FRONTIERS IN NEUROMORPHIC COMPUTATION:a Multi-FACETS Enterprise3 - 4 JUNE 2010

Where do we go from here ?

Karlheinz Meier

FACETS – Personal conclusions

Science

_			
lec	hno	logy	

Functional, user friendly multichip systems New circuit concepts and demonstrators (neurons, synapses, storage) High speed asynchronous communication concepts and demonstrators Wafer scale integration and connection technologies Integration PyNN – A platform indepedent neural network language Databases Experimental protocolls and platforms Community Building Working, proven and sustainable interdisciplinary collaboration Successful collaboration for follw-up projects

Graduate Education

More than 100 PhD students

New Marie-Curie graduate school

Started this year : Learning and plasticity

Started last year : Graduate Students

On the move : FACETS follow-up FET-Flagship

SUPERFACETS ?

Base Facility 24 crates with 312 wafer assemblies

With current 60 nm technology

10⁹ Multic. Neurons 10¹³ dynamic synapses

Full Readout and Configurability

Technology Upgrades

- Increase Number of Base Facilities
- Increase Component Density

30cm wafer laminated in-between copper cooling base and multi-layer PCB. Total assembly thickness: <2mm 312 wafer assemblies mounted in one crate

NCF build from 10k wafers: four layers of eight crates arranged in a cylindrical fashion to minimize inter-connection distances

A tiny fraction (1 ppm) of the synaptic field

50.000.000 plastic STDP synapses on the wafer

Synapse size (including connections and synaptic memory) : 10 μm x 10 μm in 180 nm CMOS

Synapses limit the achievable complexity

Novel local analog components (e.g. memristors could provide huge gain (x 1.000 – 10.000)

Interesting : Speed – Size Tradoff at constant bandwidth

K. Likharev, Journal of Nanoelectronics and Optoelectronics, Vol.3, 203–230, 2008

Basic Idea : CMOL Take the best of best worlds : CMOS fidelity + Nanoscale density

2 Terminal Cross-Point Devices

Nanowire Cross Bars on Top of conventional CMOS devices

Approx. 1000-10000 fold synaptic density

1000-10000 fold communication bandwidth requirement !

Speed vs. Density

THANKS TO ALL OF YOU FOR A WONDERFUL AND EXCITING PROJECT !!!

We came a long way in the last 5 years !

1st FACETS plenary meeting, INRIA, 2005