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Abstract For simulations of large networks of spiking neumodels can bring them closer to reality. Lately multiple ad-
rons, an accurate, simple and versatile single-neuron mednces were made in that direction.

gling frar_nework is requirgd. Here we explore.the versatil- In the presence of high synaptic bombardment, model-
'tFylo.f ? S|mtple tva/c?equ\?\;lonhmodﬁl, th?h_adaptglel exponemg accurately the spike initiation is crucial and the Leaky
lal integrate-and-fire. We show how this Model Can broniaqrate-and-Fire (LIF) must be augmented by an exponen-

i d taph di d ‘bing the t fal term to faithfully process fast inputs signals (Fowda
:gmef er, an p:c_refsent a pt ase tll‘?graVT/ escribing F faiRleme et al (2003)). An additional recovery variable is im-
lon from one firing type to another. We give an analyticaj, 5 ¢ capture adaptation and resonance propertielsgRi-
criterion to distinguish _between continuous adap_noma_lh_| son et al (2003), Izhikevich (2003)). A simple quadratic mlod
\l:/)\l/,lrstmg, tretgu![atrhbu(;st;ng r_;lr!dt_two t)ép(las_ of tonLcl Sp'fk'n%f spike initiation with a linearly dependent recovery vari

€ report that ne deterministic model 1S capable ol Prap e 444 3 reset in the state variables is sufficient to ac-
ducing irregular s_plklng when .S“F““'ateo' with constant CUpq, it for most types of firing patterns observed in the cen-
rent. Lastly, the simple model is fitted to real _experlmerhtsLEral nervous system (Izhikevich (2007)). Unlike a quadrati
cortlpdal ?el:tzons undert?tep:hcurre_?ts_tll_Tul?tlpn. lThe ct):ISI ependence on voltage, an exponential nonlinearity (@rett
provide further support for In€ suitability of Simp'e Masiel, , Gerstner (2005)) keeps the subthreshold dynamics linea
such as the adapﬂve exponential integrate-and-fire fgBlarand matches direct measurments in cortical neurons (Badel
network simulations. et al (2007)). This last model - called the adaptive exponen-
tial integrate-and-fire (AdExp)- was considered an accu-
rate and convenient simplification to use in spiking network
models. Itis simple because itis described by only two equa-
tions and a reset condition. For the same reason it is com-
: . o e utationally fast and could simulate even faster by transfe
Large-scale simulations andtheoretl_cal investigatiegsire png the sosllution methods developed for Izhikevic?w/’s model
neuron models that are mathematically tractable, biolo Jumphries and Gurney (2007)) to the AdEXp. It is by con-
cally relevant and computationally fast. Moreover, a med ' e
. . ! uction closer to real neurons than the simplest of models
ing framework should be versatile enough to span the Wh% it was shown to predict with high accu?acy the sopike

1 Introduction

diversity of neuron types by tuning a restricted number . .
S Iming of a conductance-based Hodgkin and Huxley model
parameters, avoiding the need of a new model for each cl Pette and Gerstner (2005)) and the spike timing of real

of neuron. Modeling the complete gating dynamics of ig cgamidal neurons under noisy current injection (Clopath
channel densities in neuronal membranes satisfies only g 21 (2007): Jolivet et al (2007)).

of these five requirements: biological relevance and viérsal
ity. On the other hand, modeling a neuron either as a coin- In this paper we address the versatility and the biological
cidence detector, as a resettable integrator or as firingt paelevance of the aEIF model. We show how the aEIF repro-
son distributed spikes may fail to catch important aspefctsaduces multiple firing patterns and study the correspondence
single-neuron behavior. Small modifications to these stmpietween the parameters and the firing types. Finally, we fit
the model to experimental traces and obtain sets of parame-

R. Naud ters describing cortical fast spiking interneurons andileay
EPFL Station 15 spiking pyramidal neurons.
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2 Adaptive Exponential Integrate-and-Fire subthreshold oscillation, the presence of rebound spékes,
the firing pattern as we will see in the following section.

The adaptive Exponential Integrate-and-Fire model (AdEX)

describes the evolution of the membrane potekt{a) when

a currentl (t) is injected. It consists of a system of two dif- Multiple Firing Patterns

ferential equations:

In order to study the range of firing patterns accessible with
dav V —Vr the AdEXxp, we simulate the injection of a step current. This

CE =—0u(V —E) + 947 exp( )+1=w, (1) s the most common experimental paradigm used by elec-
dw trophysiologists to study and classify the classes of meuro
w— =a(V —EL) —w, (2) (Markram et al (2004)). Mathematically, this situation-cor
dt responds the solution of Eg.'s 1-2 with constant current and
and a reset condition that replaces the downswing of the &gtial valuesV(0) = E. andw(0) = 0. Similar to what is
tion potential: seen in real neurons, the response of the model is very di-
verse and depends on the model parameters. In Figure 3 we
if V.>0mV therV — E, (3) show an example of each firing pattern that can be produced
W— W, =W+ b. (4) by varying the parameters of the AJEXxp, the parameters as-

sociated with each example are given in Table 1. In this sec-
There are nine parameters required to define the evalion we will describe how the different firing patterns arise
tion of the membrane potentiaV ] and the adapation cur-in our simple model.
rent (). The nine parameters can be separated into scaling

parameters and bifurcation parameters. The scaling parar‘gﬁarp vs Broad Spike After Potential (SAPhe AJExp can

ters are the parameters responsible for scaling the tinse a oduce adapting and tonic traces of two qualitatively dif-
for the stretch and for the offset in state variables. The fife pung q ely
erent types. In Fig. 2a we see an example of the first type

scaling parameters are: total capacitaitg fotal leak con- where the potential increases monotonically after a rapid
ductance §.), effective rest potential, ), threshold slope downswin F())f the action potential. This type gf resetis se%n
factor (At), effective threshold potentia¥{). Absorbing the 9 Hon pc ' Ype o

commonly in fast spiking interneurons, and it corresponds

parameter€ andy_ to set the time scafy = C/gy, Ar and é%a low value of the voltage reset combined with weak

Vr to set the membrane potential scale and offset, and . .
propriate rescaling of andw, equation 1 can be reduce%ke'mggered adaptatidn In the phase plane we see that

to a system of equation with dimensionless variables a .
only four parameters (Touboul (2008)). The remaining four _E_Sroad SAP’ on the other ha?”d’ are ol:_)served n regl_JIar
parameters are bifurcation parameters (subthresholdadal piking pyramidal neurons a_nd in the pontlnuo_usly adapting
tion, a, adaptation time constart, spike triggered adapta- nterneurons. A broad SAP is recognized by its low curva-

: : e ture at all times after the spike (Fig. 2b). For a larger value
tion, b and reset potential;). Modifying these parameters ) . .

; o . . of the spike-triggered adaptation parameter, the redeiffal
brings qualitative changes in the behavior of the system. %ie the V-nulicline, and this leads to the broad SAP. In this

ase the exact value df is less relevant, since the mem-

rane potential must decrease before being able to rise in

rpreparation of the next spike.

" _The two types of SAP are modeled in the ADExp by two

mains constant. The-nullcline (orw-nullcline) is defined different spiking trajectories in the phase plane. These ar
determined by the location of the reset point in the phase

as the set of points withY = 0 (or ¥ respectively). The cal _
shape and position of the nuliclines depends on the para_‘?"ﬁne' If the Z%SEt point is above tienulicline (recall that

eters of the model. For instance changing the current in Bgthat region < 0 everywhere), the voltage will decrease
1 involves an horizontal shift in the V-nullcline. The interPefore increasing in preparation of a spike, this trajecior
section of the two nullclines define fixed points which caf¢rmed a broad SAP or broad reset. If the reset point is be-
be stable or unstable depending on the parameters of !mgthe_V—nullcllne, the spiking trajectory starts to increase
model. In particular, the fixed points can loose or gain stabimmediately after the resefif < 0 everywhere below the

ity with changes in one or more parameters. As a bifurcatidnulicline), and the SAP appears as a sharp reset. We can
point, a change in the stability occurs, and this modifies tM#ite this distiction as an analytical relation that depend
behavior of the system qualitatively. In the sytem of Eq. the reset pointE;,w;). There is a broad reset if

2, the choice of subthreshold adaptatiah&nd adaptation E v

time constantt,) determines wether an increase in curre r— VT

induces a loss of stability via an Andronov-Hopf or via a" > O (E—E)+adr exp< ) 1, ®)
saddle-node bifurcation (Fig. 1). From a biological poifit o

view, the bifurcation parameters, determine the strenfithand otherwise the reset is sharp.

reset is made to a point below the V-nullicline.

through phase plane analysis (for an introduction seeézhi
vich (2007)). Briefly, phase plane analysis involves piati
the state variables relative to each other. Nullclineseep
sent the area in phase space in which a given variable




Tonic vs AdaptingThe simplest type of spiking pattern isRebound or Transient Spikd2ost-inhibitory rebound is seen
the regular discharge of action potentials (tonic firingg sén several types of neurons. When a hyperpolarizing step
Fig. 3a). This firing pattern is the only firing pattern thaturrent is released abruptly, some neurons will spike one or
a standard leaky or non-leaky integrate-and-fire model cagveral time(s) before reaching their state of rest. Thés ph
generate. In the framework of the AdEXxp, it corresponds tmmenon is very similar to transient spiking observed dyrin
the absence of spike-triggered adaptation and subthieshelstep of depolarizing current. In both cases the sudden in-
adaptation & b = 0). Most neurons, however, show somerease in current does not induce a loss of stability. A spike
level of spike-frequency adaptation. In this firing patterris nevertheless produced because the adaptation current is
the inter-spike interval (ISI) grows during a sustainedsti too slow to compensate the sharp change in current. If the
ulus (Fig. 3b). The classification between adapting and napplied current were modified gradually across the same ab-
adapting can be drawn from the adaptation index: solute change that produces transient spiking, the neuron
N would not spike because it would have had time to adapt.
ISl —1Sli—1 (6) Inthe phase plane, rebound corresponds to a situation where
isij +isij_1 the initial condition is situated outside the separatrit the-

. . _ _ limits the area of trajectories converging to the stabledfixe
wherek > 2 is used to disregard any initial transient. Coryqint (Fig 3g). ) ging

sistent with other studies (Druckmann et al (2007)) we take
k=4, i. e. we disregard the first two inter-spike intervals
Typically fast spiking interneurons have an adaptatioeind

1
ANk

Irregular Spiking Irregular spiking can occur in an AJdEXxp

of 0.005 whereas regular spiking pyramidal neurons have odel despite the fact that the equations are deterministic

- . ™ . egular spiking is manifest when the interspike interval
=0.015 (with N = 15 0 40 spikes, Druckmann et al (2007.) eep on changing seemingly without periodicity. As for the

Since the adaptation stabilize after a certain number @espi o ;5. bursting firing pattern, there is an alternatiorhefrp
computing the adaptation index will depend on the numb d broad resets, but the sequence is not periodic. This be-

OB Sptikffs cpr&siderﬁﬂ.l\:l} thzjstar;igle, '\I,<ve will compute thﬁavior appears for a restricted set of parameters, and the vo
adaptation Index wi Ixed 10 20 Spikes. ume occupied by the irregular spiking pattern in the parame-

ter space seems very small. We verified that the behavior was

Initial Bursting Initial bursting denotes_a group of sDike§1ot due to a numerical artifact by reducing the integration
that were emitted at a frequency considerably greater tt}

; OO Nifle step. The irregular pattern was conserved if we reduced
the stea(_jy—state frequgncy. This def|_n|_t|_on IS Very f.i”?b'g.fh'e timestep from 1@isto 1 us. Though other region of the
ous and in many experimental traces initial bursting issndi rameter space may produce irregular spiking, we found a

g?gt]# ésg\%téi;rogq C?ég?%%?ﬁgoidgggﬁgé Iggggrféﬁpmlggjggion that corresponds to negative subthreshold adaptati

bursting arises when the spiking starts with at least onspshgr:?e spike-triggered adaptation and high voltage resgt (F

reset followed by broad resets only (Fig. 3c). For a given set of parameters, irregular spiking is mani-

. . , . .feston a narrow range of injection current Fig. 4a. We check
Regular BurstingRegular bursting appears in a scenario SIﬁat this set of parameter was associated with chaos Strogat

Itlgéevlrz:tt I?;:;rgtrllr;g;)iﬁipt :Qsitotgs Igzg?rogﬂéeisﬂﬁgmh 4%894) by testing the dependence of the numerical integra-
P o b 1€ PN&Sh on the initial conditions. We perturbed the initial cidn

plane, such that the next reset point is belowMhaullcline, tions by a very small valud — 10-12 and evaluate the error

i. e. the next reset is sharp (Fig. 3d). This situation leads | y y N

an alternation between sharp and broad resets. Regul&r bdpsthe adaptation variable at each spike:

ing is made possible with ¥ higher than the threshold sog _ (w(f) _Wé(fi))z @)
as to shield some reset points on the right hand side of the
V-nulicline. wherew(f;) andws(f) is the adaptation current at spike

for the unperturbed and perturbed initial condition, respe
Delayed Spiking and Facilitatiod\ negativea acts as a sub- tively. Fig. 4b shows that this error grows exponentiallytwi
threshold facilitation which can be responsible for dethyghe number of spike. The slope of the semi-log plot is 2.56.
initiation. Delayed spiking appears when injecting a corre Similar to the Lorenz map, we can plot the magnitude of the
close to the rheobase. The adaptation current is slowly dieterspike interval with respect to the preceding integpik
creasing at a depolarized, allowing the neuron to spike terval. After a very large number of spikes (n = 1240), this
once the adaptation has decreased sufficiently (Fig. 3e)fuinction appears as a continous function (Fig. 4c).
the phase plane, the trajectory of the first spike must contou
theV-nulicline, this is slow because the magnitud@défde—
creases in approach of tienulicline. This system can lead4 Parameter Space
to facilitation if the spike-triggered adaptatibrs weak, as
shown in Fig. 3e. For greater values of spike-triggered addpiven the definitions for each firing pattern, we can now in-
tation, it is also possible to get a delayed adapting trage (ivestigate how these firing patterns depend on the specific set
shown) and a delayed bursting trace (Fig. 3f). of parameters. Since this problem depends heavily on the




bifurcation parameters, we fixed the scaling parametersdominantly bursting (initial and regular) and adaptingfiri

realistic values C = 100 pF,g. =10 nS,E. = —70 mV, patterns. A strong subthreshold adaptation is not sufficien

Vr = =50 mV andAy = 2 mV. Changing the scaling pa-on its own, however, to model adapting and bursting pat-

rameters will not change the set of firing patterns accessibérn as we see in Fig. 5d, but needs to be combined with

for a given set of bifurcation parameters but may modifiarge values o¥;. The refractory time constant in that case

the amount of current necessary to go from one firing tyjeoften smaller than the interspike interval, this present-

to another. In addition, some firing patterns exist only elosnulative increase ofv since the adaptation current decays

to the rheobase current (delayed spiking, transient spikinalmost completely between spikes.

In this section we will consider only the firing patterns that Delayed spiking, transient spiking are absent from Fig-

appear at step current twice greater the rheobase currgpé 5 because these firing patterns do not exist when the cur-

This rheobase was determined according to analytical e¥nt is well above the rheobase. Delayed spiking will ap-

pressions given in Touboul (2008) and corresponds to thear at injection current slightly above the rheobase aed ar

ramp current at which the neuron begins to spike. The fiore salient at low or negative Transient spiking is pro-

ing pattern is likely to change for different step currentangiuced with current not sufficient to make the stable fixed

plitudes, but characterizing parameter sets accordingeto point loose stability, and this firing pattern depends Hgavi

accessible sequence of firing patterns goes beyond the sagpa as it is can occur only for sizabke Irregular spiking

of the present study. could be part of Fig. 5, but the region may be too small to be
For each set of the bifurcation parameters, Eq.’s 1-4 weggen on the scale of the graph.

solved with the exponential Euler numerical solution mdtho

with a time step of MO5ms, we stopped the simulation af-

ter 50 spikes or 1000 seconds, and characterized the firing

pattern according to the following simple rules: 5 Comparison with Cortical Neurons
— Tonic: Strictly sharp resets or strictly broad resets and

A <0.01. We can test that the AdExp accurately reproduces the fir-

— Adapting: Strictly sharp resets or strictly broad resetig patterns of real neurons by comparing with experimental
andA> 0.01. injections of step currents into neurons of the cortex (data

— Initial bursting: Ordered sequence of each type of reseisurtesy of Henry Markram, Maria Toledo-Rodriguez and
(e. g. sharp - sharp - broad - broad - broad). Felix Schirmann, see Markraet al. (2004) and Toledo-

— Regular bursting: Alternation between broad and shagydriguezet al.(2004) for the complete details on the exper-
SAP such that the number of sharp resets between eagnts). Briefly, the experiments consist of 2-5 repetitioh
broad reset is constant. 2 seconds step current injections with three different ampl

— Irregular spiking: Alternation between broad and shakpdes. The amplitude of the steps ranged from 100 to 200
SAP such that the number of sharp resets between eggh The electrophysiological class was defined by Markram
broad reset is not constant. etal. (2004) for the inhibitory neurons and according to-Con

The range of bifurcation parameters considered was limite€rs and Gutnick (1990) . We will be considereing only three
to realistic values for spiking neurong (¢ [—70, —40 mV, different classes. In particular we will comapre the AdExp
andb € [0,500 pA). All programs were written in Matlab with two types of inhibitory neurons (continuous accomo-
(The Mathworks, Natick, MA) and ran on a personal conflating, cAD, and continuousn non-adapting, cNA) and one
puter. type of excitatory neuron (regular spiking, RS).

In Fig. 5, the distribution of firing patterns is shown as a In order to compare the experiments with the parameter
function of the reset parametevs andb with fixed values set that represents each neuron the best, we fit the parame-
of aandr,. The fixedr, was 5 ms or 100 ms such that theers neuron per neuron. The fitting method was chosen for
w-variable can be interpreted as a refractory current or t#re ease of implementation and for the capability to handle
adaptation current, respectively. Tagarameter was fixed an optimization problem with many local minima. The de-
to 0.001 nS or 30 nS corresponding to a system loosing stailed description is postponed to the end of this Section.
bility via a saddle-node or Andronov-Hopf bifurcation, reOptimized model traces are compared with the experimen-
spectively. tal traces in Fig. 6. We can see that the AdEXxp offers a good

The adaptive models have bursting firing patterns egualitative match akin to optimized HH models (Druckmann
tending to larger areas in the parameter space than theetal (2007)). The optimized parameters for each chosen cell
fractory models, which have their diversity almost uniguelare given in Table 1. From this table, we see that the in-
constrained to resets higher than the threshold. In alls;adabitory cells correspond to smaller membrane capacitance
the shape of an exponential is recognized and forms the bownsistent with the smaller size of these cells. The sublkhre
der between bursting (initial or regular) and tonic-adagti old adaptation is low for all three cells and does not inflgenc
firing patterns. In Fig. 5a and 5b, the tonic spiking at low strongly the features used as optimization criteria, bagiot
and at higtb corresponds to tonic with sharp resets and tongell types are believed to have highsuch as low thresh-
with broad resets, respectively. On the other hand, an adafu spiking (LTS) interneurons neurons. The timescaleef th
tive current with high subthreshold adaptation yields predaptation is the largest for the RS cells, which is expected




due to slow adaptation currents known to be present in thgse)iscussion
cells.

We have seen that the AdExp model can produce multiple

firing patterns depending on parameters. The model neuron
Optimization Methods/\Ve used data that was collected becan be initially bursting, regularly bursting, tonicallgik-
fore the protocol to determine the parameters suggestedify, adapting, facilitating, irregular spiking or show agéd
Brette and Gerstner (2005) was published. Here we will dgitiation, and this depends mainly on four parameter val-
scribe the optimization methods used to find the best setigfs. We have drawn clear definitions of these firing patterns
parametersf). Inspired from Druckmann et al (2007) andn terms of two types of spiking trajectories. The two types
Vanier and Bower (1999), we used a MATLAB implemenof spiking trajectories depends on wether the adaptation cu
tation of a genetic algorithm (The Mathworks, Natick, MA}ent immediately after spiking is strong enough to make the
to solve the optimization problem. The cost associated witflembrane potential decrease slowly before starting to in-
a parameter seG(pB), was defined with eight features of thecrease in preparation for the next spike. These analytical

observed responses. The eight features are: definitions, and especially an explicit distinction betwee
. continuous adaptation and initial bursting, make useful ex
— f1- Number of spikesn, pansion of the previous work on simple models (Izhikevich
— fa First spike latency, (2003, 2007); Touboul (2008)). Furthermore, irregulakspi
— fa: Firstinter-spike interval, ing with an AdExp model has not been reported before.

— f4: Second inter-spike interval,

— fs: Last inter-spike interval,

— fe: First inter-spike minimum potential,

— f7: Second inter-spike minimum potential,
— fg: Waveform before the first spike.

We have seen that this simple neuron model can be fit
with good agreement to three types of cortical neurons, as
can be seen from the comparison between model and experi-
mental traces on the time scale of seconds (two first columns
in Fig. 6). A closer look on the overlay unveils some dis-
repancies: the spike initiation of the cAD interneurons is

The spike timeswere defined as zero-crossings and the mﬁ%rf fully captured by the model, the first interspike intérva

spike minimum potential was taken to be the lowest voltagse 00 long in the case for the RS cell while the last inter-

observed between the first and the second spike. For egg ke interval is too short in the cNA cell. This makes the

feature we define §° which averages thg? value across (oot hetween different features evident, and our @mpl

all three step current amplitudes. lllustrating this wille t 1\,qe1 cannot fit with high precision both the initial burst
first feature we have: of RS cells and the broad SAP observed in these cells. Im-
portant improvement is to be expected by adding another

13 <n§°b$> —n%ﬁ ) adaptation current but here we restricted the investigatio
=32 T (obs, (8) to the capability of only one adaptation variable. These re-
sults must be seen in the context of previous studies which

showed the high predictive power of the ADExp when mod-

wheren; is the number of spikes for stimulus amplitugle eling spike timing of noisy current injection (Brette andrGe
observed in experimental traces (obs) or in a model with pgner (2005); Jolivet et al (2007)).
rameterg. The angular brackets denote the averagevard Throughout this article, the biological justification for
the variance of the observed features across the repstitidhe adaptation current was not precisely determined. This
A similar equation can be written for each feature except fagaptation current can be purely due to ion channels such
feature 8: asly andl &' (Destexhe et al (1998); Korngreen and Sak-
mann (2000)), or by a slowly charging passive dendritic com-
2 partment. Considering the latter alternative, we can put ou
s/ (V(Obs) () 7V<’3>(t)) dt 9 results in contrast with the work of Mainen and Sejnowski
Zl (0.1mV)2 ©) (1996), where it was shown that variable electrical couplin
= with an active dendritic compartment can be made responsi-
) ble for multiple firing patterns. In the AJExp, one can inter-
where the integral runs from the onset of the step to tWpet a high voltage reset as an action potential with an-after
standard deviation before the mean first spike latency. Thefike depolarization which itself depends on the coupling
the cost associated with a parameter set is: with a dendritic compartment. Yet the AdExp framework
is consideribly simpler than the Pinsky-Rinzel or Hodgkin-
8 Huxley models used by Mainen and Sejnowski.
Cost= 217? (10) We can conlude that the diversity of firing patterns is
i= explained by simple underlying dynamical processes. The
AdExp model represents an attractive alternative to use in
This is minimized with a genetic algorithm with a populatiotarge-scale network simulations. Earlier studies havevsho
of 100 individuals for 500 generations. that it is sufficiently accurate for the prediction of spike-+
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Fig. 1 Phase plane portrait of a step current injected in a aEIF MogRyth traces do not belong to the continuously adapting dassribed

where a saddle-node bifucation is responsible for the lostability  jj the text because there is no substantial adaptation belyte first
(a), and where the Andronov-Hopf bifurcation is resporesitir the g inter-spike interval.

loss of stability (b). In the phase planes the trajectorfab@first and
second spikes are shown in blue. The resting state is irdidat the
large blue cross. The nuliclines are shown in black: the Wicline is @

the straight line (green), the V-nulicline in the absencewfent is the ' '
curved dash line, the V-nulicline in the presence of stirtingacurrent 200 pAIl " " " || " " " " " " " || " " " " " || " || " " " " " || " " " "
is the curved solid line (black). Unstable fixed points areireted. 150 pA|| BOCI O WO DEE I e e nnen i

tally. The maximal current injected was 230 pA for the saduide
bifurcation, and 550 pA for the Andronov-Hopf bifurcatioAs the
current increases, thé-nulicline shifts upwards. This makes the two 0 05 1
fixed points move toward each other. In the saddle-node daifion,
the fixed points dissappear after the stable fixed point nsexdgh the

The scale bars corresponds to 20 mV vertically and 20 ms ¢roriz 100 pA I " I “ “ “ “ “ “ “ “ “ “ “ “ “

unstable fixed point. In the Andronov-Hopf bifurcation, giable fixed bo
point looses stability before thé-nullcline leaves thev-nulicline.
— —20
1]

ing when a regular spiking pyramidal neuron receives nois' = _4o
current injection at the soma (Jolivet et al (2007)). Large n
work simulations such as simulations of a cortical column —60

50

; . 10 20 30 o . .25
(Markram (2006)) or even larger systems (Hill and Tononi Spike Number isi, (ms)

(2005); Izhikevich and Edelman (2008)) require a differ-
ent model for each neuron type. In this paper we address$égl 4 Irregular firing is a manifestation of chaos in the AdExp Kégi
this issue by providing parameter sets that describe thf&ees of an irregular spiking model are showraiffior three different

f . mplitudes of the stimulating current step. The middle entrampli-
types of cortical neurons. Further work will be needed to eglde ( =150pA) spikes without periodicity, this current amplitude was

tend this to a larger number of neuron types and stimulatigged to maké andc. In b we show that numerical integration of an
paradigms. irregular spiking model depends heavily on the initial dtinds, such
thatIn(E) grows exponentially with the nhumber of spikes simulated.
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Table 1 Parameters and cost for fits shown in Fig. 6 and for firing pat&ample shown in Fig. 3.

Type C(PF) 9. (nS) EL(MV) Vr(mV) Ar(mV) a(nS) tw(ms) b(pA) Vi (mV) C(B) 1(pA)

cNA 54 4.5 -61.3 -42.2 3.0 0 22 59 -54.4 15.1 184

cAD 76 4.2 -62.7 -54.7 7.1 0.54 46.6 45.6 -54.7 23.9 116

RS 103 4.4 -65.6 -53.6 15 -0.74 90.2 64 -53.7 19.6 98
Fig. 3a 200 10 -70 -50 2 2 30 0 -58 - 500
Fig. 3b 200 12 -70 -50 2 2 300 60 -58 - 500
Fig. 3c 130 18 -58 -50 2 4 150 120 -50 - 400
Fig. 3d 200 10 -58 -50 2 2 120 100 -46 - 210
Fig. 3e 200 12 -70 -50 2 -10 300 0 -58 - 300
Fig. 3f 200 12 -70 -50 2 -6 300 0 -58 - 110
Fig. 39 100 10 -65 -50 2 -10 90 30 -47 - 350
Fig. 3h 100 12 -60 -50 2 -11 130 30 -48 - 160
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Fig. 5 Parameter space exploration of the four bifurcation patarse

Tonic spiking in red, adapting in yellow, initial bursting green and

regular bursting in cyan. The four-dimensional paramgiace was re- . ) )

duced to four relevant planesAdaptive time constantry, = 100 ms) Fig. 6 Comparison of the aEIF with three types of cortical neurons
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(tw = 5 ms) and saddle-node bifurcatioa £ 0.001 nS),c Adaptive aEIF model (blue), and overlay of the traces during onsetéfsét of

time constant®,, = 100 ms) and Andronov-Hopf bifurcatiom & 30  the current step. From top to bottom: cNA, cAD, and RS. Thiesedle

nS),d refractory time constantrg = 5 ms) and Andronov-Hopf bifur- bar shows 20 mV and 300 ms, the scale bar for the overlays sP@ws

cation @ = 30 nS). The firing pattern was classified for infection of?V and 20 ms. The current injections corresponds to 150 pANg,
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what is seen on this figure.
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Addendum: Low Threshold Spiking cells (LTS)

The preceding manuscript gives the set of parameters for three types of cortical cells. For the fourth
type the LTS cell was chosen in concordance with D4-2. Experimental traces were not available for
this cell type at the time of the report. The adaptive exponential model was fitted on a previous model
of LTS cells (Destexhe et al. (1998)). This cell types contains a very rare ion channel, which adds
important non-linear processes in the subthreshold regime. Figure A illustrates how this model reacts
when a negative step current in injected. The response is asymmetric with a mono-exponential decay
on the onset of the step and a large overshoot accompanied with a burst of spikes on the offset of the
step current.
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Figure A: Response of a Hodgkin and Huxley type model of LTS to a negative current step. The
membrane potential makes an exponential decay on the onset of the step. The offset of the step
causes a large overshoot with a burst.

The adaptive exponential is linear in a regime far from the spike initiation threshold, and there can be
no linear system of equation to account for an asymmetrical response to positive or negative steps. To
see this, we can write the membrane potential response as linear filter of the current I(t) = I[,H(t):

V(t) = fooo k(s)I(t — s)ds = Iy /000 k(s)H(t — s)ds = IpK(t)

where H(t) is zero for t<0 and one otherwise. The function K can be any function. We can see that the
potential response V(t) must have the same shape regardless of the sign of Io. This reasoning shows
that the adaptive exponential could not follow closely the subthreshold potential of the LTS model.
The adaptive exponential can produce low threshold spikes as in the model described by: C = 140 pF,
g =3nS,EL=-75mV, Vr=-58 mV, Ar=2,Er=-64 mV,a=12nS, b= 10 pA, 1,= 50 ms. Figure
B shows the performance of this adaptive exponential model compared with the single compartment
Hodgkin and Huxley LTS model. Although a fraction of the spikes are reproduced the subthreshold
voltage is not modelled with high precision.
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Figure B: Adaptive exponential model and LTS model from Destexhe et al. (1998) compared on
the basis of noisy current injection preceded by a negative step.

Additional reference: Destexhe, A et al. J. Neurosci. (1998).
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