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A paradigm shift in our  
understanding of human reasoning  

•  For over 2000 years researchers have believed that mathematical logic is the 
best framework for understanding and reproducing human reasoning and 
intelligence 

•  But mathematical logic turned out to be of little use for reasoning with uncertain 
facts (e.g., for everyday reasoning), and related AI approaches have failed 

•  A new mathematical framework (Bayesian networks, Belief networks, 
„graphical models“, „probabilistic inference“) was invented around 1990, that 
provides principled methods for reasoning with unreliable facts and beliefs 

•  Research in Cognitive Science during the last two decades has shown that this 
new framework provides a substantially better basis for understanding (and 
reproducing) human reasoning  

•  But: Probabilistic inference is very computing-intense, and can therefore not 
yet be used to provide useful reasoning capabilities in regular computers 



Resulting challenges for computer science 

•  Understand how the brain carries out probabilistic inference (with a 50 Watt 
power consumption, and stochastic computing elements) 

•  Learn to make use of inherently stochastic aspects of computing elements 
on the molecular scale for artificial computing devices 

•  Build a Bayesian Computer based on this insight, that is able to reason with 
large numbers of uncertain facts and beliefs 

Our first concrete target:  Port probabilistic inference capabilities to the spike-
based hardware developed in FACETS 



A quick look  at recent progress in understanding how 
networks of neurons in the brain could implement probabilistic 

inference  



Neuroanatomy and neurophysiology suggest that  
cortical microcircuits are composed of  

stochastic WTA circuits  

[Douglas and Martin, 2004]:  
„canonical microcircuit“ of the cortex 

WTA sheet with local 
lateral inhibition 



Extraction of a theoretically tractable  
basic WTA circuit 



Model for the spike output of such WTA circuit 

Membrane potential of this neuron: 

This exponential firing rule fits experimental  
data quite well, as shown by Gerstner et al. 



Model for the spike output of such WTA core 

Membrane potential of this neuron: 

This exponential firing rule fits experimental  
data quite well, as shown by Gerstner et al. 

Bayesian computation emerges in this 
simple WTA circuit through STDP 

[Nessler, Pfeiffer, Maass, NIPS 2009] 



STDP (= Spike-Timing-Dependent plasticity) 
is currently the best understood experimental method for inducing 

synaptic plasticity  (see work by Grant, Markram, Shulz, Fregnac, Gerstner in FACETS.) 

difference in spike times: 
POST -PRE 

Our theoretical analysis favors 
the following scaling of weight  
changes in dependence of the  
current weight : 



Mathematical basis for a link between  
STDP (i.e., the world of synaptic plasticity) and  

probabilistic inference (i.e., the world of probability theory): 

This STDP rule  

causes each synaptic weight to converge (in fact, optimally fast) to  

      log p  (PRE has fired just before time t  |  POST fires at time t ) 

[This relationship to probability theory only becomes visible when one rescales the weights  
into the negative domain] 



Consequence of this link between STDP and probabilistic inference: 
The neurons in the WTA circuit self-organize for  creating an internal model 
for the distribution of high-dimensional spike inputs y to the WTA circuit  

•  The convergence of each synaptic weight to 
      log p  (PRE has fired just before time t  |  POST fires at time t ) 
      causes each neuron            in the WTA circuit to build in its synaptic 

weights an internal model                                    

      for the typical spike input y that makes this neuron fire 

•  The competition of the      neurons causes the ensemble of these 
neurons  to create an internal model  

      for the distribution p*(y) of spike inputs y to the circuit 

•  This self-organization process is guaranteed to converge because it 
approximates a well known method for fitting an internal model to a  
given distribution p*(y) of inputs: EM 



What is EM, and why is it useful ? 
EM („Expectation Maximization“) solves a „chicken-and-egg“ 

problem that always appears when one wants to extract 
hidden causes („latent variables“) from a stream of data 
without any „supervisor“ or teacher:  

Each neuron        should learn to fire when a particular one 
of several potential hidden causes has created the 
current spike input y. 

But if they do not know what the hidden causes are, they do 
not know when they should fire. 

ms 



EM offers a surprising solution to this problem 

•  One starts with a „random guess“ (as replacement for a teacher) that 
lets each z-neuron specialize on some arbitrary spike input y (M-step) 

•  In the next step this initial random guess is replaced by the stochastic 
circuit response (E-step). Now only the winner of the competition for 
responding to the next spike input y can adjust its weights via STDP to 
y (M-step)  

•  Iterate   (practically this simply means that one applies STDP to the weights of 
the z-neurons in an online manner; no separate E- or M- steps are necessary) 

•  The theory of EM [Dempster et al., 1977] guarantees, that these 
iterations do not lead to a random walk in weight-space, but rather yield 
convergence to a (local) minimum of the KL-distance between the 
resulting internal model                                          and the external  

      distribution p*(y) of inputs y  

      (more precisely, the circuit executes an approximation to online stochastic EM) 



Result after running STDP in the WTA circuit  
for a 20 s stream of such spike inputs 

(shown for test inputs that had never occurred previously)  



Application of STDP in the same circuit (but with different 
numbers of z-neurons) to two completely different problems  

1. Handwritten digits MNIST dataset (WITHOUT supervision):  

These are 20 random samples from the 70 000 samples in the MNIST dataset. 

50ms per digit 

weights of one neuron 



Resulting implicit generative models                                       
of 100 z-neurons 
after exposing the circuit to 300 s of spike inputs, where a different 
sample of a handwritten digit is encoded in each window of 30 ms 



Emergence of orientation selective neurons 

30 samples from an „infinite“ set of randomly generated directions 
each encoded by spike trains  y  for 50 ms  



Resulting internal models of the 10 z-neurons after 
applying STDP for 200 s 

Note that these 10 z-neurons have self-organized to cover the continuous  
space of arbitrary orientations  
(note that there are no „clusters“ of directions in the input stream) 



Our theoretical analysis relied on a particular dependence of weight 
updates on the current weight in STDP:  

Is this consistent with biological data ? 

difference in spike times: 
POST -PRE 

Our theoretical analysis favors 
the following scaling of weight  
changes in dependence of the  
current weight : 



Our theoretical analysis favors the following two rules 

1. „Weight increases become exponentially smaller in dependence of the current 
weight size“ 

Theoretical prediction                Experimental data 

2. „Weight decreases are independent of the current weight size“ 

Experiments by Dan Shulz (FACETS-partner CNRS)  with STDP in-vivo show 
that  weight decreases of STDP are not correlated with the current weight size 

Montgomery et al. 2001 

Noise does not harm the effictiveness of  
the STDP rule in our model 

See similar data by [Liao et al., 1992], 
[Bi and Poo, 1998], [Sjöström et al., 2001] 



This is just the beginning of understanding the anatomy and 
dynamics of networks of neurons from the perspective of 

probabilistic inference  
Work in progress: 
•  More expressive internal models by STDP  
      in biologically more realistic sheets of  
      neurons with local lateral inhibition  
      (allowing several „winners“)  [Lars Büsing, J. Bill] 

•  A new perspective of neuronal dynamics from the perspective of 
sampling in Bayesian networks (MCMC)   [Lars Büsing] 

•  Learning Gaussians and other expontential family distributions as 
internal models through STDP  [Stefan Habenschuss] 

•  Emergence of HMM-capabilities when lateral excitatory connections  
are added [David Kappel, Bernhard Nessler] 

•  Emulation of probabilistic inference in arbitrary Bayesian networks via 
Gibbs sampling   [Dejan Pecevski] 



Emulation of probabilistic inference in arbitrary Bayesian networks  
via Gibbs sampling (and learning via STDP) 

Bayesian network:    nodes = random variables, arrows = direct causes.  
It specifies a joint distribution over these random variables if one adds conditional  
probability tables for each node (conditioned on parents); these are stored in the weights  
of our neural circuit model.  
Difficulty:   Information also flows in opposite direction of arrows, therefore inference is  
NP-hard. 

            ASIA-network  Transformation to a  
network of spiking neurons 

Learning from examples via STDP takes 10s 



We have implemented inference in this Bayesian network 
through stochastic firing of spiking neurons that emulates 

Gibbs sampling    (after learning through STDP) 

Example for a  
probabilistic inference task: 

yes 

yes 

? ? ? 

Neuronal ouputs during sampling 

Convergence to target probabilities 



Summary  
•  I have sketched the beginning of a new theory of neural computation.  

•  Theory predicts that generic moduls for probabilistic computation emerge 
through STDP in stochastic WTA circuits  

•  The convergence of the self-organization of neurons is guaranteed here by EM 

•  Gibbs sampling through stochastic spiking of neurons provides an attractive 
method for probabilistic inference in neural emulations of Bayesian networks 

•  These models suggest that spontaneous firing of neurons and trial-to-trial 
variability of cortical neurons are essential aspects of their computational 
function 

•  These models pave the way for an efficient implementation of probabilistic 
computation in spike-based hardware 

•  These models pave the way for using stochastic computing elements (e.g. 
nanoscale switches) as  suitable moduls for probabilistic computation 



Some of the new talents that have emerged through 
partial FACETS(-ITN) support in Graz 
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