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We heard today and yesterday about the range of activities going on in FACETS, from biological experiments, through numerical simulations to 
neuromorphic hardware development.
Now I’m going to talk about some of the interactions between these different activities.



This presentation is licenced under a Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 licence
http://creativecommons.org/licenses/by-nc-sa/3.0/
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3
There are three fields represented within FACETS (and in neuromorphic computation in general). Most of the interaction between these domains 
takes place by exchange of knowledge, where I define knowledge as what we find in the Conclusions section of a paper.  All three domains 
contribute to our collective knowledge about neuroscience and about computation. In turn, we use this knowledge in designing new experiments, 
new models, in designing new systems.
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Knowledge flow
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So how does this exchange of knowledge take place - of course it takes place from human-to-human, via meetings, papers, presentations. How 
well does the exchange work?



Knowledge flow: works fairly well*

* but see Science 2.0
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5
In general, it works fairly well - very well in the FACETS project - knowledge gets moved around fairly fast and effectively,
even if some people think it could work a lot better (open-access publishing, semantic web, blog-based publishing, etc.)
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But as well as the flow of knowledge, we also have flows of information (green lines) and of data (blue), where I define information as what goes into 
the Methods section of a paper: metadata might be a better word. So biological experiments can provide parameter values for models, and we can 
use data from experiments to test and attempt to validate our models and hardware.
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But as well as the flow of knowledge, we also have flows of information (green lines) and of data (blue), where I define information as what goes into 
the Methods section of a paper: metadata might be a better word. So biological experiments can provide parameter values for models, and we can 
use data from experiments to test and attempt to validate our models and hardware.



Information and data flow

of the underlying Vm. We also find that the nonlinearities of the
CRF are present at the level of Vm. Finally, we find that the vari-
ation in firing rates among cells can be accounted for by the
different slopes of the linear relationships between Vm and the
spike rate.

Materials and Methods
Surgical protocol. Experiments were conducted in accordance with the
ethical guidelines of the National Institutes of Health and with the ap-
proval of the Institutional Animal Care and Use Committee of the Uni-
versity of Pennsylvania. Adult cats (2.5–3.5 kg) were anesthetized with an
initial intraperitoneal injection of thiopental (25 mg/kg). Supplementary
halothane (2– 4% in a 70:30 mixture of N2O and O2) permitted the
placement of two venous catheters. Subsequently, deep anesthesia was
maintained during surgery with intravenous thiopental as needed and
maintained for the duration of the experiment (14 –16 hr) with a contin-
uous infusion (3–10 mg/hr). Atropine sulfate (0.05 mg/kg, i.m.) was
administered to prevent secretions and dexamethasone (4 mg, i.m.) to
prevent cerebral edema. Lidocaine (2%) was generously applied to all
skin incisions and pressure points. The animal was paralyzed with gal-
lamine triethiodide (Flaxedil) by an initial injection of 60 mg and main-
tained with continuous intravenous infusion (20 mg/hr). The level of
anesthesia was determined by continuously monitoring the EEG and the
heart rate. Because the thiopental is infused continuously, we obtained
very stable patterns of anesthesia throughout the experiment. The end-
tidal CO2 concentration was kept at 3.7 ! 0.2%, and the rectal temper-
ature was kept at 37–38°C with a heating pad.

The surface of the visual cortex was exposed with a craniotomy cen-
tered at Horsley Clarke posterior 4.0, lateral 2.0 and bathed in mineral oil
to prevent desiccation. The stability of the recordings was ensured by
performing a bilateral pneumothorax, drainage of the cisterna magna,
hip suspension, and by filling the cranial defect with a solution of 4%
agar.

Visual stimulation. The corneas were protected with neutral contact
lenses after dilating the pupils with 1% ophthalmic atropine and retract-
ing the nictitating membranes with phenylephrine (Neosynephrine).
Spectacle lenses were chosen by the tapetal reflection technique to opti-
mize the focus of stimuli on the retina. The position of the monitor was
adjusted with an x–y-stage so that the area centralae were well centered
on the screen and their coordinates entered into the computer for track-
ing receptive field (RF) positions in retinal coordinates.

Stimuli were presented on an Image Systems (Minnetonka, MN)
model M09LV monochrome monitor operating at 125 frames per sec-
ond at a spatial resolution of 1024 " 786 pixels and a mean luminance of
47 cd/m 2. The screen subtends 36 by 27 o (28.7 pixels per degree), and
lookup tables were linearized for a contrast range of !100%. Stimuli
were synthesized using custom software by means of the framestore por-
tion of a Cambridge Research Systems (Cambridge, UK) VSG card
mounted in a conventional personal computer. Programs provide for
stimulus control, online displays of acquired signals (Vm and spikes), and
a graphical user interface for controlling all stimulus parameters. In ad-
dition to this online control, all data were stored on a Nicolet Vision, and
it was from these records that offline analyses were performed. Vm and
stimulus marks were sampled at 10 kHz with 16 bit analog-to-digital
converters.

Computer-assisted hand plotting routines were used with every cell to
estimate quickly and accurately the optimal orientation, direction, and
spatial and temporal frequencies and to determine the receptive field
position and dimensions. Contrast response functions were generated by
presenting sinusoidal gratings of optimal orientation, direction, and spa-
tial frequency, drifting within a patch limited to the receptive field. Mean
luminance and all parameters of the stimuli were held constant except for
contrast, which was presented in pseudorandom order. Presentation at
each contrast consisted of 3–5 cycles before the screen was returned to
mean luminance for an equal interval. In this way we minimized, or at
least standardized, the effects of changing the contrast set point of cells,
which is known to change over an average time course of seconds
(Ohzawa et al., 1982; Sanchez-Vives et al., 2000). One pass consisted of

presentations at each contrast, and 5–15 passes were generally run. The
contrasts used were always 0, 2, 4, 8, 16, 32, and 64%.

Simple cells were distinguished from complex cells by the relative
modulation of their spike trains. If the fundamental F1 (response at the
temporal frequency of the grating) equaled or exceeded the average firing
rate (the DC), the cell was classified as simple (Skottun et al., 1991);
otherwise it was classified as complex.

Intracellular recording procedures. Intracellular recordings were ob-
tained from the visual cortex as close as possible to the representation of
the area centralis (P4, L2). Intracellular recordings were performed with
glass micropipettes filled with 2 M potassium acetate (with 2% neurobi-
otin added). The depth of the cells was estimated from the microdrive
reading, which was calibrated by comparing those readings with the
depths of cells filled with Neurobiotin (n # 12) and found to have $15%
error. After beveling, pipettes had final resistances of 60 – 80 M%.

Statistical analysis. Contrast response functions were generated offline
using MatLab (MathWorks, Natick, MA). Spike firing times were deter-
mined from the Nicolet records, and PSTHs were constructed, giving
spike counts per bin (n # 100) evenly spaced over the cycle for each
contrast. F1 and DC response components were extracted from the peri-
stimulus histograms (PSTHs) at each contrast on a pass-by-pass basis.
Spikes were also removed from the records of Vm (by template subtrac-
tion), and cyclegrams were generated of Vm for each pass. F1 and DC
components were extracted from the Vm cyclegrams as well. Thus, seven
F1 terms and seven DC terms were obtained for both Vm and spikes for
every cell. Each set of 4 " 7 observations was fit to four candidate func-
tions using the Levenberg–Marquardt method to minimize the ! 2 error
between the observations and the candidate function. This method com-
bines the steepest-descent method and a Taylor series– based method to
obtain a fast, reliable technique for nonlinear optimization. Following
the lead of Albrecht and Hamilton (1982), the four candidate functions
are:

Linear R(C) # a & b*C,
Log R(C) # a & b *log10(C),
Power R(C) # a & b *C c,
Hyperbolic ratio R( C) # Rmax*Cn/(C50

n & Cn),
where R( C) denotes response as a function of contrast. Spontaneous

activity (or resting Vm) was subtracted from the data before curve fitting.
The parameters of the hyperbolic ratio function will be explained in
Results.

In most instances, the groups being compared are small. Accordingly,
nonparametric statistics are used unless otherwise noted.

Results
Our goal was to characterize quantitatively the responses of elec-
trophysiologically defined cell classes in primary visual cortex, as
a function of the contrast of visual stimuli. Using intracellular
recording in vivo, we measured the responses to drifting sinusoi-
dal gratings of optimal orientation and spatiotemporal frequency
presented at logarithmically spaced contrasts. Cells were classi-
fied electrophysiologically with intracellular current injection,
and contrast response functions (CRFs) were obtained for Vm

and spike rates (in Hertz). The CRFs were characterized quanti-
tatively by least-squares fits to four mathematical functions: lin-
ear, logarithmic, power, and hyperbolic ratio (see Materials and
Methods). The parameters of these fits were then used to com-
pare the CRFs obtained simultaneously for spike rates and Vm

and to summarize and compare the responses of the various cell
classes. We emphasize the differences between RS and FS cells
because they constitute the great majority of excitatory and in-
hibitory cells in the neocortex, but we also show differences be-
tween these and other cell types.

Intracellular recordings with sharp glass microelectrodes were
obtained from layers 2– 6 of cat primary visual cortex (area 17).
Of the 148 cells recorded intracellularly in 36 cats, we selected 58
cells based on two criteria: (1) at least one complete CRF was
obtained and (2) the resting Vm was stable and more negative

Contreras and Palmer • Contrast Response of Primary Visual Cortical Cells J. Neurosci., July 30, 2003 • 23(17):6936 – 6945 • 6937

7
Now, at the moment, data flows between scientists mostly via zip files, e-mail attachments, DVDs. Information - metadata - mostly flows via the 
same route as knowledge, via PDFs.



Information and data flow: doesn’t work quite so well

Horse & Cart at the Muslim Cemetery, Tetovo by themanwithsalthair 
http://www.flickr.com/photos/themanwithsalthair/3038240771/

8
This is not so good. We have format problems, data going missing, multiple slightly different copies... (see http://www.phdcomics.com/
comics.php?f=1323)



Information and data flow: doesn’t work quite so well
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9
and information doesn’t flow at all; Or only flows via the knowledge pathways (papers, PDFs) and with very lossy transmission.

To recap: neuromorphic computation requires effective and rapid communication of knowledge, information, and data between biologists, 
physicists, engineers, ... but while knowledge flow works well, there are problems with exchanging information and data.
So one of the goals of FACETS was to improve the flow of data and of information between the different groups and disciplines within the project.
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Now I’m going to present some of the tools we developed for improving data/information flow in FACETS.
To be more precise about the types of data and information we’re interested in, I want to consider some typical workflows in FACETS. 

The workflows for biological experiments, ...
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... for software simulations, ...



Hardware emulation workflow
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... and for running experiments on the hardware (as Daniel Brüderle showed yesterday) are all very similar.
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So there are evident redundancies here, and if we wish to compare experiments, software simulations and hardware emulations, there are several 
barriers.
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One of our goals therefore is to merge these workflows, to be able to apply the same experimental protocol to biology, simulations and hardware, 
use the same model for both software and hardware, use the same analyses across all three types of experiment.



A common interface for model descriptions
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The first part of this is to be able to use the same model for both software simulations and with neuromorphic hardware



In neuroscience, models often live in a walled 
garden

• not reproducible from 
published descriptions

• only run on a single 
simulator

• hence not testable or 
reusable
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16
The broader context for this is that there are many problems with sharing numerical models in neuroscience, even between software simulators, 
never mind between software and hardware.



Solution 1: improve published descriptions

• improve the papers:

- E. Nordlie and H. E. Plesser. Visualizing neuronal network connectivity 
with connectivity pattern tables. Front. Neuroinform., 3:39, 2010. DOI 
10.3389/neuro.11.039.2009.

- E. Nordlie, M.-O. Gewaltig, and H. E. Plesser. Towards reproducible 
descriptions of neuronal network models. PLoS Comput Biol, 
5(8):e1000456, Aug 2009. DOI 10.1371/journal.pcbi.1000456.

• publish to a database:

- machine-readable, declarative descriptions 

- widely used in systems biology (SBML, CellML, 
SED-ML, BioModels database)

- preliminary attempts in neuroscience: 
NeuroML, NineML.
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17
There are 2 ways to improve this situation, and we need both.

One way is to improve the published descriptions.

http://dx.doi.org/10.3389/neuro.11.039.2009
http://dx.doi.org/10.3389/neuro.11.039.2009
http://dx.doi.org/10.1371/journal.pcbi.1000456
http://dx.doi.org/10.1371/journal.pcbi.1000456


Solution 2: get the code
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18
A more pragmatic, and much faster solution is just to get hold of the code, if you can. Fortunately, things have been improving in this area, for 
example with the ModelDB database at SenseLab (http://senselab.med.yale.edu/modeldb) ...

http://senselab.med.yale.edu/ModelDB
http://senselab.med.yale.edu/ModelDB


Solution 2: get the code...and then translate it
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... although even then, if you want to solve a model on a different simulator to the original one, or combine two models developed for different 
simulators, you’re in for a tedious and difficult translation task.

http://senselab.med.yale.edu/modeldb/FindBySimulator.asp
http://senselab.med.yale.edu/modeldb/FindBySimulator.asp


Simulator diversity: problem and opportunity

Cons 

• Considerable difficulty in translating models from one simulator to another... 

• ...or even in understanding someone else’s code. 

• This: 

- impedes communication between investigators, 

- makes it harder to reproduce other people’s work, 

- makes it harder to build on other people’s work. 

Pros 

• Each simulator has a different balance between efficiency, flexibility, scalability and 
user-friendliness → can choose the most appropriate for a given problem. 

• Any given simulator is likely to have bugs and hidden assumptions, which will be 
revealed by cross-checking results between different simulators → greater 
confidence in correctness of results.

20
There large number of simulators that are used in computational neuroscience is both a problem and an opportunity, and the same can be said for 
the diversity of approaches to developing neuromorphic hardware.



Having your cake and eating it

Simulator-independent environments for 
developing neuroscience models: 

• keep the advantages of having multiple 
simulators or hardware devices 

• but remove the translation barrier. 

Three (complementary) approaches: 

• GUI (e.g. neuroConstruct) 

• XML-based language (e.g. NeuroML) 

• interpreted language (e.g. Python)
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So can we keep the pros and get rid of the cons? The third approach listed on the slide is perhaps the most flexible, and is the one we’ve taken in 
FACETS



PyNN: write the code for a simulation once, 
run it on any supported simulator or 
hardware device without modification.

sli

GENESIS 2 MOOSE

NeuroML

PCSIMNEST NEURONSimulator kernel

Native interpreter

Python interpreter

Simulator-specific
  PyNN module

hoc

FACETS
hardware

nrnpy

SLI

PyMOOSEPyPCSIM PyHALPyNEST

pynn.neuronpynn.nest pynn.pcsim pynn.
facetshardware1

pynn.neuroml pynn.moose
pynn.

genesis2

PyNN

Direct communication Code generation Implemented Planned

Brian

pynn.brian

http://neuralensemble.org/PyNN
22

PyNN is both a definition of a common Python API for spiking network simulations and an implementation of that API for a number of commonly-
used simulators.



sim.setup(timestep=0.1)
cell_parameters = {”tau_m”: 12.0, ”cm”: 0.8, ”v_thresh”: -50.0,
                   ”v_reset”: -65.0}
pE = sim.Population((100,100), sim.IF_cond_exp, cell_parameters,
                    label=”excitatory neurons”)
pI = sim.Population((50,50), sim.IF_cond_exp, cell_parameters,
                    label=”inhibitory neurons”)
input = sim.Population(100, sim.SpikeSourcePoisson)
rate_distr = random.RandomDistribution(”normal”, (10.0, 2.0))
input.rset(”rate”, rate_distr)    
background = sim.NoisyCurrentSource(mean=0.1, stdev=0.01)
pE.inject(background)
pI.inject(background)
DDPC = sim.DistanceDependentProbabilityConnector
weight_distr = random.RandomDistribution(”uniform”, (0.0, 0.1))
connector = DDPC(”exp(-d**2/400.0)”, weights=weight_distr,
                 delays=”0.5+0.01d”)
TMM = sim. TsodyksMarkramMechanism
depressing = sim.DynamicSynapse(fast=TMM(U=0.5,tau_rec=800.0)) 
e2e = sim.Projection(pE, pE, connector, target=”excitatory”,
                     synapse_dynamics=plasticity)
e2i = sim.Projection(pE, pI, connector, target=”excitatory”)
i2e = sim.Projection(pI, pE, connector, target=”inhibitory”)

23
Here is an example of a PyNN script for a fairly simple network, with excitatory and inhibitory neurons connected through dynamic synapses, with 
a Gaussian connectivity profile, receiving both Poisson spiking input and noisy current injection.



sim.setup(timestep=0.1)
cell_parameters = {”tau_m”: 12.0, ”cm”: 0.8, ”v_thresh”: -50.0,
                   ”v_reset”: -65.0}
pE = sim.Population((100,100), sim.IF_cond_exp, cell_parameters,
                    label=”excitatory neurons”)
pI = sim.Population((50,50), sim.IF_cond_exp, cell_parameters,
                    label=”inhibitory neurons”)
input = sim.Population(100, sim.SpikeSourcePoisson)
rate_distr = random.RandomDistribution(”normal”, (10.0, 2.0))
input.rset(”rate”, rate_distr)    
background = sim.NoisyCurrentSource(mean=0.1, stdev=0.01)
pE.inject(background)
pI.inject(background)
DDPC = sim.DistanceDependentProbabilityConnector
weight_distr = random.RandomDistribution(”uniform”, (0.0, 0.1))
connector = DDPC(”exp(-d**2/400.0)”, weights=weight_distr,
                 delays=”0.5+0.01d”)
TMM = sim. TsodyksMarkramMechanism
depressing = sim.DynamicSynapse(fast=TMM(U=0.5,tau_rec=800.0)) 
e2e = sim.Projection(pE, pE, connector, target=”excitatory”,
                     synapse_dynamics=plasticity)
e2i = sim.Projection(pE, pI, connector, target=”excitatory”)
i2e = sim.Projection(pI, pE, connector, target=”inhibitory”)

import pyNN.neuron as sim

24
This is how you run it with NEURON.



sim.setup(timestep=0.1)
cell_parameters = {”tau_m”: 12.0, ”cm”: 0.8, ”v_thresh”: -50.0,
                   ”v_reset”: -65.0}
pE = sim.Population((100,100), sim.IF_cond_exp, cell_parameters,
                    label=”excitatory neurons”)
pI = sim.Population((50,50), sim.IF_cond_exp, cell_parameters,
                    label=”inhibitory neurons”)
input = sim.Population(100, sim.SpikeSourcePoisson)
rate_distr = random.RandomDistribution(”normal”, (10.0, 2.0))
input.rset(”rate”, rate_distr)    
background = sim.NoisyCurrentSource(mean=0.1, stdev=0.01)
pE.inject(background)
pI.inject(background)
DDPC = sim.DistanceDependentProbabilityConnector
weight_distr = random.RandomDistribution(”uniform”, (0.0, 0.1))
connector = DDPC(”exp(-d**2/400.0)”, weights=weight_distr,
                 delays=”0.5+0.01d”)
TMM = sim. TsodyksMarkramMechanism
depressing = sim.DynamicSynapse(fast=TMM(U=0.5,tau_rec=800.0)) 
e2e = sim.Projection(pE, pE, connector, target=”excitatory”,
                     synapse_dynamics=plasticity)
e2i = sim.Projection(pE, pI, connector, target=”excitatory”)
i2e = sim.Projection(pI, pE, connector, target=”inhibitory”)

import pyNN.nest as sim

25
This is how you run it with NEST.



sim.setup(timestep=0.1)
cell_parameters = {”tau_m”: 12.0, ”cm”: 0.8, ”v_thresh”: -50.0,
                   ”v_reset”: -65.0}
pE = sim.Population((100,100), sim.IF_cond_exp, cell_parameters,
                    label=”excitatory neurons”)
pI = sim.Population((50,50), sim.IF_cond_exp, cell_parameters,
                    label=”inhibitory neurons”)
input = sim.Population(100, sim.SpikeSourcePoisson)
rate_distr = random.RandomDistribution(”normal”, (10.0, 2.0))
input.rset(”rate”, rate_distr)    
background = sim.NoisyCurrentSource(mean=0.1, stdev=0.01)
pE.inject(background)
pI.inject(background)
DDPC = sim.DistanceDependentProbabilityConnector
weight_distr = random.RandomDistribution(”uniform”, (0.0, 0.1))
connector = DDPC(”exp(-d**2/400.0)”, weights=weight_distr,
                 delays=”0.5+0.01d”)
TMM = sim. TsodyksMarkramMechanism
depressing = sim.DynamicSynapse(fast=TMM(U=0.5,tau_rec=800.0)) 
e2e = sim.Projection(pE, pE, connector, target=”excitatory”,
                     synapse_dynamics=plasticity)
e2i = sim.Projection(pE, pI, connector, target=”excitatory”)
i2e = sim.Projection(pI, pE, connector, target=”inhibitory”)

import pyNN.hardware.facets.stage1 as sim
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This is how you run it on the FACETS neuromorphic hardware. 

So once you’ve defined your model, you can choose to run it on the simulator that fits it best, and you can check that different simulators give the 
same result, and, as Daniel Brüderle demonstrated yesterday, you can also transfer your model trivially to neuromorphic hardware.



http://neuralensemble.org/PyNN

Davison A.P., Brüderle D., Eppler J.M., Kremkow, J., Muller E., Pecevski D.A., Perrinet L. 
and Yger P. (2009) PyNN: a common interface for neuronal network simulators. 
Frontiers in Neuroinformatics 2:11: doi:10.3389/neuro.11.011.2008

Brüderle D., Muller E., Davison A., Muller E., Schemmel J. and Meier K. (2009) 
Establishing a Novel Modeling Tool: A Python-based Interface for a Neuromorphic 
Hardware System. Frontiers in Neuroinformatics 3:17: doi:10.3389/neuro.11.017.2009
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PyNN is open-source, and we welcome contributions. For more information, see either of these two articles. Full documentation is on the website.



A shared toolbox for analysis and visualisation

Experimental 
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I’ve talked about sharing model descriptions, can we do the same for analysis and visualisation of results?



Parallel reimplementation of analysis routines by 
generations of PhD students...
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We’ve talked a lot about parallelism in this meeting.....and while it is undoubtedly educational to implement your own analysis routines, it’s also 
rather wasteful and error prone.
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There have been several activities in FACETS working on toolboxes for neuronal analyses. In the Matlab environment, we have FIND, developed in 
Freiburg. This project started before FACETS, but developed during the FACETS period.
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There have been several activities in FACETS working on toolboxes for neuronal analyses. In the Matlab environment, we have FIND, developed in 
Freiburg. This project started before FACETS, but developed during the FACETS period.



• signals: manipulation of and calculations 
with spike trains and analog signals.

• parameters: management of large, 
hierarchical parameter sets

• analysis: miscellaneous analysis functions

• stgen: various stochastic process 
generators relevant for Neuroscience 
(Ornstein-Uhlenbeck, Poisson, 
inhomogenous gamma, ...).

• plotting: tools for plotting and image 
processing, based on Matplotlib and the 
Python Imaging Library.

• datastore: intelligent caching of 
intermediate results

http://neuralensemble.org/NeuroTools
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While FIND is mainly aimed at experimental data, most modellers in FACETS have tended to use Python. The simulators all use Python as well, so it 
is convenient to plug things together this way. NeuroTools is a toolbox for simulation projects, containing not just analysis routines, but tools for 
signal generation, parameter management, etc. NeuroTools is fully open-source, and accepts contributions from anyone.

http://neuralensemble.org/trac/NeuroTools/wiki/signals
http://neuralensemble.org/trac/NeuroTools/wiki/parameters
http://neuralensemble.org/trac/NeuroTools/wiki/parameters
http://neuralensemble.org/trac/NeuroTools/wiki/analysis
http://neuralensemble.org/trac/NeuroTools/wiki/analysis
http://neuralensemble.org/trac/NeuroTools/wiki/stgen
http://neuralensemble.org/trac/NeuroTools/wiki/stgen
http://neuralensemble.org/trac/NeuroTools/wiki/plotting
http://neuralensemble.org/trac/NeuroTools/wiki/plotting
http://neuralensemble.org/trac/NeuroTools/wiki/datastore
http://neuralensemble.org/trac/NeuroTools/wiki/datastore


Elphy • Programmable data acquisition and analysis environment for Windows

• Used for a large fraction of biological experiments within FACETS 

http://www.unic.cnrs-gif.fr/software.html

User Friendly Graphic 
Interface

Multi-page display
Owner designed pages

Mouse handling of objects

Data Acquisition  and 
Control of Experiments

Interfaces from Axon, 
ITC, MCC, UEI 
On line analysis

Visual 
Stimulation

DirectX 
 Hardware control
Standard graphic 

adapter

Data 
Analysis

120 dedicated objects
2000 functions

Event detection, 
correlations, Fourier 

analysis, etc…

Object Oriented Programming

G. Sadoc 
C. Monier
Team: Y. Frégnac
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and then we have Elphy, which is a highly flexible Windows programme for data acquisition and analysis, and is developed in Gif sur Yvette by 
Gérard Sadoc. Elphy has been developed for many years now, and was used for a large fraction of the biological experiments within FACETS, 
including all the results shown by Yves Frégnac earlier.



Parallel reimplementation of analysis toolboxes by 
generations of EC-funded projects?

33
So you might argue that we haven’t moved forward very much in being able to share and communicate analysis workflows.
Except...at least these guys can communicate, and find each others’ bugs,



neo

Elphy
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and in fact we’ve started to have good communication between Matlab, Python and Elphy, with the development of a Python interface to Elphy 
running as a server, and the merging of the data storage layers of NeuroTools and a non-FACETS tool, OpenElectrophy, developed by Samuel 
Garcia from the Université Claude Bernard, Lyon.



Comparing simulations to experiment
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Since one of the things we want to do in FACETS is compare biological experiments with the results of simulating model systems, in software or 
hardware, we need to go the next step and use the same experimental protocols, and use exactly the same analysis methods for real and 
simulated data, and we need to automate the whole comparison process, because complex models need a lot of data to properly constrain them.
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To achieve this automated comparison we need a standard format for specifying stimuli ...
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and we need to break analyses down into standard blocks so we can then build-up full workflows in different systems.



Encode Materials and Methods in a machine-readable format
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We’ve started by taking experiments from the literature, and converting them into a machine-readable format, so we can automate the process of 
running simulations, doing the analysis and comparing to experimental data.
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This shows our prototype XML format for describing experiments in a machine-readable format, such that the experiments can be automatically 
applied to different models...



But who wants to write XML?
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but no-one wants to write XML, so we have a website that allows people to create these experiment representations by filling in a form.
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Then to run the simulation and do the comparison is a single command, specifying the experiment to run and the model to run it on.
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In FACETS at least three different models of V1 cortex were developed, and we ran a small library of five benchmarks on each of them. 
Of course, this is just a proof of concept, but we think we’ve made a good start in being able to automatically test models against a large library of 
biological datasets.
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In the prototype, we took data from the literature, but of course we would like to make more in-depth comparisons, and, as Wulfram Gerstner said 
in his talk, if you’re going to compare models you need a training set and a testing set, so we would also like to compare to experimental 
recordings directly. To do this, and to promote the reuse of existing biological data more widely, we’ve started to develop a database of 
experimental data obtained during FACETS and previously, from several experimental labs.
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In this database, we aim to capture all the metadata that would be needed either to reproduce an experiment by a biologist, or to reproduce the 
experiment in a simulation.
This takes time, of course. Here there is data available for the anaesthesia and so forth, but it’s all written down in lab notebooks, in bad 
handwriting, and it takes time to digitize all this stuff.



45
We can also access and download the data itself, of course.



To improve communication of data and 
information requires both social change and tool 
development

• social/process aspect: make it normal to 
digitize/share data + information

- carrot: make datasets, etc. citable, count towards       
career progression

- stick: funding agencies increasingly require it

• tools aspect: make it easy to digitize/share 
data + information
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I’d like to finish by reflecting on what we’ve learnt from the experience of working together in FACETS.

I started by saying that we need to improve communication of data and metadata between groups. Doing this requires changing some of the 
norms within our scientific field, making data and information sharing normal and rewarded, and requires data sharing to be made easier, through 
development of appropriate tools.



The best way to get these tools developed is via 
open collaboration

• large, well-funded, centralized projects

- (BlueBrain Project,  Allen Brain Atlas, ...) 

- have the manpower/resources to develop tools/resolve all these issues 
internally

• the rest of us

- can’t build all the pieces ourselves

- need to collaborate, share components

- either through formal collaborative projects like FACETS, or through 
informal collaborations

• this is really a false dichotomy

- large centralised projects often very keen to share what they develop, 
and benefit from tools developed by others (cf contributions of IBM, etc. 
to Linux, Google to Python, ...)
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These tools can’t really be built by individual researchers or even individual labs. Formal collaboration through funded projects is not necessary - 
it’s great to kick-start things, as FACETS has shown, but many people who have participated in the development of the tools I’ve shown today are 
from outside FACETS.
Also, even imperfect tools have value, and I think neuromorphic computation will benefit from the open-source philosophy of  “release early, 
release often”: if your tool is useful for you now, release it, don’t wait to polish it to perfection first.



• promote discussion

• develop standard interfaces

Collaborative tool development benefits from 
formal or informal coordination
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Even if the collaboration is informal, it can benefit from coordination, either through international organisations such as the INCF, or through 
grass-roots efforts such as the Neural Ensemble initiative, started by myself and Eilif Muller with the generous support of FACETS.



Acknowledgements

Pierre Yger
Eilif Muller
Daniel Brüderle 
Jochen Eppler
Jens Kremkow
Dejan Pecevski

Support and advice
Yves Frégnac
Thierry Viéville
Alain Destexhe
Karlheinz Meier

Laurent Perrinet
Pierre Yger
Daniel Brüderle
Eilif Muller
Michael Schmuker
Jens Kremkow
Samuel Garcia
Luc Estebanez

Funding
FET (FACETS)
CNRS

Benchmarking
Jens Kremkow
Klaus Schuch
Mikael Djurfeldt

Databases
Thierry Brizzi
Olivier Manette
Cyril Monier
Gérard Sadoc
Zoltan Kisvárday

Elphy
Gérard Sadoc

FIND
Ralph Meier
Christian Garbers
Ulrich Egert

49
The work presented here is due to a large number of people. I apologize if I’ve forgotten anyone.



Conclusions

• the best way to turn the cart-track into the superhighway
and help make the complexity of neuromorphic computation manageable 
is software development in the open

• if you’re interested in using and/or helping to develop PyNN, NeuroTools, etc., 
please check out 

http://neuralensemble.org/ 

• if you have a problem, an idea, or are seeking collaborators for your own 
software project, 

- check out http://groups.google.com/group/neuralensemble, 

- or come to the CodeJam http://neuralensemble.org/codejam4 

50
http://www.andrewdavison.info/contact/
Twitter: @apdavison.

Please feel free to reuse any of the material from these slides, provided you abide by the terms of the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 licence.  http://creativecommons.org/licenses/by-nc-sa/3.0/


