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From the retina to V1
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Structure of V1: orientation and scale

Orientation hypercolumns (Hubel et Wiesel, De Valois):
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Neurophysiology Texture modelling The Poincaré disk The neural mass equation Discussion and conclusion

What is a visual texture?
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Neurophysiology Texture modelling The Poincaré disk The neural mass equation Discussion and conclusion

What is a visual texture?
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The structure tensor

I Definition:

Jσ = Gσ ∗ (∇I∇I>) =

(
Gσ ∗ I 2

x Gσ ∗ Ix Iy
Gσ ∗ Ix Iy Gσ ∗ I 2

y

)
I The variance σ controls the spatial scale.

I This symmetric positive matrix “lives” in a hyperbolic space
(Riemann, 1854, Poincaré, 1882).
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Image interpretation

Let e1 et e2 be the two
orthonormal eigenvectors of T
and λ1 ≥ λ2 ≥ 0 the
corresponding eigenvalues

I λ1 = λ2 = 0: constant
intensity image

I λ1 >> λ2 ' 0: edge in the
direction e2

I λ1 ≥ λ2 >> 0: corner

I λ1 − λ2 increases with
texture anisotropy
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Neuronal encoding
I If one “reads” the triplets

(θ, θ + π/4, θ + π/2) from a
hypercolumn of orientation, one
has access to the three
components of the structure
tensor in a coordinate system
rotated by θ.

I The joint activity of the neurons
in the hypercolumn coding for
these three orientations is a
representation of the structure
tensor.

I The set of such triplets is a
representation of the structure
tensor that is approximately
invariant to the orientation of the
coordinate system.
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Mathematical model

The set SDP(2,R) of 2× 2 symmetric positive definite matrixes
with real coefficients is Riemannian space of dimension 3 for the
distance

d0(T1, T2) = ‖ log T −1
1 T2‖F =

∑
i=1,2

log2 λi

1/2

,
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Mathematical model

Biological motivation: Unlike the “natural” Euclidean distance,

this distance is invariant with respect to changes of coordinate
systems defined by M ∈ GL(2,R):

T →tMTM
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Neurophysiology Texture modelling The Poincaré disk The neural mass equation Discussion and conclusion

Mathematical model

I SDP(2,R) = SSDP(2,R)×R+,
where SSDP(2,R) is the set of
symmetric positive definite
matrixes with unit determinant.

I SSDP(2,R) equiped with the
Riemannian metric induced by that
of SDP(2,R) has a sectional
curvature equal to -1: it is
isomorphic to the hyperbolic space
of dimension 2, H2.
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Hyperbolic geometry: the Poincaré disk D
The axiom of Euclide: there exists an infinity of lines parallel to L
going through the point M
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Hyperbolic geometry: the Poincaré disk D
The group of direct isometries

I The group SU(1, 1) of 2× 2 Hermitian matrices with unit
determinant

γ =

[
α β

β α

]
such that |α|2 − |β|2 = 1,

I Its action on D

γ · z =
αz + β

βz + α
, z ∈ D

I Its action on the structure tensor

γ̃ · T =t γ̃ T γ̃ γ̃ =

[
α1 + β1 α2 + β2

β2 − α2 α1 − β1

]
∈ SL(2,R).
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Decomposition of the group of direct isometries

I Three 1-parameter sub-groups of
SU(1, 1) and their orbits8>>>>>>>>>><>>>>>>>>>>:

K = {rϕ =

»
e iϕ/2 0

0 e−iϕ/2

–
, ϕ ∈ S1}

A = {at =

»
cosh t sinh t
sinh t cosh t

–
, t ∈ R}

N = {ns =

»
1 + is −is

is 1− is

–
, s ∈ R}

I Iwazawa decomposition:

SU(1, 1) = KAN
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Decomposition of the group of direct isometries

The same thing for structure tensors

r̃ϕ =

[
cos ϕ2 sin ϕ

2
− sin ϕ

2 cos ϕ2

]
Rotation

ãt =

[
et 0
0 e−t

]
Scaling

ñs =

[
1 0
−2s 1

]
,
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A model of a hypercolumn of structure tensors

I Each structure tensor T is represented by a population of
neurons through its average membrane potential V (T , t).

I Each population T excites or inhibits population T ′ depending
upon whether T and T ′ are close to or far from each other.

I We write a neural mass equation in the Poincaré disk

τVt(z , t) = −V (z , t)+

∫
D

w(z , z ′)S(µV (z ′, t)) dz ′+Iext(z , t),

I The surface element dz ′ is given by

dz ′ =
dx ′ dy ′

(1− |z ′|2)2
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A model of a hypercolumn of structure tensors

I The connectivity function w
is of the form

w(z , z ′) = h(d(z , z ′)),

I where h is a “Mexican hat”,
the difference of two
Gaussians

1√
2πσ2

1

e
− x2

2σ2
1 −θ 1√

2πσ2
2

e
− x2

2σ2
2 ,

σ1 < σ2, θ ≤ 1

Olivier Faugeras NeuroMathComp project team - INRIA/ENS Paris

Texture Perception
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Well-posedness of the problem

I Functional setting F = L∞(D×R+
∗ )

I For some simple hypotheses on w and I there exists a unique
solution to the neural mass equation.

I This solution is bounded.
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Numerical experiments

I The neural mass equation is discretised with respect to
“space” in a compact domain of D.

I The rectangular rule is used for the integral.

I The numerical scheme is shown to be convergent.

Olivier Faugeras NeuroMathComp project team - INRIA/ENS Paris

Texture Perception
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Numerical experiments

Purely excitatory exponential connectivity function w(x) = e−
|x|
b

α = 0.1, µ = 10
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Numerical experiments

Constant input I (z) = Ie−
d2(z,0)2

σ2 , I = 0.1, σ = 0.05.

b=1 b=0.2 b=0.1
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Numerical experiments

Excitatory and inhibitory connectivity function

w(x) = 1√
2πσ2

1

e
− x2

σ2
1 − A√

2πσ2
2

e
− x2

σ2
2 , σ1 = 0.1, σ2 = 0.2 and A = 1.

µ=3 µ=5 µ=10

Olivier Faugeras NeuroMathComp project team - INRIA/ENS Paris

Texture Perception
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Numerical experiments

µ=20 µ=30
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Periodic pavings of D and discrete subgroups of SU(1, 1)

I Discrete subgroups
(Fuchsian) Γ such that there
exists a closed region F
(fundamental domain) of D
such that

(i) F̊ ∩ (γ · F ) = ∅
∀γ ∈ Γ, γ 6= Id

(ii) D =
⋃
γ∈Γ

γ · F

I If F is compact, Γ is said to
be co-compact.

Work of M. Escher :
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Retinal/Image interpretation

I The neuronal representations of
the structure tensor should be
invariant with respect to the
action of certain discrete
subgroups of K (rotations) and A
(scalings).

I Fix an integer n (rotation of π/n)
and a real T (multiplication of
the x coordinate by eT ) and
consider the free product
Γn,T = Kn ∗ AT .

I It is a “neuronal” Fuchsian group
for some values of n and T .
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Retinal/Image interpretation

I For n = 4 and
cosh(T ) = 1 +

√
2, Γn,T is

Fuchsian and co-compact.

I Its fundamental domain is
included in that of the
octogonal Fuchsian group.
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The H-planforms

I We study the bifurcations of the solutions when the slope µ of
the sigmoid varies.

I In the Euclidean case, one perturbs the solution with planar
waves (planforms) of the form e ik·r, k ∈ R2.

I They are eigenfunctions of the Laplacian operator

∆e ik·r = −‖k‖2e ik·r, r ∈ R2.
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The H-planforms

I It is possible to restrict the problem to a periodic lattice L
generated by two vectors k1 and k2.

I The spectrum of ∆ is real and discrete on a well-chosen space
of periodic functions of L.

I It is the approach of Bressloff et al. to the study of visual
hallucinations, see the wonderful book by Jean Petitot.
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The H-planforms

I Helgason introduced the functions

eλ,b(z) = e(iλ+1)〈z,b〉, λ ∈ C

I They are eigenfunctions of the
Laplace-Beltrami operator in D
associated to the eigenvalue
−λ2 − 1.

I They allow to define a Fourier
transform for the functions
defined on D.

I An H-planform is a function eλ,b
for λ real or λ = α + i , α real.

Horocyclic coordinates:
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The H-planforms

I Invariant with respect to the
action of the group N

I Analog to planar waves in the
Euclidian plane

In horocyclic coordinates z = nsat · O,

eλ,b1 (z) = e(iλ+1)t , λ = α + i

is periodic with period 2π/α with

respect to t

A periodic H-planform
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Bifurcation of the solutions of the structure tensor
equation: the search for H-planforms

I The spectrum of the Laplace-Beltrami operator restricted to
Γ-invariant functions is discrete and real

I Each square integrable function can be written as a series of
eigenfunctions of the operator ∆

Ψλ(z) =

∫
∂D

e(iλ+1)〈z,b〉dT (b),

where T is a distribution on ∂D satisfying some equivariant
conditions.

I The values of λ depend upon Γ and there is no explicit method
for computing these eigenvalues and the distribution T .

I Some of these eigenfunctions may be observable when the
solutions of the structure tensor equation bifurcate.
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Toward biological predictions

I In the case of the octogonal Fuchsian group some advances
have been made (Balazs-Voros, Physics reports, 1986, our
current work).

I They lead to the prediction of certain forms of activity.

I They strongly depend upon the type of invariance of the
underlying neuronal representations.

I The mathematical theory is a way to test these hypotheses.
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Toward biological predictions
Predicted activity in the case of an invariance with respect to the
action of the octogonal group

lambda=3.8432
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Neurophysiology Texture modelling The Poincaré disk The neural mass equation Discussion and conclusion

Toward biological predictions

lambda=28.3437
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Toward biological predictions

lambda=62.4196
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Toward biological predictions
Convergence of the solution of the neural field equation
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Biological predictions and mathematical problems

I This example poses
difficult mathematical
questions, e.g. related to
the geometry of
“neuronal” Fuchsian
groups.

I Mathematical theories
lead to precise biological
predictions that may be
experimentally tested.

Optical imaging principle:
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Generality of the approach

The problem is generic (cortical organisation in columns,
excitation/inhibition mechanisms)
Adapted from Chossat and Faugeras, Plos Comp Bio, 2009 plus
some recent developments
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