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The Hebbian scenario: theory vs experiment

According to ‘Hebbian’ theories:

• External inputs impose specific patterns of activity in a network;

• These patterns induce synaptic modifications (long-term memory storage);

• These synaptic modifications allow the network to form attractors strongly correlated

with the stored patterns - hence, activity correlated with a pattern is sustained in

absence of the stimulus that elicited it (short-term/working memory storage)

This leads to two questions:

1. Is neuronal activity in the brain consistent with this scenario?

2. Is synaptic connectivity in the brain consistent with this scenario?



‘Object’ working memory and persistent activity (IT)

• Fuster and Jervey 1981 • Miyashita and Chang 1988

See also: visuo-spatial working memory (Goldman-Rakic), parametric working memory

(Romo), decision-making (Shadlen), . . .



Persistent activity in spiking network models
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Persistent activity in spiking network models
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. . ., Amit and Brunel 1997, Brunel 2000, . . .



Synaptic connectivity in attactor networks

• Synaptic matrix should have some degree of symmetry (if neurons A and B are

activated in a pattern, then both synapses connecting the two neurons should

strengthen).

• Statistics of connectivity depends on the details of the ‘learning rule’



Synaptic connectivity in attactor networks

• Synaptic matrix should have some degree of symmetry (if neurons A and B are

activated in a pattern, then both synapses connecting the two neurons should

strengthen).

• Statistics of connectivity depends on the details of the ‘learning rule’

• Study optimality properties of attractor networks: Elizabeth Gardner (1988)

approach

– Rather than focusing on a given learning rule, study space of coupling matrices

satisfying a set of constraints imposed by learning.

⇒ For a given robustness level, compute maximal storage capacity;

⇒ For a given number of attractors, compute maximal robustness

⇒ Statistical properties of optimal synaptic connectivity



A simplified attractor neural network

• Fully connected network of

N � 1 binary neurons;

• Stores a large number

(p ≡ αN ) of fixed point

attractor states (stable

representations of external

stimuli)

• Each attractor state: ran-

dom binary pattern with

coding level f

• Robustness level κ (mea-

sures size of basin of at-

traction of each attractor);



Questions

When the network stores many attractors (in particular when it is close to its maximal

capacity):

• What is the distribution of synaptic weights

P (wij)?

• What is the distribution of specific synaptic motifs (pairs, triplets, etc)

P (wij , wji)?

P (wij , wji, wik, . . .)?



Gardner approach

• Subspace of solutions to learning problem in w space:

~wi.~ξ
µ > θ + κ if ξµ

i = 1

~wi.~ξ
µ < θ − κ if ξµ

i = 0

• The volume of this subspace is:

V =

∫
dr( ~wi)

p∏
µ=1

Θ
[
(2ξµ

i − 1)
(

~wi.~ξ
µ − θ

)
− κ

]
• Compute ‘typical’ volume using replica method;

• Storage capacity obtained when volume goes to zero;

• Compute the distribution of weights in that volume.



Distribution of weights in an optimal attractor network

• For each neuron, finding synaptic

weights consistent with stored attrac-

tors is equivalent to perceptron problem



The synaptic weight distribution at maximal capacity

At maximal capacity:
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The synaptic weight distribution at maximal capacity

At maximal capacity:

P (wi = W ) = Sδ(W ) +
1√

2πσW

exp

[
−1

2

(
W

σW
+ W0(S)

)2
]

Θ(W )

Distribution characterized by

• The fraction of zero weight synapses S de-

pends on robustness parameter

ρ =
κ

W
√

f(1− f)N

where W ∼ θ/fN is the average synap-

tic weight

• The width of the truncated Gaussian σW

depends on S and W .

Brunel et al 2004



Distribution of weights below capacity

0 2 4 6 8 10
w / w

0.01

0.1

1
P(

w
)



Distribution of weights: theory vs experiment

• Large fraction of zero weight synapses is consistent with data:

– Anatomy: nearby pyramidal cells are locally potentially almost fully connected

(Kalisman et al 2005)

– Electrophysiology: nearby pyramidal cells have connection probability of∼ 10%
(Mason et al 1991, Markram et al 1997, Sjostrom et al 2001, Holmgren et al 2003)



Distribution of weights: theory vs experiment

• Large fraction of zero weight synapses is consistent with data:

– Anatomy: nearby pyramidal cells are locally potentially almost fully connected

(Kalisman et al 2005)

– Electrophysiology: nearby pyramidal cells have connection probability of∼ 10%
(Mason et al 1991, Markram et al 1997, Sjostrom et al 2001, Holmgren et al 2003)

⇒ Large fraction of ‘potential’ or ‘silent’ synapses.



Distribution of synaptic weights in cortex

Mason et al 1991; Markram et al 1997; Sjostrom et al 2001; Holmgren et al 2003; Feldmeyer et al

2003; Frick et al 2007



Sjostrom dataset vs theory

Sjostrom et al 2001; Song et al 2005



Two-neuron connectivity as a function of storage level

• Fully connected network of N = 1000 neurons;

• Storing random patterns, using perceptron learning algorithm independently for each

neuron;
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Two-neuron connectivity patterns in cortex

Song et al 2005



Two-neuron connectivity: theory vs experiment
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See also:

• Markram et al (1997) rat L5 so-

matosensory cortex: 3 times more

than random;

• Song et al (2005) rat L5 visual cor-

tex: 4 times more than random;

• Wang et al (2006)

– rat PFC: 4 times more than ran-

dom;

– rat Visual cortex: 2 times more

than random;

• Lefort et al (2009) mouse barrel

cortex: ∼ random



Bidirectional vs unidirectional connections



Conclusions

• A network optimized to store a large number of attractors has

– Sparse connectivity matrix;

– The sparser the matrix, the more robust the network is;

– Positive weights have broad distribution;

– There is a strong overrepresentation of bidirectional connections

– Optimal connectivity matrix approximately half-way between fully random and fully

symmetric network

• All these features are consistent with the available statistics of connectivity in cortex



Collaborators

Perceptron/Cerebellum:

• Boris Barbour

• Philippe Isope

• Vincent Hakim

• Jean-Pierre Nadal


