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A paradigm shift in our
understanding of human reasoning

For over 2000 years researchers have believed that mathematical logic is the
best framework for understanding and reproducing human reasoning and

intelligence

But mathematical logic turned out to be of little use for reasoning with uncertain
facts (e.g., for everyday reasoning), and related Al approaches have failed

A new mathematical framework (Bayesian networks, Belief networks,
,2graphical models®, ,probabilistic inference®) was invented around 1990, that
provides principled methods for reasoning with unreliable facts and beliefs

Research in Cognitive Science during the last two decades has shown that this
new framework provides a substantially better basis for understanding (and
reproducing) human reasoning

But: Probabilistic inference is very computing-intense, and can therefore not
yet be used to provide useful reasoning capabilities in regular computers



Resulting challenges for computer science

« Understand how the brain carries out probabilistic inference (with a 50 Watt
power consumption, and stochastic computing elements)

« Learn to make use of inherently stochastic aspects of computing elements
on the molecular scale for artificial computing devices

« Build a Bayesian Computer based on this insight, that is able to reason with
large numbers of uncertain facts and beliefs

Our first concrete target: Port probabilistic inference capabilities to the spike-
based hardware developed in FACETS




A quick look at recent progress in understanding how
networks of neurons in the brain could implement probabilistic
inference




Neuroanatomy and neurophysiology suggest that
cortical microcircuits are composed of
stochastic WTA circuits
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Extraction of a theoretically tractable
basic WTA circuit
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Model for the spike output of such WTA circuit

inhibitory
neurons ( ﬁ t t t| ) euk (t)
lateral plz Ores atiime tly) = K t
inhibition > i—q vt (®)
spike . .
T [ output Membrane potential of this neuron:
7N _—

WTA 7 uk(t) = Zz‘:l wkz’yz’<t> T Wko

Wi W This exponential firing rule fits experimental
y y data quite well, as shown by Gerstner et al.



Model for the spike output of such WTA core

inhibitory
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output
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This exponential firing rule fits experimental
Wi M& Wk data quite well, as shown by Gerstner et al.
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Bayesian computation emerges in this
simple WTA circuit through STDP

[Nessler, Pfeiffer, Maass, NIPS 2009]



STDP (= Spike-Timing-Dependent plasticity)
is currently the best understood experimental method for inducing
synaptic plasticity (see work by Grant, Markram, Shulz, Fregnac, Gerstner in FACETS.)
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Mathematical basis for a link between
STDP (i.e., the world of synaptic plasticity) and
probabilistic inference (i.e., the world of probability theory):

This STDP rule 7N

2NN
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(i if the presynaptic neuron y; fires shortly before ‘JL
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Post =507

causes each synaptic weight to converge (in fact, optimally fast) to

log p (PRE has fired just before time t | POST fires at time t )

[This relationship to probability theory only becomes visible when one rescales the weights
into the negative domain]



Consequence of this link between STDP and probabilistic inference:
The neurons in the WTA circuit self-organize for creating an internal model

for the distribution of high-dimensional spike inputs y to the WTA circuit

« The convergence of each synaptic weight to
log p (PRE has fired just before time t | POST fires at time t )

causes each neuron 2z  in the WTA circuit to build in its synaptic

weights an internal model p(y |z fires, w)

for the typical spike input y that makes this neuron fire

« The competition of the Zr neurons causes the ensemble of these

neurons to create an internal model 1 K
P(Y|W) = 7 2uk=1 e+ (¥)

for the distribution p*(y) of spike inputs 'y to the circuit
« This self-organization process is guaranteed to converge because it

approximates a well known method for fitting an internal model to a
given distribution p*(y) of inputs: EM



What is EM, and why is it useful ?

inhibitory

EM (,Expectation Maximization®) solves a ,,chicken-and-egg*
problem that always appears when one wants to extract

hidden causes (,latent variables®) from a stream of data
without any ,supervisor* or teacher: / \
spike
’ output

Each neuron Zi. should learn to fire when a particular one
of several potent/al hidden causes has created the WIA

current spike input y.

W

But if they do not know what the hidden causes are, they do 3
not know when they should fire.
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EM offers a surprising solution to this problem

« One starts with a ,random guess” (as replacement for a teacher) that
lets each z-neuron specialize on some arbitrary spike input y (M-step)

* In the next step this initial random guess is replaced by the stochastic
circuit response (E-step). Now only the winner of the competition for
responding to the next spike input y can adjust its weights via STDP to

y (M-step)

» Jterate (practically this simply means that one applies STDP to the weights of
the z-neurons in an online manner; no separate E- or M- steps are necessary)

« The theory of EM [Dempster et al., 1977] guarantees, that these
iterations do not lead to a random walk in weight-space, but rather yield
convergence to a (local) minimum of the KL-distance between the
resulting internal model  p(y|w) = 2 > ,_, e»® and the external

distribution p*(y) of inputs y

(more precisely, the circuit executes an approximation to online stochastic EM)
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Result after running STDP in the WTA circuit
for a 20 s stream of such spike inputs T/%\V
(shown for test inputs that had never occurred previously) win Q/l S ()
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output
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Application of STDP in the same circuit (but with different
numbers of z-neurons) to two completely different problems

1. Handwritten digits MNIST dataset (WITHOUT supervision):

These are 20 random samples from the 70 000 samples in the MNIST dataset.
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weights of one neuron



Resulting implicit generative models p(y|zx fires, w)

of 100 z-neurons
after exposing the circuit to 300 s of spike inputs, where a different
sample of a handwritten digit is encoded in each window of 30 ms
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Emergence of orientation selective neurons
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30 samples from an ,infinite” set of randomly generated directions
each encoded by spike trains y for 50 ms



Resulting internal models of the 10 z-neurons after
applying STDP for 200 s
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Note that these 10 z-neurons have self-organized to cover the continuous

space of arbitrary orientations
(note that there are no ,clusters® of directions in the input stream)
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Our theoretical analysis relied on a particular dependence of weight
updates on the current weight in STDP:
Is this consistent with biological data ?
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. : . ( if the presynaptic neuron y; fires shortly before
the following scaling of weight coe~W _ 1.
changes in dependence of the  Aw,=¢ the postsynaptic neuron zj
current weight : 1 else




Our theoretical analysis favors the following two rules

. ,Weight increases become exponentially smaller in dependence of the current
weight size”

Theoretical prediction Experimental data
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Noise does not harm the effictiveness of See similar data by [Liao et al., 1992],
the STDP rule in our model [Bi and Poo, 1998], [Sjostréom et al., 2001]

2. ,,Weight decreases are independent of the current weight size“

Experiments by Dan Shulz (FACETS-partner CNRS) with STDP in-vivo show
that weight decreases of STDP are not correlated with the current weight size



This is just the beginning of understanding the anatomy and
dynamics of networks of neurons from the perspective of

probabilistic inference
Work in progress:

* More expressive internal models by STDP
in biologically more realistic sheets of
neurons with local lateral inhibition

(allowing several ,winners*) [Lars Biising, J. Bill], (1AL

lateral inhibition
SRR
Yy *V‘ f”‘v Y oY oy oy
AR R AR A
/l output layer

iput layer

* A new perspective of neuronal dynamics from the perspective of
sampling in Bayesian networks (MCMC) [Lars Bising]

« Learning Gaussians and other expontential family distributions as
internal models through STDP [Stefan Habenschuss]

« Emergence of HMM-capabilities when lateral excitatory connections
are added [David Kappel, Bernhard Nessler]

« Emulation of probabilistic inference in arbitrary Bayesian networks via
Gibbs sampling [Dejan Pecevski]



Emulation of probabilistic inference in arbitrary Bayesian networks
via Gibbs sampling (and learning via STDP)

Bayesian network: nodes = random variables, arrows = direct causes.

It specifies a joint distribution over these random variables if one adds conditional
probability tables for each node (conditioned on parents); these are stored in the weights
of our neural circuit model.

Difficulty: Information also flows in opposite direction of arrows, therefore inference is
NP-hard. v,
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ASIA-network Transformation to a

network of spiking neurons
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spike-based
processor

Va
spike-based
processor processor

Dyspnoea

Learning from examples via STDP takes 10s



We have implemented inference in this Bayesian network
through stochastic firing of spiking neurons that emulates
Gibbs sampling (after learning through STDP)

Neuronal ouputs during sampling

Example for a
probabilistic inference task:
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Summary
| have sketched the beginning of a new theory of neural computation.

Theory predicts that generic moduls for probabilistic computation emerge
through STDP in stochastic WTA circuits

The convergence of the self-organization of neurons is guaranteed here by EM

Gibbs samplin%through stochastic spiking of neurons provides an attractive
method for probabilistic inference in neural emulations of Bayesian networks

These models suggest that spontaneous firing of neurons and trial-to-trial
]\c/ariability of cortical neurons are essential aspects of their computational
unction

These models pave the way for an efficient implementation of probabilistic
computation in spike-based hardware

These models pave the way for using stochastic computing elements (e.g.
nanoscale switches) as suitable moduls for probabilistic computation



Some of the new talents that have emerged through
partial FACETS(-ITN) support in Graz

Stefan Habenschuss  pgjan pecevski David Kappel Johannes Bill



