(Courtesy of Alex Thomson,

Jniversity of London, Stochastic activity and high-conductance states, from single neurons to macroscopic levels

Alain Destexhe

Unit for Neuroscience, Information and Complexity (UNIC)

CNRS Gif-sur-Yvette, France

://cns.iaf.cnrs-gif.fr

Contributors:

Claude Bedard, Sami El Boustani, Martin Pospischil, Michelle Rudolph (UNIC), Olivier Marre, Zuzanna Piwkowska, Yves Frégnac, Thierry Bal (UNIC), Diego Contreras (U. Pennsylvania, USA), Igor Timofeev & Mircea Steriade (Laval University, Canada)

Multiscale analysis

Characterization of "noisy" network activity in vivo: High-conductance states

EEG Intra 20mV -60 m V EEG 500 ms

and a proper and the second and the

Integrative properties of single neurons during High-Conductance states

 $g_{i}(t)$ have the set of the

Units

Neuronal computations with stochastic network states

Integrative properties at the level of single neurons

Extracting conductances from *in vivo* activity

Extracting conductances from *in vivo* activity

Rudolph, Pospischil, Timofeev & Destexhe, *J. Neurosci*, 2007

Extracting conductances from *in vivo* activity

Conductance measurements in awake cats

Contrasting low and high conductance states

Low-conductance states (excitation ~ inhibition)

High-conductance states (inhibition >> excitation)

Dynamic-clamp

Dynamic-clamp

Rudolph et al., *J. Neurosci*, 2007

Stochastic analysis of single cortical neurons in vivo

Summary of the stochastic analysis of High-conductance States

Stochastic analysis of Vm fluctuations reveals dominant inhibitory conductances

Two ways to evoke spikes: by excitation (rare) or release of inhibition (more generally seen)

Considerable cell-to-cell variability (diversity)

Neuronal computations with stochastic network states

Integrative properties at the level of networks of neurons

Multisite recordings in awake cats

Surface

Gray Matter

LFPs (macroscopic)

8	which be an
7	wand provide the second of the
6	www.autoutopationstational and a state of the
5	wandown where the second second second
4	······································
3	
2	water a second and the second and the second
1	white the second state and the second state and show the second state of the second st

Units (microscopic)

8					ł.										I								11	H	
7	111		8				11		1	1								1	E		I			I	
6	1.1			1	۱	I		H		۱	I	۱		I	H		I					١			1
5		۱	11	11			H	11			۱		I	H	I	11	۱	H	1				l		H
4	H	H									1	H			I			11	1	H	1	ł		1	1
3					H		11		۱		1			1				11	1		۱	11	H		۱
2	111							I			ł	I	11			ł	1		ł						I
1		=		H	11	11	H	HI						11	1	Ľ,	۱			ll	H		I	I	
																				-	-			-	-

Multiunit extracellular recordings in awake cats

Softky & Koch, *J Neurosci.* 1993 Bedard, Kroger & Destexhe, *Phys Rev Lett* 2006

Multiunit extracellular recordings in awake cats

Wake

Apparent stochastic dynamics!

Bedard, Kroger & Destexhe, Phys Rev Lett 2006

Marre, El Boustani, Fregnac & Destexhe *Physical Review Letters*, 2009

Network models of self-sustained irregular states

Networks of IF neurons

Network models of asynchronous irregular states

Networks of IF neurons

Brunel, J Physiol Paris, 2000

Self-sustained asynchronous irregular states

Networks of IF neurons (conductance-based)

Kumar et al. *Neural Computation* 2008

Self-sustained asynchronous irregular states

Vogels & Abbott, J Neurosci 2005

El Boustani & Destexhe, Neural Computation 2009

Self-sustained asynchronous irregular states

Networks of adaptative exponential IF neurons (conductance-based)

Destexhe *J Computational Neurosci* 2009

J Physiol Paris, 2007

Spike-triggered average analysis

El Boustani et al., *J Physiol Paris*, 2007

El Boustani et al., *J Physiol Paris*, 2007

El Boustani et al., *J Physiol Paris*, 2007 Modulation of information transfer by network activity

How to obtain models consistent with conductance measurements ?

Macroscopic modeling of AI states in spiking networks

El Boustani & Destexhe, Neural Computation 2009

Conductance maps

Network models with realistic conductance patterns

Best model: N=16000, 320 synapses/neuron

16000 14.45 Sec. 17

100

.....

.

17 8

.

000.

Cell number 8000

12000

4000

D

Raster

CONTRACTOR AND ADDRESS OF CONTRACTOR AND ADDRESS. a state of the second s high contract of the time the standard the first phillipping ********* ** ***** * and seens? William of the second s werthing a consideration of the S Sea. . . . 1.112

.... W** 1.2.4 19. 2. 197 1. A. S. al fax a 10. 1-1000 A . And arrie Accession : Summer River Truthered, ... S-ymallyline as 17 and with a west such. ****** ** Madarine ... the New Problem of the second 4 WILLIAM STREET \$\$\$\$.20 M ine, ditt. · · diet to a APR1 ++ + S. 11 Anti- alian de · Sec. 2. 2. 4

..... ""Fidt. Sant . 200 400 600 800 1000 0 Time (ms)

Vogels & Abbott, J Neurosci, 2005

Network models with realistic conductance patterns

6

Comparison

Impact of network activity on populations of neurons

Conclusions

- Randomly connected networks of IF neurons can easily generate dynamics which reproduce experimental observations...
 - ... except for conductances measurements!

Mean-field models can be used to identify network configurations with correct conductance state

Thanks to the team...

Zuzanna Piwkowska

Sami El Boustani

http://cns.iaf.cnrs-gif.fr

Neuronal Noise

Alain Destexhe - Michelle Rudolph

Springer Series in Computational Neuroscience, 2010