Thinking About, Modeling, and Mastering Computation

Gérard Berry

Informatics and Digital Sciences Chair Frontiers, Collège de France, June 6th, 2010

Computation models Computing on comput

Superstupid Superexact Superfast

Intuitive Rigorous Slow

Anatomy of a Computation Model

The Eratosthenes Sieve

A number is prime iff it has no other divider than 1 and itself

 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

 12
 13
 14
 15
 16
 17
 18
 19
 20
 21

 22
 23
 24
 25
 26
 27
 28
 29
 30
 31

 32
 33
 34
 35
 36
 37
 38
 39
 40
 41

 42
 43
 44
 45
 46
 47
 48
 49
 50
 51

The Eratosthenes Sieve

A number is prime iff it has no other divider than 1 and itself

The Eratosthenes Sieve

A number is prime iff it has no other divider than 1 and itself

Brain attention is sequential !

The functional programming model

The Darwin Sieve: $p, kp \rightarrow p$

Asynchronous parallelism CHAM = Chemical Abstract Machine

Sieve comparizon

sequentiality complex causality deterministic behavior deterministic result trivial termination limited to finite set

massive parallelism minimal causality non-deterministic behavior deterministic result probabilistic termination goes infinite

Deadlock)

Starvation

Synchronous and vibratory parallelisms

Synchronous

Conceptual zero-delay communication (spectators)

Vibratory

Predictable delay propagation (acousticians)

Implementation of Synchrony by Vibration

• Digital circuits

• Embedded control systems (airplanes, cars, etc.)

Zero delay: Newtonian Mechanics

Concurrency + Determinism Calculations are feasible

Diffuse parallelisms : networks, overlays

Conclusion

- Sequentiality is still very important –in our brain as well !
- There are several different kinds of parallelism
 - asynchronous, synchronous, vibratory, diffuse
 - each with a very wide range of applications
- Cooperation between different parallelisms is tricky
 - Globally Asynchronous Locally Synchronous Systems (GALS)
 - multiclock circuits
 - audio / video pipelines
 - large simulators
 - in our brain as well !