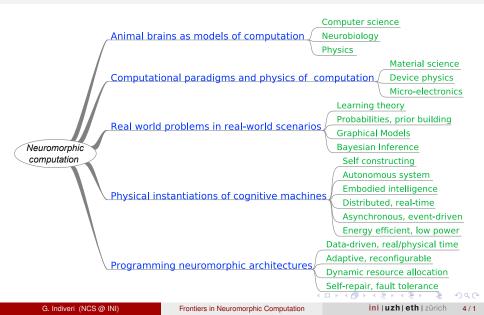
What can we learn from biology for computing?

Giacomo Indiveri

Institute of Neuroinformatics University of Zurich and ETH Zurich

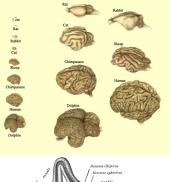
June 11, 2010

G. Indiveri (NCS @ INI)


Frontiers in Neuromorphic Computation

ini |uzh|eth|zürich 1/1

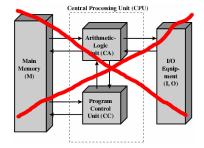
Outline


Outline

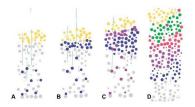
The problem: learning computing principles from the brain an overarching theme

(lessons from biology, for computing)

• Computation depends on the physics of the underlying computational elements.



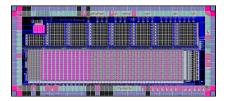
Frontiers in Neuromorphic Computation


(lessons from biology, for computing)

- Computation depends on the physics of the underlying computational elements.
- Alternative computing paradigms alternative, *not* based on Von Neumann architectures or Boolean logic.

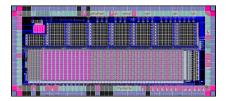
(lessons from biology, for computing)

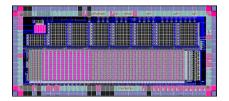
- Computation depends on the physics of the underlying computational elements.
- Alternative computing paradigms alternative, *not* based on Von Neumann architectures or Boolean logic.
- Architectures (self) constructed and evolved following a complex developmental process.

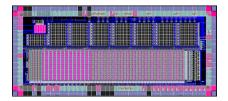


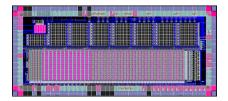
(lessons from biology, for computing)

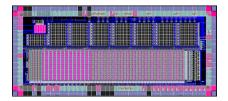
- Computation depends on the physics of the underlying computational elements.
- Alternative computing paradigms alternative, *not* based on Von Neumann architectures or Boolean logic.
- Architectures (self) constructed and evolved following a complex developmental process.
- Solve real world problems in real-world scenarios
 - Deal with incomplete and imprecise data
 - Interact with the environment in real-time
 - Process sensory signals and produce appropriate motor actions



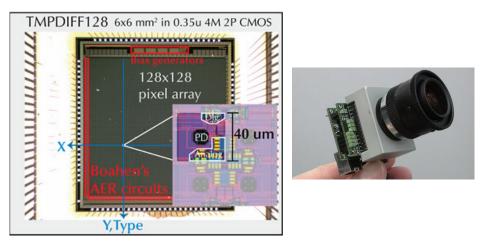

• To identify the principles of neural computation used by circuits in the brain (cat visual cortex, songbirds, etc.) through:


- To identify the principles of neural computation used by circuits in the brain (cat visual cortex, songbirds, etc.) through:
 - directed neurophysiology and neuroanatomy experiments (data acquisition)


- To identify the principles of neural computation used by circuits in the brain (cat visual cortex, songbirds, etc.) through:
 - directed neurophysiology and neuroanatomy experiments (data acquisition)
 - biophysically realistic and data-validated computational models


- To identify the principles of neural computation used by circuits in the brain (cat visual cortex, songbirds, etc.) through:
 - directed neurophysiology and neuroanatomy experiments (data acquisition)
 - biophysically realistic and data-validated computational models
 - computing paradigms and theories compatible with anatomy, physiology and modeling results (graphical models, Bayesian inference, EM, etc.)

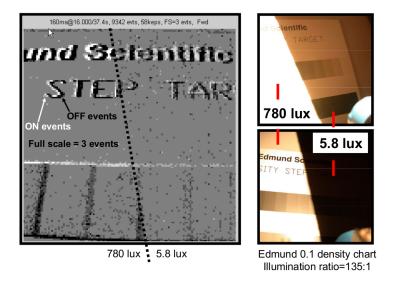
- To identify the principles of neural computation used by circuits in the brain (cat visual cortex, songbirds, etc.) through:
 - directed neurophysiology and neuroanatomy experiments (data acquisition)
 - biophysically realistic and data-validated computational models
 - computing paradigms and theories compatible with anatomy, physiology and modeling results (graphical models, Bayesian inference, EM, etc.)
- To reproduce the physics of neural computation using *subthreshold analog* circuits and *asynchronous digital* circuits.



- To identify the principles of neural computation used by circuits in the brain (cat visual cortex, songbirds, etc.) through:
 - directed neurophysiology and neuroanatomy experiments (data acquisition)
 - biophysically realistic and data-validated computational models
 - computing paradigms and theories compatible with anatomy, physiology and modeling results (graphical models, Bayesian inference, EM, etc.)
- To reproduce the physics of neural computation using *subthreshold analog* circuits and *asynchronous digital* circuits.
- To build brain-inspired, autonomous, learning, behaving systems that can interact with the environment in *real-time*.

Outline

AER silicon retinas

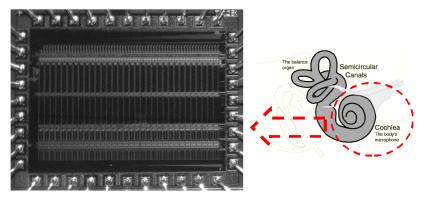

Tobi Delbruck

イロト イロト イヨト

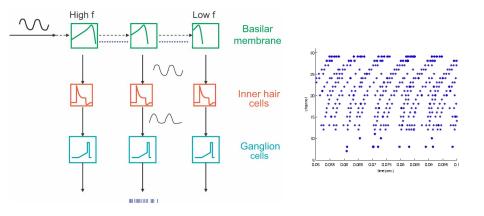
Silicon retina properties

http://siliconretina.ini.uzh.ch

イロト イロト イヨト イヨト


An AER silicon cochlea

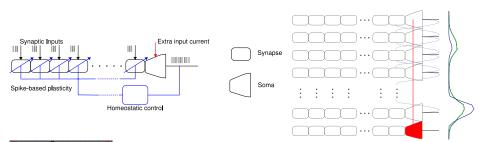
Shih-Chii Liu

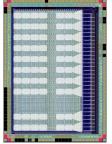


AER EAR: A Matched Silicon Cochlea Pair With Address Event Representation Interface

Vincent Chan, Student Member, IEEE, Shih-Chii Liu, Member, IEEE, and André van Schaik, Senior Member, IEEE

Silicon cochlea properties

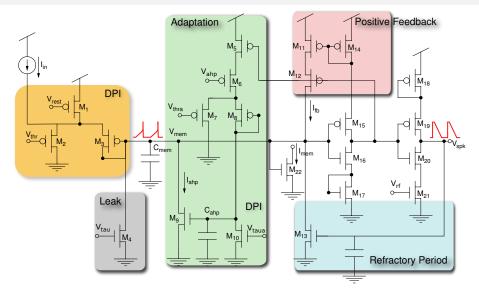

ini |uzh|eth|zürich 11/1


∃ → 4 ∃

< D > < B

Spiking multi-neuron architectures

Giacomo Indiveri

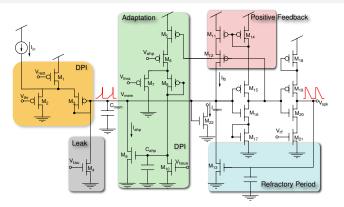

- Networks of I&F neurons with adaptation, refractory period, etc.
- Synpases with realistic temporal dynamics
- Winner-Take-All architectures
- Spike-based plasticity mechanisms

Outline

99 P

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

An ultra-low power generalized adaptive I&F circuit

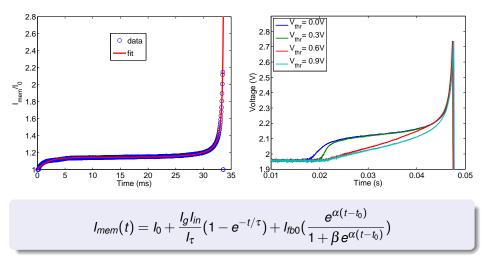


G. Indiveri (NCS @ INI)

Frontiers in Neuromorphic Computation

ini |uzh|eth|zürich 14/1

Circuit subthreshold equations

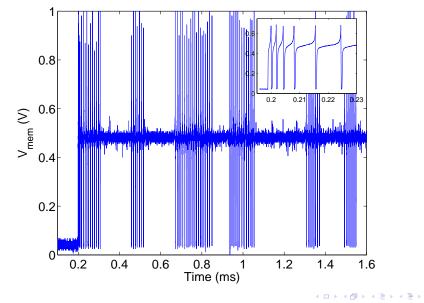


$$C_{mem} \frac{d}{dt} V_{mem} = (I_{dpi} - I_{\tau}) - I_{ahp} + I_{fb}$$
$$I_{fb} = I_0^{\frac{1}{\kappa+1}} I_{mem}^{\frac{\kappa}{\kappa+1}} \frac{1}{1 + e^{-\alpha(I_{mem} - I_{th})}}.$$

G. Indiveri (NCS @ INI)

Frontiers in Neuromorphic Computation

Circuit closed form solution

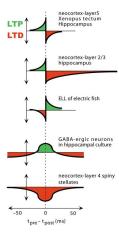


(Brette & Gerstner 2005)

3

ini |uzh|eth|zürich 16/1

Spike frequency adaptation



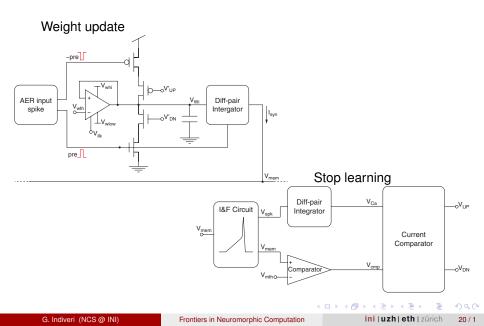
ini |uzh|eth|zürich 17/1

Outline

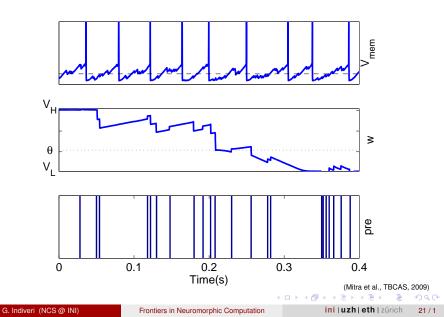
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Spike timing based learning: beyond STDP

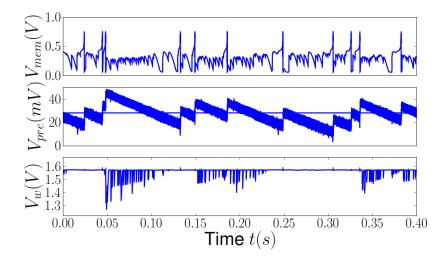
Spike timing and analog voltages


Weight change depends on the timing of the pre-synaptic spike, on the value of the post-synaptic neuron's membrane potential, and on its past spiking activity.

Fusi et al. 2000; Gutig & Sompolinsky 2006; Brader et al. 2007


Theoretical prescription

- Bistability: use two stable synaptic states;
- Redundancy: implement many synapses that see the same pre- and post-synaptic activity.
- Stochasticity: update only random a subset of stimulated synapses.
- Stop-learning: stop updating weights if the output rate sufficiently high (or low).


Weight update circuits

Weight updates

Stop Learning

ъ ini |uzh| eth | zürich 22/1

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

What we learned

- The brain is a very complex computational engine. "If the brain finds a successful strategy to get something accomplished, it does it at all levels, from the molecular structure of proteic channels, to the full network and development level" (Matteo Carandini).
- It's not hopeless: it is possible to find common strategies used by neural circuits, common classes of cells, connectivity patterns, coding schemes.
- It is possible to build silicon devices that faithfully reproduce the biophysics of their neural counterparts, and use them for practical applications.
- Building *cognitive* neuromorphic systems, that go beyond basic sensory processing (*e.g.* with learning) is non-trivial...

- Combine the process of hypothesys building with that of observation making: i.e. computer science with experimental neuroscience, physics and engineering with biology.
- Validate the computational theories, models and algorithms developed on neuromorphic real-time behaving systems (analogous to fabricating a chip, to validate the TSPICE simulations).
- Start an FET Flagship Initiative :)

Acknowledgments

The Institute of Neuroinformatics

- Tobi Delbruck
- Shih-Chii Liu
- Elisabetta Chicca

Funding sources

- SCANDLE EU project
- eMorph EU project
- SoundRec Swiss NSF project
- nAttention Swiss NSF project

- Rodney Douglas
- Kevan Martin
- Richard Hahnloser

- 12

イロト イポト イヨト イヨト

Thank you for your attention

Henre I About I Submit I Advertise Register I Login FIGURE OF CONTROL OF C

Frontiers in Science > Frontiers In Neuromorphic Engineering > Editorial Boards

Home		Editorial Boards	
Neurology	•		
Neuroscience	•	FRONTIERS IN NEUROMORPHIC ENGINEERING	
Pharmacology	•	Editor-in-Chief	
Physiology	•	Giacomo Indiveri	University of Zurich, Switzerland
Psychiatry	•	Timothy K Horiuchi	The University of Maryland, USA
Psychology	•	Associate Editors	
Journal Info		Kwabena Boahen	
About this Journ	al	Gert Cauwenberghs	University Of California, San Diego, USA
Editorial Board Advertise	•	Tobi Delbruck Philipp Häfliger Iohn Harris	University of Oslo, Norway University of Florida, USA
Info for Author	re	Bernabe Linares-Barranco	Instituto de Microelectrónica de Sevilla, Spain
Why publish?		Shih-Chii Liu Bert Shi	Institute of Neuroinformatics, ETH Uni Zurich, Switzerland The Hong Kong University of Science and Technology, Hong Kong
Fees		Andre van Schaik	The University of Sydney, Australia

ini |uzh|eth|zürich 27/1

イロト イロト イヨト イヨト