able to write the simulation code for a model only once, then run the same code on
multiple simulators. This requires �rst the de�nition of an API (Application Programming Interface)
or meta-language, a set of functions/classes which provides a superset of the capabilities of the simula-
tors we wish to run on1. There are two possible second steps: (i) each simulator implements a parser
which can interpret the meta-language; (ii) a separate program either translates the meta-language into
simulator-speci�c code or controls the simulator directly, giving simulator-speci�c function calls.

In our opinion, the second of these possibilities is the better one, since

1. it avoids replication of e�ort in writing parsers

2. we can then use a general purpose, state-of-the-art interpreted programming language, such as
Python or Ruby, rather than a simulator-speci�c language, and thus leverage the e�ort of outside
developers in areas that are not neuroscience speci�c, such as data analysis and visualisation2

The PyNN project3 within FACETS has begun to develop both the API and the binding to individ-
ual simulation engines, for both purposes using the Python programming language. The API has two
parts, a low-level, procedural API (functions create(), connect(), set(), record()), and a high-level,
object-oriented API (classes Population and Projection, which have methods like set(), record(),
setWeights(), etc.). The low-level API is good for small networks, and perhaps gives more exibility.
The high-level API is good for hiding the details and the book-keeping, and for expressing models with
a higher level of abstraction.

The high-level API is intended to implement the FACETS common data model, i.e. to have a one-to-
one mapping with FacetsML, i.e. a population element in FacetsML will correspond to a Population

object in PyNN. This correspondence is not yet complete, but is one of the goals of the project.

The other thing that is required to write a model once and run it on multiple simulators is standard
cell models, as discussed previously in x3.4. A complication is that although the synaptic model and
the membrane model are independent, and are speci�ed separately in FacetsML, most simulators de�ne
threshold models in terms of both membrane and synaptic behaviour, for reasons of e�ciency. Therefore
the standard cell models in PyNN are each a combination of a membrane model and a synaptic model,
e.g. IF curr alpha is an IFNeuron standard membrane model with a SynCurrAlpha synaptic model.

1Note that since we choose a superset, the system must emit a warning/error if the underlying simulator engine does not
support a particular feature.

2For Python, examples include e�cient data storage and transfer (HDF5, ROOT), data analysis (SciPy), parallelisation
(MPI), GUI toolkits (GTK, QT).

3pronounced `pine'

22

5.2. API

cell_params = { 'tau_m' : 20.0, 'tau_syn' : 2.0, 'tau_refrac': 1.0,

'v_rest': -65.0, 'v_thresh': -50.0, 'cm': 1.0}

populationA = Population((10,), "IF_curr_alpha", cell_params)

populationB = Population((5,5), "IF_curr_alpha", cell_params)

populationA.randomInit('uniform', v_reset, v_thresh)

connAtoB = Projection(populationA, populationB, 'fixedProbability', 0.2)

connAtoA = Projection(populationA, populationA, 'distanceDependentProbability', "exp(-abs(d))")

connBtoA = Projection(populationB, populationA, 'allToAll')

connAtoB.setWeights(w_AB)

connAtoA.setWeights(w_AA)

connBtoA.setWeights(w_BA)

populationA.record()

populationB.record()

run(1000.0)

populationA.printSpikes("populationA.spiketimes")

populationB.printSpikes("populationA.spiketimes")

Figure 5.1. Example of the use of the PyNN API to specify a network that can then be run on multiple
simulators.

PyNN translates standard cell-model names and parameter names into simulator-speci�c names,
e.g. standard model IF curr alpha is iaf neuron in NEST and StandardIF in NEURON, while
SpikeSourcePoisson is a poisson generator in NEST and a NetStim in NEURON.

An example of the use of the API to specify a simple network is given in Figure 5.1.
Bindings currently exist to control NEST (PyNEST) and MVASpike, and Python can be used as an

alternative interpreter for NEURON (nrnpython), although the level of integration (how easy it is to
access the native functionality) is variable. There are future plans to extend this to other simulators,
initially MVASpike and CSIM), and to add support for parallel computation.

5.2 API

5.2.1 Data

default values = f
SpikeSourcePoisson : f`duration': 1000000000.0, `start': 0.0, `rate': 0.0 g
IF cond alpha : f`tau refrac': 0.0, `tau m': 20.0, `e rev E': 0.0, `cm': 1.0, `e rev I': -70.0, `v thresh': -50.0,

`tau syn E': 5.0, `v rest': -65.0, `tau syn I': 5.0 g
IF curr exp : f`tau refrac': 0.0, `tau m': 20.0, `i o�set': 0.0, `cm': 1.0, `v thresh': -50.0, `tau syn E': 5.0,

`v rest': -65.0, `tau syn I': 5.0, `v reset': -65.0 g
IF curr alpha : f`tau refrac': 0.0, `tau m': 20.0, `i o�set': 0.0, `cm': 1.0, `v thresh': -50.0, `v rest': -65.0,

`tau syn': 5.0, `v reset': -65.0 g
SpikeSourceArray : f`spike times': [] g

g
dt = 0.10

5.2.2 Functions

connect(source, target, weight=1, delay=0, synapse type=None, p=1) Connect a source of spikes to a
synaptic target. source and target can both be individual cells or lists of cells, in which case all possible
connections are made with probability p.

create(celltype, paramDict=None, n=1) Create n cells all of the same type. If n > 1, return a list of
cell ids/references. If n==1, return just the single id.

23

5. IMPLEMENTATION 2: PYNN

end() Do any necessary cleaning up before exiting.

record(src, �lename) Record spikes to a �le. src can be an individual cell or a list of cells.

record v(source, �lename) Record membrane potential to a �le. source can be an individual cell or a
list of cells.

run(simtime) Run the simulation for simtime ms.

set(cells, celltype, param, val=None) Set one or more parameters of an individual cell or list of cells.
param can be a dict, in which case val should not be supplied, or a string giving the parameter name,
in which case val is the parameter value. celltype must be supplied for doing translation of parameter
names.

setRNGseeds(seedList) Globally set rng seeds.

setup(timestep=0.1, min delay=0.1, max delay=0.1) Should be called at the very beginning of a script.

5.2.3 Classes

Random

Wrapper class for random number generators. The idea is to be able to use either simulator-native rngs,
which may be more e�cient, or a standard python rng, e.g. numpy.Random, which would allow the same
random numbers to be used across di�erent simulators, or simply to read externally-generated numbers
from �les.

init (self, type=`default', distribution=`uniform', label=None, seed=None)

next(self, n=1) Return n random numbers from the distribution.

Projection

A container for all the connections between two populations, together with methods to set parameters
of those connections, including of plasticity mechanisms.

init (self, presynaptic population, postsynaptic population, method=`allToAll', methodParameters=None,
source=None, target=None, label=None, rng=None) Create Population object.

presynaptic population and postsynaptic population { Population objects.
source { string specifying which attribute of the presynaptic cell signals action potentials
target { string specifying which synapse on the postsynaptic cell to connect to If source and/or target

are not given, default values are used.
method { string indicating which algorithm to use in determining connections. Allowed methods

are `allToAll', `oneToOne', `�xedProbability', `distanceDependentProbability', `�xedNumberPre', `�xed-
NumberPost', `fromFile', `fromList'

methodParameters { dict containing parameters needed by the connection method, although we
should allow this to be a number or string if there is only one parameter.

rng { since most of the connection methods need uniform random numbers, it is probably more
convenient to specify a Random object here rather than within methodParameters, particularly since
some methods also use random numbers to give variability in the number of connections per cell.

len (self) Return the total number of connections.

24

5.2. API

allToAll(self, parameters=None, synapse type=None) Connect all cells in the presynaptic population
to all cells in the postsynaptic population.

distanceDependentProbability(self, parameters, synapse type=None) For each pair of pre-post
cells, the connection probability depends on distance. d expression should be the right-hand side of a
valid python expression for probability, involving `d', e.g. \exp(-abs(d))", or \oat(d<3)"

�xedNumberPost(self, parameters, synapse type=None) Each postsynaptic cell receives a �xed
number of connections.

�xedNumberPre(self, parameters, synapse type=None) Each presynaptic cell makes a �xed number
of connections.

�xedProbability(self, parameters, synapse type=None) For each pair of pre-post cells, the connec-
tion probability is constant.

fromFile(self, parameters) Load connections from a �le.

fromList(self, parameters) Read connections from a list of lists, or somesuch...

oneToOne(self, synapse type=None) Where the pre- and postsynaptic populations have the same
size, connect cell i in the presynaptic population to cell i in the postsynaptic population for all i. In fact,
despite the name, this should probably be generalised to the case where the pre and post populations
have di�erent dimensions, e.g., cell i in a 1D pre population of size n should connect to all cells in row i
of a 2D post population of size (n,m).

printWeights(self, �lename, format=None) Print synaptic weights to �le.

randomizeDelays(self, rng) Set delays to random values taken from rng.

randomizeWeights(self, rng) Set weights to random values taken from rng.

saveConnections(self, �lename) Save connections to �le in a format suitable for reading in with the
`fromFile' method.

setDelays(self, d) d can be a single number, in which case all delays are set to this value, or an array
with the same dimensions as the Projection array.

setMaxWeight(self, wmax) Note that not all STDP models have maximum or minimum weights.

setMinWeight(self, wmin) Note that not all STDP models have maximum or minimum weights.

setThreshold(self, threshold) Where the emission of a spike is determined by watching for a threshold
crossing, set the value of this threshold.

setWeights(self, w) w can be a single number, in which case all weights are set to this value, or an
array with the same dimensions as the Projection array.

setupSTDP(self, stdp model, parameterDict) Set-up STDP.

25

5. IMPLEMENTATION 2: PYNN

toggleSTDP(self, ono�) Turn plasticity on or o�.

weightHistogram(self, min=None, max=None, nbins=10) Return a histogram of synaptic weights.
If min and max are not given, the minimum and maximum weights are calculated automatically.

Timer

For timing script execution.

elapsedTime() (static) Return the elapsed time but keep the clock running.

reset() (static) Reset the time to zero, and start the clock.

start() (static) Start timing.

Population

An array of neurons all of the same type. `Population' is used as a generic term intended to include
layers, columns, nuclei, etc., of cells.

getitem (self, id) Returns a representation of the cell with coordinates given by the tuple `id',
suitable for being passed to other methods that require a cell id. Note that getitem is called when
using [] access, e.g. p = Population(...) p[id] is equivalent to p. getitem (id)

init (self, dims, celltype, cellparams=None, label=None) dims should be a tuple containing the
population dimensions, or a single integer, for a one-dimensional population. e.g., (10,10) will create a
two-dimensional population of size 10x10. celltype should be a string - the name of the neuron model
class that makes up the population. cellparams should be a dict which is passed to the neuron model
constructor label is an optional name for the population.

len (self) Returns the total number of cells in the population.

call(self, methodname, arguments) Calls the method methodname(arguments) for every cell in the
population. e.g. p.call(\set background",\0.1") if the cell class has a method set background().

meanSpikeCount(self) Returns the mean number of spikes per neuron.

printSpikes(self, �lename) Prints spike times to �le in the two-column format \spiketime cell id" where
cell id is the index of the cell counting along rows and down columns (and the extension of that for 3-D).
This allows easy plotting of a `raster' plot of spiketimes, with one line for each cell.

print v(self, �lename) Write membrane potential traces to �le.

randomInit(self, func, *params) Sets initial membrane potentials for all the cells in the population to
random values.

record(self, record from=None) If record from is not given, record spikes from all cells in the Popula-
tion. record from can be an integer - the number of cells to record from, chosen at random - or a list
containing the ids (e.g., (i,j,k) tuple for a 3D population) of the cells to record.

26

5.2. API

record v(self, record from=None) If record from is not given, record the membrane potential for all
cells in the Population. record from can be an integer - the number of cells to record from, chosen at
random - or a list containing the ids of the cells to record.

rset(self, parametername, randomobj) `Random' set. Sets the value of parametername to a value taken
from the randomobj Random object.

set(self, param, val=None) Set one or more parameters for every cell in the population. param can be
a dict, in which case val should not be supplied, or a string giving the parameter name, in which case val
is the parameter value. e.g. p.set(\tau m",20.0). p.set(`tau m':20,`v rest':-65)

tcall(self, methodname, objarr) `Topographic' call. Calls the method methodname() for every cell in the
population. The argument to the method depends on the coordinates of the cell. objarr is an array with
the same dimensions as the Population. e.g. p.tcall(\memb init",vinitArray) calls p.cell[i][j].memb init(vInitArray[i][j])
for all i,j.

tset(self, parametername, valueArray) `Topographic' set. Sets the value of parametername to the values
in valueArray, which must have the same dimensions as the Population.

27

6

Future developments

Since 15 scienti�c teams share this format and tool, the next step is to target a public dissemination of
the PyNN/FML software and tools within the NeuroML initiative.

Version 1 of the PyNN software with version 1 of the FacetsML validator and editor will be published
as soon as the present speci�cations have been completed and fully validated.

Software development and dissemination will use a `software forge' to be able to maintain this open-
source software and really construct a cooperative speci�cation and implementation task-force.

This is to be continued with the following objective for the di�erent FACETS partners involved in
network modeling:

1. to obtain a fully transparent bridge between all the model formats of the di�erent partners (the
Facets Model Format, FMF);

2. to develop, by each partner, the necessary interface to be able to create a FMF version of their
\local" model;

3. to continue the implementation within PyNN of interfaces to the di�erent simulators used in
FACETS (this work to be carried out by those partners involved in developing simulators), in-
cluding analog hardware, to support running FMF models as widely as possible;

4. to continue the development of e�cient and accurate simulation tools and algorithms, and produce
an extensive review of the status of the currently available resources.

In addition, we would like to study the possibility of building a \meta-simulator", which will not only
use simulator-independent code, but also include common input/output speci�cations, di�erent plug-
in capabilities, etc. This will allow to completely write the models, manipulate them and run them,
completely independently of the exact simulator used.

28

	Introduction
	The value of multiple simulators
	Simulator-independent model specification
	General requirements

	NeuroML data model
	Declarative model specification using NeuroML
	Entity/object types
	darkgreenNetworkML
	darkgreenPopulation
	darkgreenProjection
	darkgreenCellInstance
	darkgreenPopulationLocation
	darkgreenRandomArrangement
	darkgreenSynapseProperties
	darkgreenConnectivityPattern
	darkgreenConnection
	darkgreenSynapticLocation
	darkgreenPotentialSynapticLocation

	Extensions to the NeuroML data model
	Modifications to existing types
	Connectivity patterns
	Spatial location of cells

	Limits and units for parameters
	Dynamic parameter and parameter variability
	Random distribution
	Dynamic parameter

	Threshold models
	Plasticity mechanisms
	Facilitation, depression
	Long-term plasticity

	Further Extensions

	Implementation 1: FACETS-ML
	Introduction to FacetsML
	Fundamentals
	Basic Structure
	Rules for FacetsML documents
	Rules for Processor behavior

	Mapping to specific simulators

	Implementation 2: PyNN
	Programmatic model specification using Python
	API
	Data
	Functions
	Classes

	Future developments

