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Abstract For simulations of large networks of spiking neu-
rons, an accurate, simple and versatile single-neuron mod-
eling framework is required. Here we explore the versatil-
ity of a simple two-equation model, the adaptive exponen-
tial integrate-and-fire. We show how this model can pro-
duce multiple firing patterns depending on the choice of pa-
rameter, and present a phase diagram describing the transi-
tion from one firing type to another. We give an analytical
criterion to distinguish between continuous adaption, initial
bursting, regular bursting and two types of tonic spiking.
We report that the deterministic model is capable of pro-
ducing irregular spiking when stimulated with constant cur-
rent. Lastly, the simple model is fitted to real experiments of
cortical neurons under step current stimulation. The results
provide further support for the suitability of simple models
such as the adaptive exponential integrate-and-fire for large
network simulations.

1 Introduction

Large-scale simulations and theoretical investigations require
neuron models that are mathematically tractable, biologi-
cally relevant and computationally fast. Moreover, a model-
ing framework should be versatile enough to span the whole
diversity of neuron types by tuning a restricted number of
parameters, avoiding the need of a new model for each class
of neuron. Modeling the complete gating dynamics of ion
channel densities in neuronal membranes satisfies only two
of these five requirements: biological relevance and versatil-
ity. On the other hand, modeling a neuron either as a coin-
cidence detector, as a resettable integrator or as firing pois-
son distributed spikes may fail to catch important aspects of
single-neuron behavior. Small modifications to these simple
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models can bring them closer to reality. Lately multiple ad-
vances were made in that direction.

In the presence of high synaptic bombardment, model-
ing accurately the spike initiation is crucial and the Leaky
Integrate-and-Fire (LIF) must be augmented by an exponen-
tial term to faithfully process fast inputs signals (Fourcaud-
Trocme et al (2003)). An additional recovery variable is im-
portant to capture adaptation and resonance properties (Richard-
son et al (2003), Izhikevich (2003)). A simple quadratic model
of spike initiation with a linearly dependent recovery vari-
able and a reset in the state variables is sufficient to ac-
count for most types of firing patterns observed in the cen-
tral nervous system (Izhikevich (2007)). Unlike a quadratic
dependence on voltage, an exponential nonlinearity (Brette
and Gerstner (2005)) keeps the subthreshold dynamics linear
and matches direct measurments in cortical neurons (Badel
et al (2007)). This last model - called the adaptive exponen-
tial integrate-and-fire (AdExp)1 - was considered an accu-
rate and convenient simplification to use in spiking network
models. It is simple because it is described by only two equa-
tions and a reset condition. For the same reason it is com-
putationally fast and could simulate even faster by transfer-
ring the solution methods developed for Izhikevich’s model
(Humphries and Gurney (2007)) to the AdExp. It is by con-
struction closer to real neurons than the simplest of models,
and it was shown to predict with high accuracy the spike
timing of a conductance-based Hodgkin and Huxley model
(Brette and Gerstner (2005)) and the spike timing of real
pyramidal neurons under noisy current injection (Clopath
et al (2007); Jolivet et al (2007)).

In this paper we address the versatility and the biological
relevance of the aEIF model. We show how the aEIF repro-
duces multiple firing patterns and study the correspondence
between the parameters and the firing types. Finally, we fit
the model to experimental traces and obtain sets of parame-
ters describing cortical fast spiking interneurons and regular
spiking pyramidal neurons.

1 Also referred to as aEIF.
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2 Adaptive Exponential Integrate-and-Fire

The adaptive Exponential Integrate-and-Fire model (AdEx)
describes the evolution of the membrane potentialV(t) when
a currentI(t) is injected. It consists of a system of two dif-
ferential equations:

C
dV
dt

=−gL(V −EL)+gL∆T exp(
V −VT

∆T
)+ I −w, (1)

τw
dw
dt

=a(V −EL)−w, (2)

and a reset condition that replaces the downswing of the ac-
tion potential:

if V > 0mV thenV → Er (3)

w→ wr = w+b. (4)

There are nine parameters required to define the evolu-
tion of the membrane potential (V) and the adapation cur-
rent (w). The nine parameters can be separated into scaling
parameters and bifurcation parameters. The scaling parame-
ters are the parameters responsible for scaling the time axis,
for the stretch and for the offset in state variables. The five
scaling parameters are: total capacitance (C), total leak con-
ductance (gL), effective rest potential (EL), threshold slope
factor (∆T ), effective threshold potential (VT). Absorbing the
parametersC andgL to set the time scaleτm = C/gL, ∆T and
VT to set the membrane potential scale and offset, and ap-
propriate rescaling ofI and w, equation 1 can be reduced
to a system of equation with dimensionless variables and
only four parameters (Touboul (2008)). The remaining four
parameters are bifurcation parameters (subthreshold adapta-
tion, a, adaptation time constant,τw, spike triggered adapta-
tion, b and reset potentialVr). Modifying these parameters
brings qualitative changes in the behavior of the system.

The role of the bifurcation parameters is best understood
through phase plane analysis (for an introduction see Izhike-
vich (2007)). Briefly, phase plane analysis involves plotting
the state variables relative to each other. Nullclines repre-
sent the area in phase space in which a given variable re-
mains constant. TheV-nullcline (or w-nullcline) is defined
as the set of points withdV

dt = 0 (or dw
dt respectively). The

shape and position of the nullclines depends on the param-
eters of the model. For instance changing the current in Eq.
1 involves an horizontal shift in the V-nullcline. The inter-
section of the two nullclines define fixed points which can
be stable or unstable depending on the parameters of the
model. In particular, the fixed points can loose or gain stabil-
ity with changes in one or more parameters. As a bifurcation
point, a change in the stability occurs, and this modifies the
behavior of the system qualitatively. In the sytem of Eq. 1-
2, the choice of subthreshold adaptation (a) and adaptation
time constant (τw) determines wether an increase in current
induces a loss of stability via an Andronov-Hopf or via a
saddle-node bifurcation (Fig. 1). From a biological point of
view, the bifurcation parameters, determine the strength of

subthreshold oscillation, the presence of rebound spikes,and
the firing pattern as we will see in the following section.

3 Multiple Firing Patterns

In order to study the range of firing patterns accessible with
the AdExp, we simulate the injection of a step current. This
is the most common experimental paradigm used by elec-
trophysiologists to study and classify the classes of neurons
(Markram et al (2004)). Mathematically, this situation cor-
responds the solution of Eq.’s 1-2 with constant current and
initial valuesV(0) = EL andw(0) = 0. Similar to what is
seen in real neurons, the response of the model is very di-
verse and depends on the model parameters. In Figure 3 we
show an example of each firing pattern that can be produced
by varying the parameters of the AdExp, the parameters as-
sociated with each example are given in Table 1. In this sec-
tion we will describe how the different firing patterns arise
in our simple model.

Sharp vs Broad Spike After Potential (SAP)The AdExp can
produce adapting and tonic traces of two qualitatively dif-
ferent types. In Fig. 2a we see an example of the first type
where the potential increases monotonically after a rapid
downswing of the action potential. This type of reset is seen
commonly in fast spiking interneurons, and it corresponds
to a low value of the voltage resetVr combined with weak
spike-triggered adaptationb. In the phase plane we see that
the reset is made to a point below the V-nullcline.

Broad SAP, on the other hand, are observed in regular
spiking pyramidal neurons and in the continuously adapting
interneurons. A broad SAP is recognized by its low curva-
ture at all times after the spike (Fig. 2b). For a larger value
of the spike-triggered adaptation parameter, the reset falls in-
side the V-nullcline, and this leads to the broad SAP. In this
case the exact value ofVr is less relevant, since the mem-
brane potential must decrease before being able to rise in
preparation of the next spike.

The two types of SAP are modeled in the AdExp by two
different spiking trajectories in the phase plane. These are
determined by the location of the reset point in the phase
plane. If the reset point is above theV-nullcline (recall that
in that regiondV

dt < 0 everywhere), the voltage will decrease
before increasing in preparation of a spike, this trajectory is
termed a broad SAP or broad reset. If the reset point is be-
low theV-nullcline, the spiking trajectory starts to increase
immediately after the reset (dV

dt < 0 everywhere below the
V-nullcline), and the SAP appears as a sharp reset. We can
write this distiction as an analytical relation that depends on
the reset point(Er ,wr ). There is a broad reset if

wr > −gL(Er −EL)+gL∆T exp

(

Er −VT

∆T

)

+ I , (5)

and otherwise the reset is sharp.
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Tonic vs AdaptingThe simplest type of spiking pattern is
the regular discharge of action potentials (tonic firing, see
Fig. 3a). This firing pattern is the only firing pattern that
a standard leaky or non-leaky integrate-and-fire model can
generate. In the framework of the AdExp, it corresponds to
the absence of spike-triggered adaptation and subthreshold
adaptation (a,b = 0). Most neurons, however, show some
level of spike-frequency adaptation. In this firing pattern,
the inter-spike interval (ISI) grows during a sustained stim-
ulus (Fig. 3b). The classification between adapting and non
adapting can be drawn from the adaptation index:

A =
1

N−k−1

N

∑
i=k

isii − isii−1

isii + isii−1
(6)

wherek ≥ 2 is used to disregard any initial transient. Con-
sistent with other studies (Druckmann et al (2007)) we take
k = 4, i. e. we disregard the first two inter-spike intervals .
Typically fast spiking interneurons have an adaptation index
of 0.005 whereas regular spiking pyramidal neurons have A
= 0.015 (with N = 15 to 40 spikes, Druckmann et al (2007)).
Since the adaptation stabilize after a certain number of spikes,
computing the adaptation index will depend on the number
of spikes considered. In this article, we will compute the
adaptation index with N fixed to 20 spikes.

Initial Bursting Initial bursting denotes a group of spikes
that were emitted at a frequency considerably greater than
the steady-state frequency. This definition is very ambigu-
ous and in many experimental traces initial bursting is indis-
tinguishable from pronounced adaptation. In the framework
of the AdExp, a clear definition becomes apparent. Initial
bursting arises when the spiking starts with at least one sharp
reset followed by broad resets only (Fig. 3c).

Regular BurstingRegular bursting appears in a scenario sim-
ilar to initial bursting except that the first broad reset projects
below at least one of the previous reset points in the phase
plane, such that the next reset point is below theV-nullcline,
i. e. the next reset is sharp (Fig. 3d). This situation leads to
an alternation between sharp and broad resets. Regular burst-
ing is made possible with aVr higher than the threshold so
as to shield some reset points on the right hand side of the
V-nullcline.

Delayed Spiking and FacilitationA negativea acts as a sub-
threshold facilitation which can be responsible for delayed
initiation. Delayed spiking appears when injecting a current
close to the rheobase. The adaptation current is slowly de-
creasing at a depolarizedV, allowing the neuron to spike
once the adaptation has decreased sufficiently (Fig. 3e). In
the phase plane, the trajectory of the first spike must contour
theV-nullcline, this is slow because the magnitude ofdV

dt de-
creases in approach of theV-nullcline. This system can lead
to facilitation if the spike-triggered adaptationb is weak, as
shown in Fig. 3e. For greater values of spike-triggered adap-
tation, it is also possible to get a delayed adapting trace (not
shown) and a delayed bursting trace (Fig. 3f).

Rebound or Transient SpikesPost-inhibitory rebound is seen
in several types of neurons. When a hyperpolarizing step
current is released abruptly, some neurons will spike one or
several time(s) before reaching their state of rest. This phe-
nomenon is very similar to transient spiking observed during
a step of depolarizing current. In both cases the sudden in-
crease in current does not induce a loss of stability. A spike
is nevertheless produced because the adaptation current is
too slow to compensate the sharp change in current. If the
applied current were modified gradually across the same ab-
solute change that produces transient spiking, the neuron
would not spike because it would have had time to adapt.
In the phase plane, rebound corresponds to a situation where
the initial condition is situated outside the separatrix that de-
limits the area of trajectories converging to the stable fixed
point (Fig 3g).

Irregular Spiking Irregular spiking can occur in an AdExp
model despite the fact that the equations are deterministic.
Irregular spiking is manifest when the interspike interval
keep on changing seemingly without periodicity. As for the
regular bursting firing pattern, there is an alternation of sharp
and broad resets, but the sequence is not periodic. This be-
havior appears for a restricted set of parameters, and the vol-
ume occupied by the irregular spiking pattern in the parame-
ter space seems very small. We verified that the behavior was
not due to a numerical artifact by reducing the integration
time step. The irregular pattern was conserved if we reduced
the timestep from 10µs to 1 µs. Though other region of the
parameter space may produce irregular spiking, we found a
region that corresponds to negative subthreshold adaptation,
large spike-triggered adaptation and high voltage reset (Fig.
3h).

For a given set of parameters, irregular spiking is mani-
fest on a narrow range of injection current Fig. 4a. We check
that this set of parameter was associated with chaos Strogatz
(1994) by testing the dependence of the numerical integra-
tion on the initial conditions. We perturbed the initial condi-
tions by a very small valueδ = 10−12 and evaluate the error
in the adaptation variable at each spike:

E = (w(t̂i)−wδ (t̂i))
2 (7)

wherew(t̂i) andwδ (t̂i) is the adaptation current at spikei
for the unperturbed and perturbed initial condition, respec-
tively. Fig. 4b shows that this error grows exponentially with
the number of spike. The slope of the semi-log plot is 2.56.
Similar to the Lorenz map, we can plot the magnitude of the
interspike interval with respect to the preceding interpike in-
terval. After a very large number of spikes (n = 1240), this
function appears as a continous function (Fig. 4c).

4 Parameter Space

Given the definitions for each firing pattern, we can now in-
vestigate how these firing patterns depend on the specific set
of parameters. Since this problem depends heavily on the
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bifurcation parameters, we fixed the scaling parameters to
realistic values :C = 100 pF,gL = 10 nS,EL = −70 mV,
VT = −50 mV and∆T = 2 mV. Changing the scaling pa-
rameters will not change the set of firing patterns accessible
for a given set of bifurcation parameters but may modify
the amount of current necessary to go from one firing type
to another. In addition, some firing patterns exist only close
to the rheobase current (delayed spiking, transient spiking).
In this section we will consider only the firing patterns that
appear at step current twice greater the rheobase current.
This rheobase was determined according to analytical ex-
pressions given in Touboul (2008) and corresponds to the
ramp current at which the neuron begins to spike. The fir-
ing pattern is likely to change for different step current am-
plitudes, but characterizing parameter sets according to the
accessible sequence of firing patterns goes beyond the scope
of the present study.

For each set of the bifurcation parameters, Eq.’s 1-4 were
solved with the exponential Euler numerical solution method
with a time step of 0.005ms, we stopped the simulation af-
ter 50 spikes or 1000 seconds, and characterized the firing
pattern according to the following simple rules:

– Tonic: Strictly sharp resets or strictly broad resets and
A < 0.01.

– Adapting: Strictly sharp resets or strictly broad resets
andA > 0.01.

– Initial bursting: Ordered sequence of each type of resets
(e. g. sharp - sharp - broad - broad - broad).

– Regular bursting: Alternation between broad and sharp
SAP such that the number of sharp resets between each
broad reset is constant.

– Irregular spiking: Alternation between broad and sharp
SAP such that the number of sharp resets between each
broad reset is not constant.

The range of bifurcation parameters considered was limited
to realistic values for spiking neurons (Vr ∈ [−70,−40] mV,
andb ∈ [0,500] pA). All programs were written in Matlab
(The Mathworks, Natick, MA) and ran on a personal com-
puter.

In Fig. 5, the distribution of firing patterns is shown as a
function of the reset parametersVr andb with fixed values
of a andτw. The fixedτw was 5 ms or 100 ms such that the
w-variable can be interpreted as a refractory current or an
adaptation current, respectively. Thea parameter was fixed
to 0.001 nS or 30 nS corresponding to a system loosing sta-
bility via a saddle-node or Andronov-Hopf bifurcation, re-
spectively.

The adaptive models have bursting firing patterns ex-
tending to larger areas in the parameter space than the re-
fractory models, which have their diversity almost uniquely
constrained to resets higher than the threshold. In all cases,
the shape of an exponential is recognized and forms the bor-
der between bursting (initial or regular) and tonic-adapting
firing patterns. In Fig. 5a and 5b, the tonic spiking at lowb
and at highb corresponds to tonic with sharp resets and tonic
with broad resets, respectively. On the other hand, an adap-
tive current with high subthreshold adaptation yields pre-

dominantly bursting (initial and regular) and adapting firing
patterns. A strong subthreshold adaptation is not sufficient
on its own, however, to model adapting and bursting pat-
tern as we see in Fig. 5d, but needs to be combined with
large values ofVr . The refractory time constant in that case
is often smaller than the interspike interval, this prevents cu-
mulative increase ofw since the adaptation current decays
almost completely between spikes.

Delayed spiking, transient spiking are absent from Fig-
ure 5 because these firing patterns do not exist when the cur-
rent is well above the rheobase. Delayed spiking will ap-
pear at injection current slightly above the rheobase and are
more salient at low or negativea. Transient spiking is pro-
duced with current not sufficient to make the stable fixed
point loose stability, and this firing pattern depends heavily
on a as it is can occur only for sizablea. Irregular spiking
could be part of Fig. 5, but the region may be too small to be
seen on the scale of the graph.

5 Comparison with Cortical Neurons

We can test that the AdExp accurately reproduces the fir-
ing patterns of real neurons by comparing with experimental
injections of step currents into neurons of the cortex (data,
courtesy of Henry Markram, Maria Toledo-Rodriguez and
Felix Schürmann, see Markramet al. (2004) and Toledo-
Rodriguezet al.(2004) for the complete details on the exper-
iments). Briefly, the experiments consist of 2-5 repetitions of
2 seconds step current injections with three different ampli-
tudes. The amplitude of the steps ranged from 100 to 200
pA. The electrophysiological class was defined by Markram
et al. (2004) for the inhibitory neurons and according to Con-
nors and Gutnick (1990) . We will be considereing only three
different classes. In particular we will comapre the AdExp
with two types of inhibitory neurons (continuous accomo-
dating, cAD, and continuousn non-adapting, cNA) and one
type of excitatory neuron (regular spiking, RS).

In order to compare the experiments with the parameter
set that represents each neuron the best, we fit the parame-
ters neuron per neuron. The fitting method was chosen for
the ease of implementation and for the capability to handle
an optimization problem with many local minima. The de-
tailed description is postponed to the end of this Section.
Optimized model traces are compared with the experimen-
tal traces in Fig. 6. We can see that the AdExp offers a good
qualitative match akin to optimized HH models (Druckmann
et al (2007)). The optimized parameters for each chosen cell
are given in Table 1. From this table, we see that the in-
hibitory cells correspond to smaller membrane capacitance,
consistent with the smaller size of these cells. The subthresh-
old adaptation is low for all three cells and does not influence
strongly the features used as optimization criteria, but other
cell types are believed to have higha such as low thresh-
old spiking (LTS) interneurons neurons. The timescale of the
adaptation is the largest for the RS cells, which is expected
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due to slow adaptation currents known to be present in these
cells.

Optimization MethodsWe used data that was collected be-
fore the protocol to determine the parameters suggested by
Brette and Gerstner (2005) was published. Here we will de-
scribe the optimization methods used to find the best set of
parameters (βββ ). Inspired from Druckmann et al (2007) and
Vanier and Bower (1999), we used a MATLAB implemen-
tation of a genetic algorithm (The Mathworks, Natick, MA)
to solve the optimization problem. The cost associated with
a parameter set,C(βββ ), was defined with eight features of the
observed responses. The eight features are:

– f1: Number of spikes,n,
– f2: First spike latency,
– f3: First inter-spike interval,
– f4: Second inter-spike interval,
– f5: Last inter-spike interval,
– f6: First inter-spike minimum potential,
– f7: Second inter-spike minimum potential,
– f8: Waveform before the first spike.

The spike times were defined as zero-crossings and the inter-
spike minimum potential was taken to be the lowest voltage
observed between the first and the second spike. For each
feature we define aχ2 which averages theχ2 value across
all three step current amplitudes. Illustrating this with the
first feature we have:

χ2
1 =

1
3

3

∑
j=1

〈n(obs)
j 〉−n(βββ )

j

Var[n(obs)
j ]

(8)

wherenj is the number of spikes for stimulus amplitudej
observed in experimental traces (obs) or in a model with pa-
rametersβββ . The angular brackets denote the average andVar
the variance of the observed features across the repetitions.
A similar equation can be written for each feature except for
feature 8:

χ2
8 =

1
3

3

∑
j=1

∫

(

V(obs)(t)−V(βββ )(t)
)2

dt

(0.1mV)2 (9)

where the integral runs from the onset of the step to two
standard deviation before the mean first spike latency. Then
the cost associated with a parameter set is:

Cost=
8

∑
i=1

χ2
i . (10)

This is minimized with a genetic algorithm with a population
of 100 individuals for 500 generations.

6 Discussion

We have seen that the AdExp model can produce multiple
firing patterns depending on parameters. The model neuron
can be initially bursting, regularly bursting, tonically spik-
ing, adapting, facilitating, irregular spiking or show delayed
initiation, and this depends mainly on four parameter val-
ues. We have drawn clear definitions of these firing patterns
in terms of two types of spiking trajectories. The two types
of spiking trajectories depends on wether the adaptation cur-
rent immediately after spiking is strong enough to make the
membrane potential decrease slowly before starting to in-
crease in preparation for the next spike. These analytical
definitions, and especially an explicit distinction between
continuous adaptation and initial bursting, make useful ex-
pansion of the previous work on simple models (Izhikevich
(2003, 2007); Touboul (2008)). Furthermore, irregular spik-
ing with an AdExp model has not been reported before.

We have seen that this simple neuron model can be fit
with good agreement to three types of cortical neurons, as
can be seen from the comparison between model and experi-
mental traces on the time scale of seconds (two first columns
in Fig. 6). A closer look on the overlay unveils some dis-
crepancies: the spike initiation of the cAD interneurons is
not fully captured by the model, the first interspike interval
is too long in the case for the RS cell while the last inter-
spike interval is too short in the cNA cell. This makes the
tradeoff between different features evident, and our simple
model cannot fit with high precision both the initial burst
of RS cells and the broad SAP observed in these cells. Im-
portant improvement is to be expected by adding another
adaptation current but here we restricted the investigation
to the capability of only one adaptation variable. These re-
sults must be seen in the context of previous studies which
showed the high predictive power of the AdExp when mod-
eling spike timing of noisy current injection (Brette and Ger-
stner (2005); Jolivet et al (2007)).

Throughout this article, the biological justification for
the adaptation current was not precisely determined. This
adaptation current can be purely due to ion channels such
asIM andI (slow)

K (Destexhe et al (1998); Korngreen and Sak-
mann (2000)), or by a slowly charging passive dendritic com-
partment. Considering the latter alternative, we can put our
results in contrast with the work of Mainen and Sejnowski
(1996), where it was shown that variable electrical coupling
with an active dendritic compartment can be made responsi-
ble for multiple firing patterns. In the AdExp, one can inter-
pret a high voltage reset as an action potential with an after-
spike depolarization which itself depends on the coupling
with a dendritic compartment. Yet the AdExp framework
is consideribly simpler than the Pinsky-Rinzel or Hodgkin-
Huxley models used by Mainen and Sejnowski.

We can conlude that the diversity of firing patterns is
explained by simple underlying dynamical processes. The
AdExp model represents an attractive alternative to use in
large-scale network simulations. Earlier studies have shown
that it is sufficiently accurate for the prediction of spike tim-
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Fig. 1 Phase plane portrait of a step current injected in a aEIF model
where a saddle-node bifucation is responsible for the loss of stability
(a), and where the Andronov-Hopf bifurcation is responsible for the
loss of stability (b). In the phase planes the trajectories of the first and
second spikes are shown in blue. The resting state is indicated by the
large blue cross. The nullclines are shown in black: the w-nullcline is
the straight line (green), the V-nullcline in the absence ofcurrent is the
curved dash line, the V-nullcline in the presence of stimulating current
is the curved solid line (black). Unstable fixed points are encircled.
The scale bars corresponds to 20 mV vertically and 20 ms horizon-
tally. The maximal current injected was 230 pA for the saddle-node
bifurcation, and 550 pA for the Andronov-Hopf bifurcation.As the
current increases, theV-nullcline shifts upwards. This makes the two
fixed points move toward each other. In the saddle-node bifurcation,
the fixed points dissappear after the stable fixed point merges with the
unstable fixed point. In the Andronov-Hopf bifurcation, thestable fixed
point looses stability before theV-nullcline leaves thew-nullcline.

ing when a regular spiking pyramidal neuron receives noisy
current injection at the soma (Jolivet et al (2007)). Large net-
work simulations such as simulations of a cortical column
(Markram (2006)) or even larger systems (Hill and Tononi
(2005); Izhikevich and Edelman (2008)) require a differ-
ent model for each neuron type. In this paper we addressed
this issue by providing parameter sets that describe three
types of cortical neurons. Further work will be needed to ex-
tend this to a larger number of neuron types and stimulation
paradigms.
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Addendum: Low Threshold Spiking cells (LTS)

The preceding manuscript gives the set of parameters for three types of cortical cells.  For the fourth 
type the LTS cell was chosen in concordance with D4-2.  Experimental traces were not available for 
this cell type at the time of the report.  The adaptive exponential model was fitted on a previous model 
of LTS cells (Destexhe et al. (1998)).  This cell types contains a very rare ion channel, which adds 
important non-linear processes in the subthreshold regime.  Figure A illustrates how this model reacts 
when a negative step current in injected.  The response is asymmetric with a mono-exponential decay 
on the onset of the step and a large overshoot accompanied with a burst of spikes on the offset of the 
step current.

Figure A: Response of a Hodgkin and Huxley type model of LTS to a negative current step.  The 
membrane potential makes an exponential decay on the onset of the step.  The offset of the step 
causes a large overshoot with a burst.

The adaptive exponential is linear in a regime far from the spike initiation threshold, and there can be 
no linear system of equation to account for an asymmetrical response to positive or negative steps.  To 
see this, we can write the membrane potential response as linear filter of the current I(t) = I0H(t):

where H(t) is zero for t<0 and one otherwise. The function κ can be any function.  We can see that the 
potential response V(t) must have the same shape regardless of the sign of I0.   This reasoning shows 
that the adaptive exponential could not follow closely the subthreshold potential of the LTS model. 
The adaptive exponential can produce low threshold spikes as in the model described by: C = 140 pF, 
gL = 3 nS, EL = -75 mV, VT = -58 mV, ∆T = 2, Er = -64 mV, a = 12 nS, b = 10 pA, τw =  50 ms.  Figure 
B shows the performance of this adaptive exponential model compared with the single compartment 
Hodgkin and Huxley LTS model. Although a fraction of the spikes are reproduced the subthreshold 
voltage is not modelled with high precision.

 
Figure B: Adaptive exponential model and LTS model from Destexhe et al. (1998) compared on 
the basis of noisy current injection preceded by a negative step.

Additional reference: Destexhe, A et al.  J. Neurosci. (1998).
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