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Introduction

This deliverable reports on the development of cellular models for cerebral cortex network simulations.
The choice of the type of model was guided by several considerations. Our goal is to represent the
“prototypical” types of neurons and synaptic interactions present in neocortex, in order to build large-
scale networks. In this report, we focus on models of the intrinsic firing properties of cortical neurons
using Hodgkin & Huxley (1952) type models with minimal number of channels. To this aim, we therefore
need to (1) capture the main intrinsic firing and response properties of excitatory and inhibitory cortical
neurons; (2) if possible capture the diversity of intrinsic properties found in different preparations. These
two aspects are detailed below.

The intrinsic electrophysiological properties of cortical neurons are very diverse and were analyzed
here from several databases and laboratories. We have used conductance-based spiking neuron models
to reproduce a few main neuronal types in neocortex. The electrophysiological classes considered were
inspired from the classification of Connors and Gutnick (1990), which was augmented with one additional
class. The 4 classes considered are the “fast spiking” (FS), “regular spiking” (RS), “intrinsically bursting”
(IB) and “low-threshold spike” (LTS) cells. These classes are reviewed successively in the next sections.
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1 REGULAR SPIKING NEURONS

1 Regular spiking neurons

By far the largest cell class in neocortex is the so-called “regular-spiking” (RS) neuron, which is in general
excitatory and most often correlates with a spiny pyramidal-cell morphology. The typical response of RS
cells to depolarizing current pulses are trains of spikes with adaptation (Fig. 1, Regular Spiking).

Figure 1. Intracellular recordings of two main classes of neurons in ferret visual cortex in vitro.
A. Responses to injection of a depolarizing current pulse (0.7 nA). Top: typical response of a regular spiking (RS)
neuron, showing spike-frequency adaptation. Bottom: response of a fast-spiking neuron, with negligible adaptation.
B. Plot of the instantaneous firing rate (inverse of the interspike interval following the spike) as a function of spike
number for these two neurons. C. Frequency-current (F/I) relations for these two neurons. The firing rate was
computed as in B and is represented as a function of injected current (amplitude of the pulse). The curves indicated
by different colors correspond to first, second, third, ... spikes in the train.

The simplest model of RS cells consists of conductances for generating spikes (INa, IKd; kinetics
from Traub and Miles, 1990), and in addition, a slow potassium current activated by depolarization,
which we call here “IM” (kinetics from Yamada et al., 1989). This model reproduces the typical firing
characteristics of RS cells as recorded in ferret visual cortex in vitro (Fig. 2, Regular Spiking).

We also realized an automatic fitting of the models to recordings in rat somatosensory cortex in vitro.
The error function consisted of a weighted sum over the differences in the time of the first spike after DC
onset, as well as the first, second and last interspike intervals. Since the data consisted of several trials, the
reliability of these criteria could be estimated. The weights were taken to be the inverse of the maximum
of either 3% of the respective mean values or the standard deviations. The adjusted parameters were the

6



0.2 0.4 0.6 0.8
0

20

40

60

80

100

0.2 0.4 0.6 0.8
0

20

40

60

80

100

Regular Spiking

Fast Spiking

-65 mV

-65 mV

Injected current (nA)

F
ir
in

g
 r

a
te

 (
H

z
)

F
ir
in

g
 r

a
te

 (
H

z
)

20 mV

200 ms

Injected current (nA)

Figure 2. Model of the RS and FS classes of neurons based on ferret visual cortex in vitro.
Top panels: model of “regular spiking” neuron. The model contained the currents INa and IKd responsible for spike
generation, with an additional slow K+ current (IM ) responsible for spike-frequency adaptation. These currents
were simulated by Hodgkin-Huxley type models in NEURON. The model exhibited spike frequency adaptation
following injection of depolarizing current pulses (left; 0.5 nA injected). The frequency-current (F/I) relation
(right) was computed identically as for experiments (Fig. 1C). Bottom panels: same paradigm for a model of “fast
spiking” neurons. This model contained only INa and IKd. Model parameters (RS): L = d = 96 µm (0.29 nF
capacitance), gleak = 1×10−4 S/cm2 (Rin of 34.5 MΩ), Eleak = -70 mV, ḡNa = 0.05 S/cm2, ḡKd = 0.005 S/cm2, ḡM

= 7×10−5 S/cm2. Same parameters for FS, except L = d = 67 µm (0.14 nF capacitance), gleak = 1.5×10−4 S/cm2

(Rin of 47 MΩ), ḡKd = 0.01 S/cm2 and no IM .

leak conductance gleak (bound by gphys
leak /3 and 3 ∗ gphys

leak , where gphys
leak is the leak conductance extracted

from experiment), the maximal conductances ḡNa and ḡKd of the sodium and potassium channels, shifts
of their respective activation and inactivation curves (VT , VS and V ′

T ) as well as the maximal conductance
of IM and a factor τmax scaling its time constant. We used the simulated annealing fitting algorithm to
optimize these parameters. The results of the fitting are shown in Fig. 3 for two RS cells (one pyramidal
cell in Fig. 3A, presumed excitatory, and one inhibitory interneuron in Fig. 3B).
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1 REGULAR SPIKING NEURONS
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Figure 3. Models of RS neurons based on somatosensory cortex in vitro.
Left panels: injection of depolarizing pulses in neurons from rat somatosensory cortex in vitro. Right panels: same
protocols simulated using the models. A. Regular-spiking pyramidal neuron. Parameters: L = d = 67.6 µm, gleak

= 4.17×10−5 S/cm2, Eleak = -73.34 mV, ḡNa = 0.022 S/cm2, VT = -58.3 mV, VS = -0.2 mV, ḡKd = 0.0038 S/cm2,
V ′

T
= -51.6 mV, ḡM = 13.1×10−5 S/cm2, τmax = 533 ms. B. Regular-spiking inhibitory neuron. Parameters: L =

d = 52.9 µm, gleak = 3.77×10−5 S/cm2, Eleak = -62.5 mV, ḡNa = 0.036 S/cm2, VT = -59.9 mV, VS = -1.8 mV,
ḡKd = 0.0024 S/cm2, V ′

T
= -60 mV, ḡM = 1.4×10−5 S/cm2, τmax = 2997 ms. Recordings were from H. Markram’s

laboratory (http://microcircuit.epfl.ch).
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2 Fast spiking neurons

Another major cell class in cerebral cortex is the “fast-spiking” (FS) neuron, which generally corresponds
to aspiny inhibitory neurons. FS cells respond to depolarizing pulses by producing high-frequency trains
of action potentials with little or no adaptation (Fig. 1, Fast Spiking; see also Fig. 4); some interneurons do
show adaptation (Fig. 3B). Many other intrinsic firing types have been described for cortical interneurons
(Gupta et al., 2000), some of which correspond to RS and FS cells, in addition to classes outlined below.

FS cells are also the simplest type to model, as the conductances for generating spikes (INa, IKd) are
sufficient. A model based on these two conductances reproduces well the intrinsic firing characteristics
of FS cells of ferret visual cortex in vitro (Fig. 2, Fast Spiking). In some cases, it is necessary to add an
adaptation current (IM ) to account for the initial spike-frequency adaptation (Fig. 4).

40 mV 40 mV

1 s 1 s

Experiments Models

Figure 4. Models of FS neurons based on somatosensory cortex in vitro.
Left panels: injection of depolarizing pulses in a FS neuron from rat somatosensory cortex in vitro. Right panels:
same protocols simulated using the models. Parameters: L = d = 56.9 µm, gleak = 6.44×10−5 S/cm2, Eleak =
-70.2 mV, ḡNa = 0.039 S/cm2, VT = -59.9 mV, VS = -0.8 mV, ḡKd = 0.0061 S/cm2, V ′

T
= -53.3 mV, ḡM =

7.7×10−5 S/cm2, τmax = 510 ms. Recordings were from H. Markram’s laboratory (http://microcircuit.epfl.ch).

9



3 INTRINSICALLY BURSTING NEURONS

3 Intrinsically bursting neurons

Another very common cell class is the “intrinsically bursting” (IB) neuron. This type of neuron generates
bursts of action potentials following depolarizing stimuli, and represents a few percent of the recorded
cells in primary sensory cortex, both in vivo and in vitro. Fig. 5A shows a bursting cell recorded in
guinea pig somatosensory cortex in vitro (from McCormick et al., 1985) and Fig. 6A shows a bursting
cell recorded in cat primary visual cortex in vivo. When submitted to depolarizing current pulses, IB
cells first generate a burst of action potentials followed by single spikes with adaptation. This behavior
is typical of IB neocortical neurons (Connors and Gutnick, 1990).

Experiments

Models

A

B

-85 mV

-70 mV

40 mV

500 ms

0.15 nA

0 nA
0.05 nA

0.20 nA

Figure 5. Model of intrinsically bursting cell based on guinea-pig somatosensory cortex in vitro.
The model consisted of a RS cell augmented with the L-type calcium current IL, thus comprising INa, IK , IM

and IL currents. A. Intrinsically bursting (IB) cell from guinea-pig somatosensory cortex in vitro (modified from
McCormick et al., 1985). The response to the same depolarizing current pulse is shown at two different DC levels.
B. Response to depolarizing current in a model of IB cell. Top panels: similar protocol as in A; Bottom panel:
repetitive bursting activity with larger L-type conductance. Parameters: L = d = 96 µm (0.29 nF capacitance),
gleak = 1×10−5 S/cm2, Eleak = -70 mV, ḡNa = 0.05 S/cm2, ḡKd = 0.005 S/cm2, ḡM = 3×10−5 S/cm2, ḡL =
0.0001 S/cm2 (0.0002 S/cm2 for the bottom panel).

We modeled IB cells based on a minimal set of channels. To generate the bursting behavior, we

10



extended the previous model of RS cell by adding the L-type calcium current (kinetics from the model
of Reuveni et al., 1993, based on experiments described in Sayer et al., 1990). In a first set of models, we
generated IB type behavior by using moderate densities of IL, and compared the behavior of the model
with data obtained in the sensorimotor cortex of guinea pigs (Fig. 5A). This model generated an initial
burst followed by an adapting train of action potentials (Fig. 5B, top). With larger L-type conductance,
this model generated repetitive bursting activity (Fig. 5B, bottom).

We also adjusted this model to data from cat primary visual cortex in vivo (Fig. 6A). The density of
IL was adjusted to match the response to depolarizing current pulses (Fig. 6B). As above, if depolarizing
pulses were given from hyperpolarized levels, this model generated an initial burst followed by an adapting
train of action potentials (Fig. 6B).
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3 INTRINSICALLY BURSTING NEURONS
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Figure 6. Model of intrinsically bursting cell based on cat visual cortex neurons in vivo.
The model consisted of a RS cell augmented with the L-type calcium current IL, thus comprising INa, IK , IM and
IL currents. A. Intrinsically bursting (IB) cell from cat primary visual cortex in vivo. Responses to depolarizing
current pulses are shown from top to bottom. Values of the injected current were from 0.5 to 1 nA as indicated.
B. Same protocol simulated using the model. The parameters were: L = d = 96 µm (0.29 nF capacitance), gleak

= 1×10−4 S/cm2 (Rin of 34.5 MΩ), Eleak = -75 mV, ḡNa = 0.05 S/cm2, VT = -58 mV, ḡKd = 0.0042 S/cm2,
ḡM = 4.2×10−5 S/cm2, τmax = 1000 ms, ḡL = 0.00012 S/cm2. Recordings were from Y. Frégnac’s laboratory
(http://www.unic.cnrs-gif.fr).
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4 Low-threshold spiking neurons

In a previous study (Destexhe et al., 2001), we observed low-threshold spike (LTS) activity in a significant
fraction (about 10%) of intracellularly-recorded cells in cat association cortex in vivo (Fig. 7A). These
LTS neurons generated adapting trains of action potentials in response to depolarizing current injection
(Fig. 7A, left panel), similar to the classic “regular-spiking” response of cortical neurons. In addition,
they generated a burst of action potentials in response to injection of hyperpolarizing current pulses
(Fig. 7A, right panel). This property was also identified in deep layers of guinea-pig cerebral cortex in
vitro (de la Peña and Geijo-Barrientos, 1996; see Fig. 7B) and was shown to be due to the presence of
the T-type (low-threshold) calcium current IT .

A

-65 mV

20 mV

50 ms

IN VIVO

-56 mV

20 ms

B IN VITRO

Figure 7. Rebound bursting properties of cortical pyramidal cells of cat association cortex in vivo.
A. Rebound bursting cell from cat cerebral cortex in vivo (from Destexhe et al., 2001). B. Rebound bursting cell
from guinea-pig frontal cortex in vitro (adapted from de la Peña and Geijo-Barrientos, 1996). In both cases, the
response to depolarizing current pulses was similar to a regular spiking cell. In addition, LTS cells produce a burst
of action potentials in rebound to hyperpolarizing current pulses (-0.1 nA; the pulse was 200 ms in A and was
truncated for clarity).

We have attempted to model these intrinsic firing properties based on a minimal set of channels. To
generate rebound bursting behavior, the T-type calcium current was included (kinetics from Destexhe
et al., 1996) and its peak amplitude was adjusted to match voltage-clamp recordings of this current in
pyramidal neurons (de la Peña and Geijo-Barrientos, 1996). A density of T-channels of 0.8 mS/cm2

was needed to match the relatively small amplitude of this current measured in pyramidal neurons.
Using this density, the model could generate weak rebound bursts at the offset of hyperpolarizing current
(Fig. 8A, -60 mV). To generate the classic “regular-spiking” behavior (Fig. 8B, -70 mV), the model
included three voltage-dependent currents identical to above for RS cells: a slow voltage-dependent K+

current (IM ), as INa and IKd currents for action potential generation. If depolarizing pulses were given
from hyperpolarized levels, this model generated an initial burst followed by an adapting train of action
potentials (Fig. 8C, -80 mV), which is a feature often observed in neocortical neurons (Connors and
Gutnick, 1990).
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4 LOW-THRESHOLD SPIKING NEURONS
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Figure 8. Model of rebound bursting cell of cat association cortex in vivo.
The model consisted of a RS cell augmented with the T-type calcium current IT , thus comprising INa, IK , IM and
IT currents. A. Rebound burst response at the offset of a hyperpolarizing current pulse (-0.1 nA). B. Adapting
train of action potentials with depolarizing current pulses. C. Similar depolarizing pulse showing a burst of
action potentials followed by single spikes. Arrows indicate bursts of action potentials mediated by IT . Model
parameters: L = d = 96 µm (0.29 nF capacitance), gleak = 1×10−5 S/cm2, Eleak = -85 mV, ḡNa = 0.05 S/cm2,
ḡKd = 0.005 S/cm2, ḡM = 3×10−5 S/cm2, ḡT = 0.0004 S/cm2. Figure modified from Destexhe et al., 2001.

In addition, we also considered LTS cells from rat somatosensory cortex in vitro (Fig. 9, Experiments).
As seen above, this LTS cell generated adapting trains of action potentials in response to depolarizing
pulses (Fig. 9A, Experiments), as well as rebound burst activity at the offset of hyperpolarizing current
pulses (Fig. 9B, Experiments). We used the same model as above, but changed the parameters such
that it matches the input resistance of this LTS neuron (which was 210 MΩ for this particular cell), and
approximates at best the frequency/current relationship of the cell (not shown). The resulting model is
shown in Fig. 9A-B (Models) for the exact same protocol as for the experiments.
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500 ms 500 ms

Figure 9. Model of rebound bursting cell based on rat somatosensory cortex in vitro.
The model had the same current as the “cat” model, but different parameters. A. LTS cell from rat somatosensory
cortex in vitro. The top panel shows the response to depolarizing current pulses, while the response to hyperpo-
larizing pulses is shown in the bottom panel. Values of the injected current were: -0.015, 0.067 and 0.13 nA for
depolarizing pulses (DC current was -0.11 nA to bring the cell to -70 mV; they were of -0.36, -0.24 and -0.09 nA
for hyperpolarizing pulses (pre-pulse current of -0.056 nA to bring the cell to -60 mV. B. Same protocols simulated
using the model. The parameters were: L = d = 89.2 µm (0.25 nF capacitance), gleak = 1.9×10−5 S/cm2, Eleak

= -50 mV, ḡNa = 0.05 S/cm2, VT = -50 mV, ḡKd = 0.004 S/cm2, ḡM = 2.8×10−5 S/cm2, ḡT = 0.0004 S/cm2, Vx

= -7 mV.
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5 THALAMIC RELAY NEURONS

5 Thalamic relay neurons

It is important to note that the model of LTS cell is very similar to models for thalamic relay cells.
There are, however, two notable differences. First, thalamic relay cells do not show spike-frequency
adaptation, so no adaptation current, such as IM , is needed. Second, the thalamic relay cell produces
more powerful bursts compared to cortical LTS cells, presumably because the T-type calcium current IT

has a larger conductance in thalamic cells. In voltage-clamp experiments, the peak amplitude of IT in
pyramidal neurons of guinea-pig cerebral cortex is of about 0.4-0.8 nA (de la Peña and Geijo-Barrientos,
1996), which is small compared to the peak amplitude of IT in thalamic relay cells (5.8 ± 1.7 nA in
Destexhe et al., 1998). Figure 10 shows models of thalamic relay cell obtained previously. Current-clamp
(Fig. 10A) and voltage-clamp (Fig. 10C) recordings were used to adjust the model. A detailed model
based on morphological reconstructions was first obtained (Fig. 10B). This model was then simplified
into a single-compartment model comprising IT , INa and IKd currents (Fig. 10D; same kinetics as above;
see details in Destexhe et al., 1998).
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Figure 10. Model of thalamic relay neuron from rat somatosensory thalamus in vitro.
A. Current-clamp recordings of a relay cell from the ventrobasal thalamus (inset), subjected to depolarizing current
pulses. The cell produced a rebound burst of action potentials. B. Detailed model based on the morphology of the
recorded cell (which was reconstructed and incorporated into simulations). The inset shows the reconstructed cell
model (soma in gray). C. Adjustment of a one-compartment model to passive responses recorded in voltage-clamp
in the cell shown in A (dots; model showed as a continuous trace). D. Current-clamp simulation of the same
protocol as in A. Modified from Destexhe et al., 1998 where all details were given.
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6 Conclusion

In this report, we have summarized modeling efforts within FACETS to select a few electrophysiological
cell classes. The aim of this approach is to obtain a model format that can account for the diversity of
cell intrinsic properties in cerebral cortex, both for excitatory and inhibitory neurons. This constitutes
an important step towards obtaining a common FACETS model format for network simulations.

We have selected four cell classes, the “fast spiking” (FS), “regular spiking” (RS), “intrinsically
bursting” (IB) and “low-threshold spike” (LTS) cells. For each cell class, we have analyzed intracellular
recordings from different preparations (when possible) and obtained models for each cell class. In some
cases, the models were adjusted using automatic fitting procedures.

The models considered here are the simplest types of biophysical models where the intrinsic properties
arise from voltage-dependent conductances, each described by differential equations (Hodgkin-Huxley
type models). Such models are implementable on the VLSI hardware, and some of these models (RS
and FS cells) have already been implemented by S. Renaud and colleagues at the ENSEIRB (Zou et
al., 2006). Another motivation is to build biophysically semi-realistic network models of cerebral cortex
which incorporate the diversity of intrinsic cell properties in cortex.

Two important points must be noted. First, the choice of a specific cell class is not restricted to
excitatory or inhibitory neurons. Any cell class can be used for any cell type, for instance LTS, IB and
RS type of properties have been found for both excitatory or inhibitory neurons in cortex. In addition,
the LTS cell class can be used to model thalamic neurons. Second, we described here four distinct
cell properties, but in general the properties are not so clear-cut. It is important to note that these
models can be changed at will to diversify the neuron types. For example, the time constant τmax of
the adaptation current IM can be adjusted to yield fast or slow adaptation. From our fitting to spike-
frequency adaptation, the values of τmax range from a few hundred of milliseconds to several seconds.

The next step is now to design simpler representations of cellular models based on the integrate-and-
fire model. For instance, the Izhikevich type of models are two-variable extensions of the integrate-and-fire
model and they can capture the diversity of firing patterns in cortical neurons (Izhikevich, 2004). This
model was extended later to obtain more realistic approach of the Vm to spike threshold (Brette and
Gerstner, 2005). The latter model is also easier to fit to experimental data (cfr W. Gerstner and colleagues
at EPFL) and is therefore more adequate to be fitted to experimental data within FACETS. This model
was chosen to be implemented on VLSI hardware by K. Meier and colleagues at UHEI. Obtaining similar
cell classes as obtained here, but using the Brette-Gerstner model, constitutes the next step towards the
FACETS model format.
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6 CONCLUSION

Appendix: Equations of the models

Membrane equation

All models described here were single-compartment neurons (cylinder of diameter d and length L) de-
scribed by the following membrane equation:

Cm
dV

dt
= −gleak(V − Eleak) − INa − IKd − IM − IT − IL , (1)

where V is the membrane potential, Cm = 1µF/cm2 is the specific capacitance of the membrane, gleak

is the resting (leak) membrane conductance, Eleak is its reversal potential. INa and IKd are the sodium
and potassium currents responsible for action potentials, IM is a slow voltage-dependent potassium
current responsible for spike-frequency adaptation, IL is a high-threshold calcium current and IT is
a low-threshold calcium current. These voltage-dependent currents are variants of the same generic
equation:

Ij = ḡj mMhN (V − Ej) , (2)

where the current Ij is expressed as the product of respectively the maximal conductance, ḡj , activation
(m) and inactivation variables (h), and the difference between the membrane potential V and the reversal
potential Ej. The gating of the channel is derived from the following first order kinetic scheme:

C
α(V )
⇋

β(V )
O (3)

where O and C are the open and closed states of the gate. The variables m and h represent the fraction
of independent gates in the open state, following the convention introduced by Hodgkin and Huxley
(1952). The steady-state activation and the time constant are, respectively, given by m∞ = α/(α + β)
and τm = 1/(α + β), and similarly for h.

Details for each voltage-dependent current

All kinetics below correspond to a temperature of 36 ◦C.

Sodium and potassium currents to generate action potentials

The voltage-dependent Na+ current was described by a modified version of Hodgkin-Huxley equations
adapted for central neurons (Traub and Miles, 1991), which is particularly well suited for hippocampal
and cortical pyramidal cells:

INa = ḡNa m3h (V − ENa)

dm

dt
= αm(V ) (1 − m) − βm(V ) m

dh

dt
= αh(V ) (1 − h) − βh(V ) h

αm =
−0.32 (V − VT − 13)

exp[−(V − VT − 13)/4] − 1

βm =
0.28 (V − VT − 40)

exp[(V − VT − 40)/5] − 1

αh = 0.128 exp[−(V − VT − VS − 17)/18]

βh =
4

1 + exp[−(V − VT − VS − 40)/5]
. (4)
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Unless stated otherwise, ḡNa = 50 mS/cm2 and ENa = 50mV . VT adjusts spike threshold and VS shifts
inactivation with respect to activation.

The “delayed-rectifier” K+ current was described by (Traub and Miles, 1991):

IKd = ḡKd n4 (V − EK)

dn

dt
= αn(V ) (1 − n) − βn(V ) n

αn =
−0.032 (V − V ′

T − 15)

exp[−(V − V ′

T − 15)/5] − 1

βn = 0.5 exp[−(V − V ′

T − 10)/40] ,

where ḡKd = 5 mS/cm2 and EK = −90mV , unless stated otherwise.

Slow potassium current for spike-frequency adaptation

A slow noninactivating K+ current was described by (Yamada et al., 1989):

IM = ḡM p (V − EK)

dp

dt
= (p∞(V ) − p)/τp(V )

p∞(V ) =
1

1 + exp[−(V + 35)/10]

τp(V ) =
τmax

3.3 exp[(V + 35)/20] + exp[−(V + 35)/20]
,

where ḡM was 0.004 mS/cm2 and τmax = 4 s, unless stated otherwise.

Calcium currents to generate bursting

A first type of bursting was modeled by the high-threshold Ca2+ current, which was described by (Reuveni
et al., 1993):

IL = ḡL q2r(V − ECa)

dq

dt
= αq(V ) (1 − q) − βq(V ) q

dr

dt
= αr(V ) (1 − r) − βr(V ) r

αq =
0.055 (−27 − V )

exp[(−27 − V )/3.8] − 1

βq = 0.94 exp[(−75 − V )/17]

αr = 0.000457 exp[(−13 − V )/50]

βr =
0.0065

exp[(−15 − V )/28] + 1
,

where ḡL is the maximum conductance of the IL current, and the reversal potential for Ca2+ ions was
ECa = 120 mV.

A second type of bursting (rebound bursts) was modeled by the low-threshold Ca2+ current, which
was initially designed for thalamic neurons (Destexhe et al., 1996; see Huguenard and McCormick, 1992
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6 CONCLUSION

for voltage-clamp data), and is given by:

IT = ḡT s2
∞

u (V − ECa)

du

dt
= (u∞(V ) − u)/τu(V )

s∞(V ) =
1

1 + exp[−(V + Vx + 57)/6.2]

u∞(V ) =
1

1 + exp[(V + Vx + 81)/4]

τs(V ) =
30.8 + (211.4 + exp[(V + Vx + 113.2)/5)])

3.7 (1 + exp[(V + Vx + 84)/3.2)]
) ,

where ḡT is the maximal conductance of the T-current and Vx = 2 mV is a uniform shift of the voltage
dependence. Note that the activation variable s is considered here at steady-state, because the activation
in fast compared to inactivation. This T-current model was also used with an independent activation
variable (Destexhe et al., 1998; Fig. 10), but produced very similar results as the model with activation
at steady-state (not shown).

20



References

Brette, R., and Gerstner, W. Adaptive exponential integrate-and-fire model as an effective description
of neuronal activity. J. Neurophysiol. 94: 3637-3642, 2005.

Connors, B.W. and Gutnick, M.J. Intrinsic Firing patterns of diverse neocortical neurons. Trends
Neurosci. 13: 99-104, 1990.

de la Peña E and Geijo-Barrientos E. Laminar organization, morphology and physiological properties
of pyramidal neurons that have the low-threshold calcium current in the guinea-pig frontal cortex.
J. Neurosci. 16: 5301-5311, 1996.

Destexhe, A., Bal, T., McCormick, D.A. and Sejnowski, T.J. Ionic mechanisms underlying synchronized
oscillations and propagating waves in a model of ferret thalamic slices. J. Neurophysiol. 76: 2049-
2070, 1996.

Destexhe, A. Contreras, D. and Steriade, M. LTS cells in cerebral cortex and their role in generating
spike-and-wave oscillations. Neurocomputing 38: 555-563, 2001.

Destexhe, A., Neubig, M., Ulrich, D. and Huguenard, J.R. Dendritic low-threshold calcium currents in
thalamic relay cells. J. Neurosci. 18: 3574-3588, 1998.

Gupta, A., Wang, Y. and Markram, H. Organizing principles for a diversity of GABAergic interneurons
and synapses in the neocortex. Science 287: 273-278, 2000.

Hines, M.L. and Carnevale, N.T., The Neuron simulation environment. Neural Computation 9: 1179-
1209, 1997.

Hodgkin, A.L. and Huxley, A.F. A quantitative description of membrane current and its application to
conduction and excitation in nerve. J. Physiol. 117: 500-544, 1952.

Huguenard, J.R. and McCormick, D.A. Simulation of the currents involved in rhythmic oscillations in
thalamic relay neurons. J. Neurophysiol. 68: 1373-1383, 1992.

Izhikevich, E.M. Which model to use for cortical spiking neurons? IEEE Trans. Neural Networks. 15:
1063-1070, 2004.

McCormick, D.A., Connors, B.W., Lighthall, J.W. and Prince, D.A. Comparative electrophysiology of
pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54: 782-806, 1985.

Reuveni I, Friedman A, Amitai Y and Gutnick MJ. Stepwise repolarization from Ca2+ plateaus in
neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in
dendrites. J. Neurosci. 13: 4609-4621, 1993.

Sayer RJ, Schwindt PC and Crill WE. High- and low-threshold calcium currents in neurons acutely
isolated from rat sensorimotor cortex. Neurosci. Letters 120: 175-178, 1990.

Traub, R.D. and Miles, R. Neuronal Networks of the Hippocampus. Cambridge University Press, Cam-
bridge UK, 1991.

Yamada, W.M., Koch, C. and Adams, P.R. Multiple channels and calcium dynamics. In: Methods in
Neuronal Modeling, edited by C. Koch and I. Segev, MIT press, Cambridge MA, 1989, pp. 97-134.
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Abstract We review here the development of Hodgkin–
Huxley (HH) type models of cerebral cortex and thalamic
neurons for network simulations. The intrinsic electrophy-
siological properties of cortical neurons were analyzed from
several preparations, and we selected the four most prominent
electrophysiological classes of neurons. These four classes
are “fast spiking”, “regular spiking”, “intrinsically bursting”
and “low-threshold spike” cells. For each class, we fit “mini-
mal” HH type models to experimental data. The models
contain the minimal set of voltage-dependent currents to
account for the data. To obtain models as generic as possible,
we used data from different preparations in vivo and in vitro,
such as rat somatosensory cortex and thalamus, guinea-pig
visual and frontal cortex, ferret visual cortex, cat visual cor-
tex and cat association cortex. For two cell classes, we used
automatic fitting procedures applied to several cells, which
revealed substantial cell-to-cell variability within each class.
The selection of such cellular models constitutes a necessary
step towards building network simulations of the thalamo-
cortical system with realistic cellular dynamical properties.
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1 Introduction

Central neurons are characterized by a wide diversity of
intrinsic cellular properties (reviewed in Llinás 1988;
Connors and Gutnick 1990; Gupta et al. 2000). To design net-
work models of the thalamocortical system which take into
account this diversity, one needs to obtain precise single-cell
models that capture these intrinsic properties. In particular,
for large-scale networks, it is necessary to have models that
are not only dynamically precise, but also fast and efficient to
simulate. Candidates for such “simplified” models, are either
integrate-and-fire models, in particular those who can cap-
ture complex firing properties (Smith et al. 2000; Izhikevich
2004; Brette and Gerstner 2005), or Hodgkin and Huxley
(1952) type models. In the present paper, we focus on the
latter type to model the intrinsic properties of thalamic and
cortical neurons.

To estimate the parameters of models, automatic fitting
procedures were used since over a decade, starting from
detailed compartmental models with full dendritic morpho-
logy (Destexhe et al. 1996a, b, 1998; Eichler-West and Wilcox
1997; Baldi et al. 1998; Achard and De Schutter 2006;
Druckmann et al. 2007). Although this approach provides
estimates of the conductance densities, it was shown that
different parameter sets can give the same output (Bhalla
and Bower 1993; Marder et al. 2007), and that generally, the
relationship between model output and the values of the para-
meters is often very complex (Foster et al. 1993; Golowasch
et al. 2002; Achard and De Schutter 2006; Taylor et al. 2006).
It was suggested that for such models, more meaningful and
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robust estimates are obtained if one uses the morphology and
recordings from the same cell (Holmes et al. 2006). Examples
of fitting morphologically-reconstructed model cells to the
recordings from the same cell are available for different types
of neurons (Cauller and Connors 1992; Rall et al. 1992; Strat-
ford et al. 1989; Major et al. 1994; Rapp et al. 1994; Destexhe
et al. 1998; Stuart and Spruston 1998).

Automatic fitting procedures were applied later to single-
compartment models, such as Hodgkin and Huxley (1952)
type models (Foster et al. 1993; Tawfik and Durand 1994;
Haufler et al. 2007), as well as integrate-and-fire type models
(Rauch et al. 2003; Jolivet et al. 2004). In these cases, a more
exhaustive parameter space exploration is possible because
these models are much faster to simulate compared to com-
partmental models. It was also shown that a critical aspect
is the error function chosen to evaluate the performance of
a given model (Rall et al. 1992; LeMasson and Maex 2001;
see also Tien and Guckenheimer 2008 for bursting models).
There exists at present no consensus on how to choose the
error function, except that simple functions such as the mean
square error between the model and experimental membrane
potentials is dangerous, because it is highly sensitive to the
exact spike shape and timing. Measures defined on distance
in phase space (LeMasson and Maex 2001) or based on qua-
litative features such as action potential amplitude and width
(Druckmann et al. 2007) are preferable and give models close
to the “hand-fitted” models used traditionally. We will fol-
low here a similar approach and use error functions based on
qualitative features of the membrane potential (Vm) activity.

In this paper, we focus on obtaining Hodgkin–Huxley
(HH) type models for a few “prototypical” classes of neu-
rons present in neocortex and thalamus. We restrict to the four
most prominent cell classes, inspired from the classification
of Connors and Gutnick (1990), which is augmented with one
additional class. The 4 classes considered are the “fast spi-
king” (FS), “regular spiking” (RS), “intrinsically bursting”
(IB) and in addition the “low-threshold spike” (LTS) cells.
The latter class of neuron can also be used to model thalamic
neurons, and the RS class is also used to model inhibitory
cells with adaptation. This subdivision corresponds to clas-
sifying cells according to three qualitative criteria: (1) the
presence or absence of spike-frequency adaptation; (2) the
presence or absence of burst discharges from depolarizing
stimuli; (3) the presence or absence of burst (or any other
type of) discharge following hyperpolarizing inputs (rebound
response).

To obtain HH models, we review, for each cell class,
experimental data from different preparations, and derive
HH models that capture the essential features of the intrin-
sic properties using a minimal number of voltage-dependent
conductances. Our aim is double: (1) the models should cap-
ture the main intrinsic firing and response properties of exci-
tatory and inhibitory neurons as displayed in the experiments;

(2) if possible, the models should also be able to capture the
diversity of intrinsic properties found across different cells
and across different preparations.

Thus, a first goal of this paper is to provide an overview of
these intrinsic properties and cell classes as seen experimen-
tally in different preparations. A second goal is to provide
models that capture these intrinsic properties and their diver-
sity. Some of these models are fit to experimental data using
automatic fitting procedures. Averaging parameters across
fits obtained for different cells of the same class yields the
most representative set of parameters for each class. The
variance of these parameters also provides quantitative data
about the cell-to-cell variability and diversity within a given
cell class, which is an important piece of information pre-
sently not explicitly available in the literature.

2 Methods

All computational models were run under the NEURON
simulation environment (Hines and Carnevale 1997). The
equations of the models used throughout the papers are detai-
led first, and in the last section we describe the fitting methods.

2.1 Computational models

All models described here were single-compartment neurons
(cylinder of diameter d and length L) described by the fol-
lowing membrane equation:

Cm
dV

dt
= − gleak(V − Eleak)− INa − IKd − IM−IT −IL ,

(1)

where V is the membrane potential, Cm = 1 mF/cm2 is
the specific capacitance of the membrane, gleak is the resting
(leak) membrane conductance, Eleak is its reversal poten-
tial. These parameters are related to the input resistance Rin,
which is normally measured experimentally. INa and IKd are
the sodium and potassium currents responsible for action
potentials, IM is a slow voltage-dependent potassium cur-
rent responsible for spike-frequency adaptation, IL is a high-
threshold calcium current and IT is a low-threshold calcium
current. These voltage-dependent currents are variants of the
same generic equation:

I j = ḡ j m M hN (V − E j ), (2)

where the current I j is expressed as the product of
respectively the maximal conductance, ḡ j , activation (m)
and inactivation variables (h), and the difference between
the membrane potential V and the reversal potential E j . The
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gating of the channel is derived from the following first order
kinetic scheme:

C
α(V )

�

β(V )

O (3)

where O and C are the open and closed states of the gate. The
variables m and h represent the fraction of independent gates
in the open state, following the convention introduced by
Hodgkin and Huxley 1952. The steady-state activation and
the time constant are, respectively, given by m∞ = α/(α+β)

and τm = 1/(α + β), and similarly for h.

2.2 Details for each voltage-dependent current

We detail below the kinetic parameters of the Hodgkin–
Huxley type of models used in this paper. These models are
taken from the literature and represent an arbitrary choice,
as many other variants of these models were proposed. Para-
meter values for some of the models detailed below have
been adjusted to voltage-clamp recordings in previous publi-
cations, and no attempt was made to find or estimate the
kinetic parameters for the specific preparation used in this
paper. All kinetics given below correspond to a temperature
of 36◦C.

2.2.1 Sodium and potassium currents to generate
action potentials

The voltage-dependent Na+ current was described by a modi-
fied version of Hodgkin–Huxley equations adapted for cen-
tral neurons (Traub and Miles 1991), which is particularly
well suited for hippocampal and cortical pyramidal cells:

INa = ḡNa m3h (V − ENa)

dm

dt
= αm(V ) (1 − m) − βm(V ) m

dh

dt
= αh(V ) (1 − h) − βh(V ) h

αm = −0.32 (V − VT − 13)

exp[−(V − VT − 13)/4] − 1

βm = 0.28 (V − VT − 40)

exp[(V − VT − 40)/5] − 1
αh = 0.128 exp[−(V − VT − 17)/18]
βh = 4

1 + exp[−(V − VT − 40)/5] . (4)

Unless stated otherwise, ḡNa = 50 mS/cm2 and ENa = 50 mV,
the variable VT adjusts spike threshold.

The “delayed-rectifier” K+ current was described by
Traub and Miles (1991):

IKd = ḡKd n4 (V − EK )

dn

dt
= αn(V ) (1 − n) − βn(V ) n

αn = −0.032 (V − VT − 15)

exp[−(V − VT − 15)/5] − 1
βn = 0.5 exp[−(V − VT − 10)/40],
where ḡKd = 5 mS/cm2 and EK = −90 mV, unless stated
otherwise.

2.2.2 Slow potassium current for spike-frequency
adaptation

A slow non-inactivating K+ current was described by
Yamada et al. (1989):

IM = ḡM p (V − EK )

d p

dt
= (p∞(V ) − p)/τp(V )

p∞(V ) = 1

1 + exp[−(V + 35)/10]
τp(V ) = τmax

3.3 exp[(V + 35)/20] + exp[−(V + 35)/20] ,

where ḡM was 0.004 mS/cm2 and τmax = 4 s, unless stated
otherwise.

2.2.3 Calcium currents to generate bursting

A first type of bursting was modeled by the high-threshold
Ca2+ current, which was described by Reuveni et al. (1993):

IL = ḡL q2r(V − ECa)

dq

dt
= αq(V ) (1 − q) − βq(V ) q

dr

dt
= αr (V ) (1 − r) − βr (V ) r

αq = 0.055 (−27 − V )

exp[(−27 − V )/3.8] − 1
βq = 0.94 exp[(−75 − V )/17]
αr = 0.000457 exp[(−13 − V )/50]
βr = 0.0065

exp[(−15 − V )/28] + 1
,

where ḡL is the maximum conductance of the IL current, and
the reversal potential for Ca2+ ions was ECa = 120 mV.

A second type of bursting (rebound bursts) was mode-
led by the low-threshold Ca2+ current, which was initially
designed for thalamic neurons (Destexhe et al. 1996a, b; see
Huguenard and McCormick 1992 for voltage-clamp data),
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and is given by:

IT = ḡT s2∞u (V − ECa)

du

dt
= (u∞(V ) − u)/τu(V )

s∞(V ) = 1

1 + exp[−(V + Vx + 57)/6.2]
u∞(V ) = 1

1 + exp[(V + Vx + 81)/4]
τu(V ) = 30.8 + (211.4 + exp[(V + Vx + 113.2)/5)])

3.7 (1 + exp[(V + Vx + 84)/3.2)] ,

where ḡT is the maximal conductance of the T-current and
Vx is a uniform shift of the voltage dependence (Vx = 2 mV
unless stated otherwise). Note that the activation variable s
is considered here at steady-state, because the activation in
fast compared to inactivation. This T-current model was also
used with an independent activation variable (Destexhe et al.
1998; Fig. 10), but produced very similar results as the model
with activation at steady-state (not shown).

2.3 Fitting methods

Some of the models (RS and FS cells) were adjusted to
experimental data using automatic fitting procedures. The
optimization of these models was done using a NEURON
implementation of the simulated annealing method based on
a simplex algorithm (Press et al. 1992). It is important to
note that the optimization method described below does not
fit the details of the Vm trajectory, such as the exact shape of
the spike, the exact shape of the AHP, etc., but uses more qua-
litative criteria, such as the firing rate, the frequency-current
relations, the adaptation time constant, the interspike inter-
vals, the number of spikes in bursts, etc.

The strategy consists of a simplex (an assembly of n + 1
points, where n is the number of parameters) that moves in
parameter space, where uphill steps are accepted with a cer-
tain probability depending on a slowly decreasing variable
E (the ‘temperature’). For very low temperature, the method
becomes identical to the simplex algorithm, but during opti-
mization it is less likely to get caught in local minima. A com-
parative survey showed (Vanier and Bower 1999), that for an
intermediate number of parameters, the simulated annealing
procedure was superior to other methods. We realized an
automatic fitting of the models to recordings in rat soma-
tosensory cortex in vitro. The error function consisted of a
weighted sum over the absolute value of the differences in
the time of the first spike after DC onset, the first, second and
last interspike intervals, all values taken at three different DC
levels:

e =
∑

i

wi

√
(xdata

i − xsim
i )2. (5)

The index i labels the respective times and intervals of the
responses obtained during stimulation at three different DC
levels. This corresponds to a total of 12 quantities, which are
fitted simultaneously to every cell. Since the data consisted
of several trials, the reliability of these criteria could be esti-
mated. In order to avoid that an (experimentally) unreliable
feature strongly impacts on the error function, we chose the
weights wi to be the inverse of the SD of the experimental
values. Large SDs thus lead to a reduced contribution to the
error. However, in order to prevent an error that predomi-
nantly consists of the contribution of a very reliable feature,
we introduced a cut-off: whenever the SD of a given feature
was smaller than 3% of the mean experimental value, the
weight was taken as the inverse of these 3%, rather than as
the inverse of the SD itself.

The adjusted parameters were the leak conductance gleak

(bound by gphys
leak /3 and 3 ∗ gphys

leak , where gphys
leak is the leak

conductance extracted from experiment), the maximal
conductances ḡNa and ḡKd of the sodium and potassium
channels, a shift of their respective activation and inactiva-
tion curves VT , as well as the maximal conductance of IM

and a factor τmax scaling its time constant. The rationale for
selecting which parameters were varied was to chose as few
parameters as possible, but to allow a sufficient degree of
flexibility of the models. Table 1 contains the complete list
of the optimal parameters obtained for 13 RS-exc, 11 RS-inh
and 14 FS cells. Those cells were all from rat somatosensory
cortex.

Note that for other type of cells, such as bursting neu-
rons, it was difficult to come up with a meaningful error
function. Should the exact number of spikes in a burst mat-
ter? Should the exact timing (intra-burst ISI) be taken into
account? Moreover, for those cell types, we did not have
access to a large database, so it was not possible to evaluate
how the error function would perform on different cells. For
these reasons, the models for bursting (IB, LTS and thalamic)
cells were hand-fitted. The problem of finding appropriate
error functions should be addressed in a future study when
sufficient data will be available.

2.4 Experimental methods

Experimental methods for intracellular recordings were given
in previous papers, for the different preparations considered
here: ferret primary visual cortex in vitro (Shu et al. 2003),
rat somatosensory cortex in vitro (Toledo-Rodriguez et al.
2004), rat somatosensory thalamus in vitro (Huguenard and
Prince 1992), cat primary visual cortex in vivo (Monier et al.
2003) and cat parietal cortex in vivo (Contreras and Steriade
1995). In addition, we also compared our models to published
in vitro electrophysiological data from guinea-pig somato-
sensory cortex (McCormick et al. 1985) and frontal cortex
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Table 1 Fitting results and parameters for all cells considered

gleak ḡNa ḡKd VT ḡM τmax error
(nS) (mS/cm2) (mS/cm2) (mV) (mS/cm2) (ms)

RS (exc.) 2.73 39 6.0 −59.72 0.20 1445.0 1.4

2.43 56 6.0 −56.16 0.075 608.0 1.1

1.33 60 5.1 −65.23 0.087 2269.0 2.8

1.94 52 3.7 −55.43 0.15 653.5 0.6

2.41 36 3.1 −62.86 0.088 1476.0 0.9

1.43 50 6.0 −62.14 0.097 932.2 0.6

1.42 60 5.5 −66.51 0.20 1340.0 1.7

1.04 58 5.9 −62.87 0.10 959.0 0.8

0.98 58 6.0 −59.54 0.082 1351.0 1.0

0.91 45 2.0 −62.96 0.10 583.3 2.0

2.23 59 3.1 −58.67 0.16 686.4 0.5

2.54 42 3.9 −63.94 0.20 610.9 1.3

3.34 30 6.0 −63.62 0.10 1691.0 1.5

MEAN 1.90 50 4.8 −61.5 0.13 1123.5

SD 0.74 10 1.4 3.2 0.05 500.5

RS (inh.) 3.06 40 5.7 −67.42 0.20 2928.0 1.1

1.71 27 2.6 −61.89 0.038 1327.0 1.5

0.96 36 5.5 −60.01 0.073 1996.0 1.2

0.70 18 4.2 −74.67 0.17 1541.0 1.2

5.69 14 5.2 −71.66 0.20 1490.0 1.6

1.12 28 6.0 −66.54 0.09 2646.0 1.0

1.83 40 3.3 −59.29 0.017 1594.0 5.4

1.46 10 7.0 −62.51 0.035 1349.0 7.4

2.19 40 2.9 −62.37 0.044 2997.0 3.0

1.60 10 2.1 −67.85 0.098 934.4 1.6

MEAN 2.03 26.3 4.45 −65.4 0.097 1880.2

SD 1.44 12.5 1.7 5.1 0.070 728.5

FS (inh.) 12.35 31 7.0 −56.29 0.049 505.5 5.3

10.00 32 6.0 −64.13 0.09 508.3 2.7

14.81 38 5.2 −62.15 0.097 500.0 4.7

29.06 51 5.7 −67.65 0.1 500.3 3.7

12.68 60 4.5 −58.71 0.1 500.5 5.3

5.84 40 5.4 −65.42 0.038 664.2 0.9

3.86 58 6.6 −61.47 0.05 1056.0 0.3

2.66 44 6.0 −58.20 0.1 503.9 1.4

5.64 43 4.4 −63.44 0.1 505.7 1.4

3.87 58 3.9 −57.94 0.079 501.9 1.5

4.50 43 4.7 −63.85 0.05 1723.0 0.7

0.46 60 3.9 −58.79 0.021 1454.0 0.7

1.27 32 2.2 −67.17 0.071 596.6 1.2

7.95 55 6.0 −60.49 0.039 2023.0 1.4

MEAN 8.21 46 5.1 −61.84 0.07 824.5

SD 7.18 10 1.2 3.46 0.03 506.9

For each cell (13 RS-exc, 10 RS-inh, 14 FS), the table indicates the parameters for the Hodgkin–Huxley type model that most optimally fit the
data of that cell (see details in text; see Eq. 5 in Sect.2 for the definition of the error function). The same model was used to fit excitatory and
inhibitory RS cells. The mean value and standard deviation (SD) of each fitted parameter are indicated for each cell type. All cells were from rat
somatosensory cortex
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Fig. 1 Intracellular recordings of regular-spiking neurons in ferret
visual cortex in vitro. a Responses to injection of a depolarizing
current pulse (0.7 nA) showing the typical response of a regular
spiking (RS) neuron, with spike-frequency adaptation. b Frequency–
current (F/I ) relation for this neuron. The instantaneous firing rate
(inverse of the interspike interval) is represented as a function of
the injected current (amplitude of the pulse). The curves indica-
ted by different colors correspond to first, second, third,. . . spikes
in the train. c Model of RS neuron, containing the currents INa and

IKd responsible for spike generation, with an additional slow K+
current (IM ) responsible for spike-frequency adaptation. These cur-
rents were simulated by Hodgkin–Huxley type models in NEURON.
The model exhibited spike frequency adaptation following injection
of depolarizing current pulses (left 0.5 nA injected). d Frequency–
current (F/I ) relation computed identically as for the experiments
shown in b. Model parameters: L = d = 96 mm (0.29 nF capaci-
tance), gleak = 1×10−4 S/cm2 (Rin of 34.5 M�), Eleak = −70 mV,
ḡNa = 0.05 S/cm2, ḡKd = 0.005 S/cm2, ḡM = 7 × 10−5 S/cm2

(de la Peña and Geijo-Barrientos 1996). All cat, guinea-
pig and ferret recordings used sharp electrodes, while the
rat somatosensory system recordings used whole-cell patch
electrodes.

3 Results

We successively consider below different cell classes, and
show experiments and models for each cell class. Because
very different preparations are used here (in vivo vs. in vitro,
patch- vs. sharp-electrodes, different ages and species), we
did not attempt to obtain a generic model for each class,
but rather discuss the common features between different
preparations, and integrate these features in the models.

3.1 Regular spiking neurons

By far the largest cell class in neocortex is the so-called
“regular-spiking” (RS) neuron, which is in general excita-
tory and most often correlates with a spiny pyramidal-cell
morphology. The typical response of RS cells to depolarizing
current pulses are trains of spikes with adaptation, as illus-

trated here for a typical RS cell from ferret visual cortex in
vitro (Fig. 1a). The instantaneous frequency-current relations
obtained for successive interspike intervals, and for different
current pulses is shown in Fig. 1b.

The simplest model of RS cells consists of conductances
for generating spikes (INa, IKd; kinetics from Traub and
Miles 1991), and in addition, a slow potassium current acti-
vated by depolarization, which we call here “IM ” (kinetics
from Yamada et al. 1989). This model reproduces the typical
firing characteristics of RS cells as recorded in ferret visual
cortex in vitro (Fig. 1c) and their frequency–current relations
(Fig. 1d). Note that the model reproduces the main features
of spike-frequency adaptation, but the peak firing rate was
different as the experiments. This is because the model had
an input resistance typical of sharp-electrode recordings, and
which was lower than the particular cell shown in Fig. 1a and
b, and thus, displayed a lower peak firing rate for the same
injected current.

The same model was also fit to RS cells from rat somato-
sensory cortex in vitro (Fig. 2). In this case, automatic fitting
procedures were used to determine the optimal parameters
(see Sect. 2). The results of the fitting are shown in Fig. 2
for two RS cells (one pyramidal cell in Fig. 2a, presumed
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Fig. 2 Models of RS neurons
based on somatosensory cortex
in vitro. Left panels injection of
depolarizing pulses in neurons
from rat somatosensory cortex
in vitro. Right panels same
protocols simulated using the
models. a Regular-spiking
pyramidal neuron. Parameters:
L = d = 61.4 mm,
gleak = 2.05 × 10−5 S/cm2,
Eleak = −70.3 mV,
ḡNa = 0.056 S/cm2,
VT = −56.2 mV,
ḡKd = 0.006 S/cm2,
ḡM = 7.5 × 10−5 S/cm2,
τmax = 608 ms.
b Regular-spiking inhibitory
neuron. Parameters:
L = d = 61.8 mm,
gleak = 1.33 × 10−5 S/cm2,
Eleak = −56.2 mV,
ḡNa = 0.01 S/cm2,
VT = −67.9 mV,
ḡKd = 0.0021 S/cm2,
ḡM = 9.8 × 10−5 S/cm2,
τmax = 934 ms
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40 mV

40 mV 40 mV

1 s

1 s 1 s

Experiments ModelsA
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excitatory, and one inhibitory interneuron in Fig. 2b). The
complete list of the parameters obtained for 13 excitatory
RS cells and 11 inhibitory RS cells from rat somatosensory
cortex is shown in Table 1.

The fitting to different cells shows coherent values from
cell to cell, but also a great disparity, depending on the para-
meter (Table 1). The coherent parameters are those concer-
ning the Vm level and the spike generating mechanisms. The
level of adaptation is more variable from cell to cell: the
total conductance (ḡM ) shows great variations, which can
be partly attributed to the size of the recorded cell (compare
with the gleak values). However, the diversity of the decay
time constants for adaptation, τmax, cannot be explained by
cell size. The values range from about 500 ms to more than
2 s (1123.5 ±500.5 s; see Table 1) and reflect cells with dif-
ferent rates of adaptation. The same observations also hold
for inhibitory cells, as we will examine in more detail below.

3.2 Fast spiking neurons

Another major cell class in cerebral cortex is the “fast-
spiking” (FS) neuron, which generally corresponds to aspiny
inhibitory neurons. FS cells respond to depolarizing pulses
by producing high-frequency trains of action potentials with
little or no adaptation, as seen in ferret visual cortex in vitro
(Fig. 3a). The frequency–current relations for successive
spikes are almost superimposable (Fig. 3b). Similar firing
behavior is also seen in FS neurons from rat somatosensory

cortex in vitro (Fig. 4; note that some interneurons do show
adaptation, as seen above in Fig. 2b). Many other intrinsic
firing types have been described for cortical interneurons
(Gupta et al. 2000), in addition to the classes outlined below.

FS cells are also the simplest type to model, as the conduc-
tances for generating spikes (INa, Kd) are sufficient. A model
based on these two conductances reproduces well the intrin-
sic firing characteristics of FS cells of ferret visual cortex in
vitro (Fig. 3c). The frequency-current relations are similar
to experimental data (compare b to d in Fig. 3; note that in
this model, as for the RS cell model, the input resistance and
peak firing rate were not matched to experiments). In some
cases, it is necessary to add an adaptation current (IM ) to
account for the initial spike-frequency adaptation (Fig. 4).
As for RS cells, we have used automatic fitting procedures
to determine the optimal parameters for an ensemble of cor-
tical FS cells recorded in rat somatosensory cortex in vitro.
The results of this fit are shown in Fig. 4 for a fast spiking
cell from rat somatosensory cortex. The model captured well
the firing statistics of that particular neuron, although not the
modulations of spike amplitude (the ionic origin of which
is unknown). The full list of parameters obtained for 14 FS
cells is given in Table 1.

3.3 Intrinsically bursting neurons

Another very common cell class is the “intrinsically bursting”
(IB) neuron. This type of neuron generates bursts of action
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Fig. 3 “Fast spiking” neurons
based on ferret visual cortex in
vitro. a Response of a
fast-spiking neuron to injection
of a depolarizing current pulse
(0.7 nA), showing negligible
adaptation. b Frequency–current
relation for this neuron,
calculated identically as in
Fig. 1b. c Response to
depolarizing current in a model
of fast spiking neuron. This
model contained only INa and
IKd simulated by
Hodgkin–Huxley kinetics.
d Frequency–current relation
computed identically as for
experiments in b. Model
parameters were identical to RS
cells (Fig. 1), except
L = d = 67 mm (0.14 nF
capacitance), gleak =
1.5×10−4 S/cm2 (Rin of
47 M�), ḡKd = 0.01 S/cm2 and
no IM
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Fig. 4 Models of FS neurons based on somatosensory cortex in vitro.
Left panels: injection of depolarizing pulses in a FS neuron from rat
somatosensory cortex in vitro (steady-state frequencies, from bottom
to top: 21, 29 and 34 Hz). Right panels same protocols simulated using

the models (frequencies of 22, 31 and 34 Hz, respectively). Parameters:
L = d = 56.9 mm, gleak = 3.8 × 10−5 S/cm2, Eleak = −70.4 mV,
ḡNa = 0.058 S/cm2, VT = −57.9 mV, ḡKd = 0.0039 S/cm2,
ḡM = 7.87 × 10−5 S/cm2, τmax = 502 ms

potentials following depolarizing stimuli, and represents a
few percent of the recorded cells in primary sensory cortex,
both in vivo and in vitro. Figure 5a shows a bursting cell
recorded in guinea pig somatosensory cortex in vitro (from
McCormick et al. 1985) and Fig. 6a shows a bursting cell
recorded in cat primary visual cortex in vivo. When submitted
to depolarizing current pulses, IB cells first generate a burst of
action potentials followed by single spikes with adaptation.
This behavior is typical of IB neocortical neurons (Connors
and Gutnick 1990).

We modeled IB cells based on a minimal set of voltage-
dependent conductances. To generate the bursting behavior,
we extended the previous model of RS cell by adding the
L-type calcium current (kinetics from the model of Reuveni
et al. 1993, based on experiments described in Sayer et al.
1990). In a first set of models, we generated IB type behavior
by using moderate densities of IL , and compared the behavior
of the model with data obtained in the sensorimotor cortex of
guinea pigs (Fig. 5a). This model generated an initial burst
followed by an adapting train of action potentials (Fig. 5b,
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Fig. 5 Model of intrinsically bursting cell based on guinea-pig
somatosensory cortex in vitro. The model consisted of a RS cell aug-
mented with the L-type calcium current IL , thus comprising INa, IK ,
IM and IL currents. a Intrinsically bursting (IB) cell from guinea-pig
somatosensory cortex in vitro (modified from McCormick et al. 1985).
The response to the same depolarizing current pulse is shown at two
different DC levels. b Response to depolarizing current in a model of IB
cell. Top panels similar protocol as in a; bottom panel repetitive bursting
activity with larger L-type conductance. Parameters: L = d = 96mm
(0.29 nF capacitance), gleak = 1 × 10−5 S/cm2, Eleak = −70 mV,
ḡNa = 0.05 S/cm2, ḡKd = 0.005 S/cm2, ḡM = 3 × 10−5 S/cm2,
ḡL = 0.0001 S/cm2 (0.0002 S/cm2 for the bottom panel)

top). With larger L-type conductance, this model generated
repetitive bursting activity (Fig. 5b, bottom). The latter beha-
vior was similar to fast rhythmic bursting cells (Steriade et al.
1998) or chattering cells (Gray and McCormick 1996).

We also adjusted this model to data from cat primary visual
cortex in vivo (Fig. 6a). The density of IL was adjusted to
match the response to depolarizing current pulses (Fig. 6b).
As above, if depolarizing pulses were given from hyperpo-
larized levels, this model generated an initial burst followed
by an adapting train of action potentials (Fig. 6b).

3.4 Low-threshold spiking neurons

In a previous study (Destexhe et al. 2001), we observed low-
threshold spike (LTS) activity in a significant fraction (about
10%) of intracellularly recorded cells in cat association cor-
tex in vivo (Fig. 7a). These LTS neurons generated adap-
ting trains of action potentials in response to depolarizing
current injection (Fig. 7a, left panel), similar to the classic
“regular-spiking” response of cortical neurons. In addition,

they generated a burst of action potentials in response to
injection of hyperpolarizing current pulses (Fig. 7a, right
panel). This property was also identified in deep layers of
guinea-pig cerebral cortex in vitro (de la Peña and Geijo-
Barrientos 1996; see Fig. 7b) and was shown to be due to the
presence of the T-type (low-threshold) calcium current IT .

We have attempted to model these intrinsic firing proper-
ties based on a minimal set of voltage-dependent conduc-
tances. To generate rebound bursting behavior, the T-type
calcium current was included (kinetics from Destexhe et al.
1996a, b) and its peak amplitude was adjusted to match
voltage-clamp recordings of this current in pyramidal neu-
rons (de la Peña and Geijo-Barrientos 1996). A density of
T-channels of 0.8 mS/cm2 was needed to match the relati-
vely small amplitude of this current measured in pyrami-
dal neurons. Using this density, the model could generate
weak rebound spikes at the offset of hyperpolarizing cur-
rent (Fig. 8a, −60 mV). To generate the classic “regular-
spiking” behavior (Fig. 8b, −70 mV), the model included
three voltage-dependent currents identical to the RS cells
described above: a slow voltage-dependent K+ current (IM ),
as well as INa and IKd currents for action potential generation.
When depolarizing pulses were given from hyperpolarized
levels, this model generated an initial burst followed by an
adapting train of action potentials (Fig. 8c, −80 mV), which
is a feature often observed in neocortical neurons (Connors
and Gutnick 1990).

In addition, we also considered LTS cells from rat somato-
sensory cortex in vitro (Fig. 9, Experiments). As seen above,
this LTS cell generated adapting trains of action potentials
in response to depolarizing pulses (Fig. 9a, Experiments),
as well as rebound burst activity at the offset of hyperpo-
larizing current pulses (Fig. 9b, Experiments). We used the
same model as above, but changed the parameters such that
it matches the input resistance of this LTS neuron (which
was 210 M� for this particular cell), and approximates at
best the frequency/current relationship of the cell (not shown).
The resulting model is shown in Fig. 9a and b (Models) for
the exact same protocol as for the experiments. Interestin-
gly, one sees that the model can generate an initial burst in
depolarizing responses, in a manner similar to some of the
model traces of IB cells shown in Fig. 5b. The two types of
calcium current seem to have a similar effect for this initial
burst response.

3.5 Thalamic relay neurons

It is important to note that the model of LTS cell is very
similar to models for thalamic relay cells. There are, howe-
ver, two notable differences. First, thalamic relay cells do not
show spike-frequency adaptation, so no adaptation current,
such as IM , is needed. Second, the thalamic relay cell pro-
duces more powerful bursts compared to cortical LTS cells,

123



436 Biol Cybern (2008) 99:427–441

0.0 nA
0.2 nA
0.4 nA
0.5 nA
0.6 nA

0.7 nA
0.8 nA
1. nA

400 ms

Experiments ModelsA

B

40 mV40 mV

-65 mV -65 mV

Fig. 6 Model of intrinsically bursting cell based on cat visual cortex
neurons in vivo. Left intracellular recording of an intrinsically bursting
(IB) cell from cat primary visual cortex in vivo. Right model consisting
of a RS cell augmented with the L-type calcium current IL , thus compri-
sing INa, IK , IM and IL currents. a Responses to depolarizing current
pulses from 0 to 0.6 nA, as indicated. Note that for 0.6 nA, both data

and model generated a doublet of spike. b Responses to current pulses
from 0.7 to 1 nA, for which repetitive firing was evoked. Model para-
meters: L = d = 96mm (0.29 nF capacitance), gleak = 1×10−4 S/cm2

(Rin of 34.5 M�), Eleak = −75 mV, ḡNa = 0.05 S/cm2, VT = −58 mV,
ḡKd = 0.0042 S/cm2, ḡM = 4.2 × 10−5 S/cm2, τmax = 1, 000 ms,
ḡL = 0.00012 S/cm2

Fig. 7 Rebound bursting
properties of cortical pyramidal
cells in vivo and in vitro.
a Rebound bursting cell from
cat parietal cortex in vivo (from
Destexhe et al. 2001).
b Rebound bursting cell from
guinea-pig frontal cortex in vitro
(adapted from de la Peña and
Geijo-Barrientos 1996). In both
cases, the response to
depolarizing current pulses (left)
was similar to a regular spiking
cell. In addition, LTS cells
produce a burst of action
potentials upon release from
inhibition or in response to
hyperpolarizing current pulses
as shown here (right −0.1 nA
pulse of 200 ms in a, truncated
for clarity)
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Fig. 8 Model of rebound bursting cell of cat association cortex in vivo.
The model consisted of a RS cell augmented with the T-type calcium
current IT , thus comprising INa, IK , IM and IT currents. a Rebound
response at the offset of a hyperpolarizing current pulse (−0.1 nA).
b Adapting train of action potentials with depolarizing current pulses.
c Similar depolarizing pulse showing a burst of action potentials follo-
wed by single spikes. Arrows indicate the rebound response mediated by
IT (one action potential in a, two action potentials in c). Model parame-
ters: L = d = 96mm (0.29 nF capacitance), gleak = 1 × 10−5 S/cm2,
Eleak = −85 mV, ḡNa = 0.05 S/cm2, ḡKd = 0.005 S/cm2, ḡM =
3 × 10−5 S/cm2, ḡT = 0.0004 S/cm2. Figure modified from Destexhe
et al. 2001

presumably because the T-type calcium current IT has a lar-
ger conductance in thalamic cells. In voltage-clamp expe-
riments, the peak amplitude of IT in pyramidal neurons of
guinea-pig cerebral cortex is of about 0.4–0.8 nA (de la Peña
and Geijo-Barrientos 1996), which is small compared to the
peak amplitude of IT in thalamic relay cells (5.8 ± 1.7 nA
in Destexhe et al. 1998). Figure 10 shows models of thala-
mic relay cell obtained previously. Current-clamp (Fig. 10a)
and voltage-clamp (Fig. 10c) recordings were used to adjust
the model. A detailed model based on morphological recons-
tructions was first obtained (Fig. 10b). This model was then
simplified into a single-compartment model comprising IT ,
INa and IKd currents (Fig. 10d; same kinetics as above; see
details in Destexhe et al. 1998).

Discussion

In this paper, we have provided an overview of simplified
models for the most frequent electrophysiological classes of

neurons in cortex and thalamus. The models presented are
not new, and exist in the literature for most of them, but
their parameters were adjusted to experimental data from
different preparations, to obtain a series of models for each
cell class, and using a consistent model format. More spe-
cifically, the original contributions of the paper are: (1) to
provide a set of models fit to different neuron classes (RS,
FS, LTS, Thalamic) in the same preparation (rat somatosen-
sory cortex and thalamus in vitro); (2) to provide examples of
the same models fit to other preparations, including guinea-
pigs and cats in vivo; (3) to provide an automatic fitting for
several cells of the same class (see Table 1), which allows
one to directly estimate the cell-to-cell variability within
a given cell class. None of these data are available in the
literature, and we believe this information should be useful
to build thalamocortical networks where not only the dif-
ferent classes of intrinsic properties are present, but also the
cell-to-cell variability within each class.

The models considered here are the simplest types of bio-
physical models where the intrinsic properties arise from
voltage-dependent conductances, each described by diffe-
rential equations (Hodgkin–Huxley type models). Simplified
single-compartment HH type models were proposed for tha-
lamic cells and derived from more complex models
(Destexhe et al. 1996a, b, 1998), and a similar approach
of reduction to a single-compartment model was proposed
for cortical neurons (Stratford et al. 1989; Destexhe et al.
2001). Simplified models for bursting cells were also stu-
died since many years (Rinzel 1987; Rose and Hindmarsh
1989; Rinzel and Ermentrout 1989). More recently, a two-
dimensional integrate and fire model was proposed to account
for a broad range of intrinsic firing properties (Izhikevich
2004; Brette and Gerstner 2005). The present work to obtain
simplified models for different cell classes, using data from
different cells and different preparations, complements these
previous modeling efforts.

It is important to note that the models proposed here are
not uniquely suitable to represent these classes of neurons.
As outlined above, other models exists for the different ionic
currents considered here, and we did not attempt to obtain
the kinetic parameters from voltage-clamp data in the dif-
ferent preparations. In addition, some of the behaviors can
be modeled using different types of ion channels, such as
adaptation which can be modeled from calcium-dependent
conductances. The present study shows that minimal models
can capture the main electrophysiological features of seve-
ral classes of neurons based on only five voltage-dependent
currents. Such models can be used in network simulations
where realistic intrinsic properties are needed. Such models
are implementable on specific analog microcircuits (ASIC),
and some of these models (the RS and FS cells of Figs. 1,
3) have already been implemented (Renaud et al. 2007; Zou
et al. 2006). Since different cell types can be modeled using
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Fig. 9 Model of rebound bursting cell based on rat somatosensory cor-
tex in vitro. The model had the same current as the “cat” model, but
with different parameters. a LTS cell from rat somatosensory cortex in
vitro. The top panel shows the response to depolarizing current pulses,
while the response to hyperpolarizing pulses is shown in the bottom
panel. Values of the injected current were: −0.015, 0.067 and 0.13 nA
for depolarizing pulses (DC current was −0.11 nA to bring the cell to

−70 mV; they were of −0.36, −0.24 and −0.09 nA for hyperpolarizing
pulses (pre-pulse current of −0.056 nA to bring the cell to −60 mV.
b Same protocols simulated using the model. The parameters were: L =
d = 89.2mm (0.25 nF capacitance), gleak = 1.9×10−5 S/cm2, Eleak =
−50 mV, ḡNa = 0.05 S/cm2, VT = −50 mV, ḡKd = 0.004 S/cm2,
ḡM = 2.8 × 10−5 S/cm2, ḡT = 0.0004 S/cm2, Vx = −7 mV

5 or less generic conductances, it should be feasible to design
a single chip with 5 voltage-dependent conductances but
tunable parameters, so that the same chip could be used for all
the major cell types in network simulations (work in progress
with S. Renaud and colleagues within the FACETS European
project).

A few important additional points must be noted. First, the
choice of a specific cell class is not restricted to excitatory
or inhibitory neurons. Any cell class can be used for any cell
type, for instance LTS and RS type of intrinsic properties
have been found for both excitatory or inhibitory neurons in
cortex (Gupta et al. 2000). In addition, the LTS cell class can
be used to model thalamic neurons.

Second, we described here four distinct cell properties, but
in general the properties are not so clear-cut. It is important
to note that these models can be changed at will to diversify
the neuron types. For example, the time constant τmax of the
adaptation current IM can be adjusted to yield fast or slow
adaptation. From our fitting to spike-frequency adaptation,
the values of τmax range from a few hundred milliseconds to
several seconds (see Table 1).

A third point to emphasize is that the automatic fitting
realized here for RS and FS cells shows an unexpectedly
high diversity from cell to cell, even within the same cell
class (see Table 1). For example, the rate of spike frequency
adaptation shows a considerable cell-to-cell variability. We
did not have the data to perform a similar study on the other
cell types, IB, LTS and thalamic cells. All these other cell
types are bursting, and it is difficult to design a meaningful
error function to appropriately quantify bursts (see Tien and
Guckenheimer 2008). Such error functions should be tested
on a database of several neurons for each class of bursting
cell, which should be done when these data will be available.

Finally, it is important to note that another possible
approach to design simple representations of cellular models
is based on the integrate-and-fire model. For instance,
the integrate-and-fire-or-burst (Smith et al. 2000) or the
Izhikevich (2004) type of models are two-variable extensions
of the integrate-and-fire model that can capture some of the
diversity of firing patterns in cortical neurons (Izhikevich
2004). Another variant is the adaptive exponential integrate-
and-fire model (Brette and Gerstner 2005), which displays
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Fig. 10 Model of thalamic
relay neuron from rat
somatosensory thalamus in
vitro. a Current-clamp
recordings of a relay cell from
the ventrobasal thalamus (inset),
subjected to depolarizing
current pulses from the resting
membrane potential. The cell
produced a rebound burst of
action potentials. b Detailed
model based on the morphology
of the recorded cell (which was
reconstructed and incorporated
into simulations). The inset
shows the reconstructed cell
model (soma in gray).
c Adjustment of a
one-compartment model to
passive responses recorded in
voltage-clamp in the cell shown
in a (dots; model showed as a
continuous trace).
d Current-clamp simulation of
the same protocol as in a using
the simplified model. Modified
from Destexhe et al. 1998 where
all details were given
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a more realistic subthreshold behavior. The latter model is
also easy to fit to experimental data and therefore should
also provide a good match to intracellular recordings. It is
also implementable on analog microcircuits (ongoing work
of K. Meier and colleagues at Heidelberg University, within
the FACETS European project).

In conclusion, we have presented here simple Hodgkin–
Huxley type models for the main cell classes of cortical
and thalamic neurons, using at most 5 conductances. This
type of model is more complex than nonlinear integrate-
and-fire models (Smith et al. 2000; Izhikevich 2004; Brette
and Gerstner 2005), but is also more realistic because the
ionic currents are identified and can be fit to physiological
measurements such as voltage-clamp data if needed. It is
also simpler than detailed models that incorporate the cel-
lular morphology such as dendrites and axon, and which
would include conductance kinetics directly estimated from
the same preparation (e.g., Destexhe et al. 1998). Simple
Hodgkin–Huxley models are well suited for building network
simulations in which the effect of neuromodulators or phar-
macological agents on identified conductances can be tested.
Finally, it is possible that specific network properties arise
from the nonlinear interaction between intrinsic and synaptic
conductances, in which case it would be necessary to model
intrinsic properties by conductances (which is not the case
in simplified models such as Izhikevich 2004 or Brette and
Gerstner 2005). Thus, the types of Hodgkin–Huxley model

considered here represent one of the many possible compro-
mises between simplicity and biological realism.
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