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The modeling of LFP and optical imaging signals is a theme that emerged during the 
FACETS project, as the different approaches outlined here were not initially planned in the 
proposal.  The purpose of the present report is to give an overview of this approach and 
outline possible perspectives for future modeling approaches.

MODELLING LOCAL FIELD POTENTIALS

Local field potentials (LFPs) are routinely measured in electrophysiological experiments, 
and  consist  of  recordings  of  the  extracellular  electric  potential,  in  general  using  high-
impedance electrodes.   Contrary to intracellular potentials, whose origin is well known today, 
the origin of extracellular signals is still debated.  Many electrical events in the network, such 
as synaptic currents in dendrites, action potentials or glial potentials all generate extracellular 
currents  and  thus  potentially  contribute to  different  extents  in  the  genesis  of  the  LFP. 
Because the extracellular space is shared by many cells, the combined electrical activity of a 
large number of neurons is believed to be at the basis of the LFP.  There is also evidence 
that the electric signals undergo low-pass filtering when flowing in extracellular space, as well 
as attenuate with distance,  and thus the LFP can not be simply predicted by the simple 
summation of electric events but needs to be handled by appropriate models.

Because  LFP  signals  constitute  an  important  signal  recorded  experimentally,  and 
because it is not easy to incorporate into network models, we have studied theoretically the 
the genesis of LFP signals.  It is also important to relate the LFP with cellular activity, which 
revealed that both signals are consistent only if the signal is subject to a filtering of 1/f type 
(Bedard et al., 2006).  This type of filter was later found to be consistent with the effect of 
ionic  diffusion  (Bedard  and  Destexhe,  2009).  Further,  we  used  a  simple  kernel  based 
method to transform spiking activity of  a network model to macroscopic signals (such as 
EEG/LFP). Depending on the parameters a cortical network model can exhibit a range of 
activity states but asynchronous irregular (AI) and synchronous-irregular (SI) activity state 
are deemed physiological. Consistent with this, network activity in AI resulted in a biologically 
realistic  macroscopic  signals  corresponding  to  awake  state  and  SI  state  generated 
macroscopic signal that resembled more with the pathological activity (Meier et al 2007).

MODELLING OPTICAL IMAGING SIGNALS

Similar to LFPs, optical imaging using voltage-sensitive dyes (VSD) provides important 
insight into network dynamics as it is currently the only technique that allows to visualize a 
large population activity at both high spatial and temporal resolution. It is based on voltage-
sensitive  dyes  (VSDs),  which  binds  to  the  membrane  and  transform  variations  in  the 
membrane potential into optical fluorescence. The emitted fluorescence is linearly correlated 
with changes in membrane potential per unit of membrane area of all the stained surfaces 
(Grinvald and Hildesheim 2004), meaning all neuronal cells present in the cortex, excitatory 
and inhibitory cells, all processes (soma, dendrites, axons) but also all non-neuronal cells, 
such as glial cells. The measured signal is therefore a multiplexed signal that combines all 
these  components.  Therefore,  although  the  underlying  mechanism  of  the  VSDI  is  well 
understood (Grinvald and Hildesheim 2004), the recorded signal remains very complex and it 
is  difficult  to  isolate  the  relative  contributions  of  such  a  large  amount  of  intermingled 
components  (Chemla  and  Chavane  2009).  The  identification  of  these  various  signal 
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components is,  in  fact,  possible  for  in  vitro  optical  imaging "depth" recordings,  as in  the 
hippocampal slice, as was demonstrated by Plenz and Aertsen (1993) by adapting the LFP-
based Current-Source-Density (CSD) framework (Nicholson and Freeman, 1975) to the 2D 
real-time optical imaging profiles. However, for in vivo optical imaging "surface" recordings, 
such identification has, until now, not been possible. 

We have proposed a biological cortical column model,  at an intermediate mesoscopic 
scale, in order to better understand and interpret biological sources of voltage- sensitive dye 
imaging signal (VSD signal). To perform a quantitative analysis of the relative contributions to 
the VSD signal, a detailed compartmental model was developed at a scale corresponding to 
one  pixel  of  optical  imaging.  The  generated  model  was  used  to  solve  the  VSD  direct 
problem, i.e. generate a VSD signal, given the neural substrate parameters and activities. 
Here, we confirm and quantify the fact that the VSD signal is the result of an average from 
multiple components. Not surprisingly, the compartment contributing most to the signal is the 
upper layer  dendrites of  excitatory neurons.  However,  our model  suggests that  inhibitory 
cells,  spiking  activity  and  deep  layers  contributions  are  also  significant  and,  more 
unexpected,  are  dynamically  modulated  with  time  and  response  strength  (Chemla  & 
Chavane, in revision).

We have further evaluated mesoscopic neural field models as a tool to simulate VSD 
signals  in  slices  from  ferret  visual  cortex.  These  signals  reveal  complex  spatiotemporal 
patterns  in  response  to  localised  pulsed  electrical  stimulation.  Given  proper  stimulating 
electrode models, close matches between experiments and simulations are possible. Results 
suggest specific excitatory-inhibitory circuits shaping the local temporal dynamics as well as 
certain non-linearities and horizontal spread along long-range synaptic pathways within layer 
2/3 shaping long-range spatial and temporal properties of the response patterns (Symes and 
Wennekers, 2009).

MACROSCOPIC MODELS

These two  approaches  revealed  that  the  macroscopic  measurements  are  not  simply 
deduced from the microscopic data (cellular activity,  connectivity,  etc).  A specific type of 
modeling must be used to correctly capture the macroscopic aspects of neuronal activity, as 
visible  in  LFP and VSD signals.   In FACETS, this type of  modeling was explored along 
several aspects.  

First,  neural  mass  models  were  designed,  where  the  variables  are  the  population 
activities.  A new mathematical mean-field approach was developed by INRIA to describe the 
populations activity in the limit  of  an infinite  number of  neurons (Faugeras,  Touboul and 
Cessac 2009).  Each neuron is described by an equation that relates the time variation of its 
membrane potential to its mean firing rate, and to the mean firing rate of its neighbours. The 
synaptic weights are assumed to be randomly distributed. The description also takes into 
account  random  currents.  The  mean-field  description  is  a  set  of  equations  (one  per 
population) bearing on the probability distribution of the mean average membrane potentials 
conditionnally to the law of the synaptic weights and the Wiener processes that appear in the 
random currents. These equations are quite interesting, non-Markovian, and they provide a 
link between the microscopic, activity-based description, and the mesoscopic formalism of 
neural masses.

The INRIA partner also continued the mathematical analysis of neural field models. They 
are  spatial  arrangements  of  neural  masses  that  provide  a  macroscopic,  activity-based 
description,  of  cortical  areas,  e.g.  visual  areas.  In  (Faugeras,  Veltz,  Grimbert  2009)  the 
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existence,  uniqueness  and stability  of  the solutions  of  these multi-population  neural  field 
equations was studied in detail. In particular the case of the stationary, i.e. independent of 
time, solutions is important because it qualifies as models of the so-called persistent states 
whose existence has been revealed experimentally.  

Second, a macroscopic formalism was derived for networks of spiking neurons in activity 
states with balanced excitation-inhibition, such as AI states.  In this case, mean firing rates 
are not  sufficient,  because the mean excitation  and inhibition  are balanced and it  is  the 
fluctuations of excitation and inhibition that drive the firing of the neurons.  Thus, in this case, 
a mean-field formalism must be derived based on first and second-order statistics (mean and 
covariances).  This was done for networks of current-based and conductance-based neurons 
using  a  Master  Equation  formalism  (El  Boustani  and  Destexhe,  2009).   This  formalism 
successfully describes the macroscopic activity of such networks which can be thought of 
modeling one “pixel” of the VSD imaging data.  The generalization to 2D frames of pixels 
necessitates to link macroscopic and microscopic connectivity, thereby providing estimates 
of the “effective connectivity”  (El  Boustani et  al.,  2009).   A macroscopic model was also 
developed for spike-frequency adapting neurons in the high-conductance state (Muller et al., 
2007).  The latter approach is particularly relevant for describing the ensemble dynamics and 
of neurons in AI states, as well as their response to stimuli.

PERSPECTIVES FOR FUTURE WORK

This exploration of the macroscopic aspects of  neuronal activity is a fascinating area 
which  is  motivated  by  following  points.   (1)  The information  is  evidently  coded  in  large 
neuronal  ensembles  rather  than  in  single  neurons,  but  the  recordings  of  such  large 
ensembles  (LFP and  VSD data)  are  not  trivial  to  interpret;  (2)  these signals  are  widely 
available today but are not yet incorporated in models because appropriate formalisms are 
not necessarily available to link macroscopic and microscopic scales.  We therefore conclude 
that  it  is  essential  to  develop  such  macroscopic  formalisms  to  better  interpret  the 
experimental data, extract relevant information and better constrain the models using data 
from multiple scales.  The use of data from multiple scales is an essential aspect for future 
research  in  experimental  and  computational  neuroscience.   In  this  respect,  a  promising 
approach  is  to  derive  macroscopic  (or  mean-field)  models  of  the  “microscopic”  spiking 
models in FACETS, with a goal to relate the two scales.
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Many complex systems display self-organized critical states characterized by 1=f frequency scaling of
power spectra. Global variables such as the electroencephalogram, scale as 1=f, which could be the sign
of self-organized critical states in neuronal activity. By analyzing simultaneous recordings of global and
neuronal activities, we confirm the 1=f scaling of global variables for selected frequency bands, but show
that neuronal activity is not consistent with critical states. We propose a model of 1=f scaling which does
not rely on critical states, and which is testable experimentally.
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Self-organized critical states are found for many com-
plex systems in nature, from earthquakes to avalanches
[1,2]. Such systems are characterized by scale invariance,
which is usually identified as a power-law distribution of
variables such as event duration or the waiting time be-
tween events. 1=f noise is usually considered as a footprint
of such systems [1]. 1=f frequency scaling is interesting,
because it betrays long-lasting correlations in the system,
similar to the behavior near critical points.

Several lines of evidence point to the existence of such
critical states in brain activity. Global variables, such as the
electroencephalogram (EEG) and magnetoencephalogram,
display frequency scaling close to 1=f [3,4]. EEG analysis
[5] and avalanche analysis of local field potentials (LFPs)
recorded in vitro [6] provided clear evidence for self-
organized critical states with power-law distributions.
There is also evidence for critical states from the power-
law scaling of interspike interval (ISI) distributions com-
puted from retinal, visual thalamus and primary visual
cortex neurons [7]. In addition, model networks of neurons
indicate that critical states may be associated with fre-
quency scaling consistent with experiments [8]. However,
these are independent evidences from different prepara-
tions and the link between 1=f frequency scaling of global
variables and the existence of critical states in neural
activity has not been firmly established. Moreover, 1=f
spectra are not necessarily associated with critical states
[9], so it is not clear if the intact and functioning brain
operates in a way similar to critical states.

To attempt answering these questions, we first investi-
gated if 1=f frequency scaling is present in global variables
recorded close to the underlying neuronal current sources
in vivo. We analyzed cortical LFPs which were recorded
within cerebral cortex using bipolar extracellular high-
impedance microelectrodes [10]. Bipolar LFP recordings
sample relatively localized populations of neurons, as these
signals can be very different for electrodes separated by
1 mm apart [10]. This stands in contrast with the EEG,
which samples much larger populations of neurons [11]
and is recorded from the surface of the scalp using

millimeter-scale electrodes. LFPs are subject to much
less filtering compared to EEG, because EEG signals
must diffuse through various media, such as cerebrospinal
fluid, dura matter, cranium, muscle, and skin. Thus, finding
1=f frequency scaling of bipolar LFPs would be a much
stronger evidence that this scaling reflects neuronal activ-
ities, as these signals are directly recorded from within the
neuronal tissue. Moreover, in order to distinguish state-
dependent scaling properties, we have compared record-
ings during wakefulness and slow-wave sleep in the same
experiments.

Bipolar LFPs from cat parietal association cortex show
the classic landmarks of EEG signals in these states [12];
namely, during waking, LFPs are of low amplitude and
very irregular (Fig. 1, top trace), and are dominated by beta
frequencies (around 20 Hz). This pattern is also called
‘‘desynchronized’’ activity, and is typically seen during
aroused states in the human EEG [11]. During slow-wave
sleep, LFPs display high-amplitude slow-wave activity
(Fig. 1, middle trace), similar to the ‘‘delta waves’’ of
human sleep EEG [11]. The power spectral density
(PSD) calculated from these LFPs typically shows a broad-
band structure. During wakefulness, the PSD shows two
different scaling regions, according to the frequency band.
For low frequencies (between 1 and 20 Hz), the PSD scales
approximately as 1=f, whereas for higher frequencies
(between 20 and 65 Hz), the scaling is approximately of
1=f3 (Fig. 1, black PSD). During slow-wave sleep, the
additional power at slow frequencies masks the 1=f scal-
ing, but the same 1=f3 scaling is present in the high-
frequency band (Fig. 1, gray PSD). The same behavior
was observed for other electrodes in the same experiment,
and in three other animals (not shown). Thus, these results
confirm that the 1=f frequency scaling reported in the EEG
[3] is also present in bipolar LFPs from cat association
cortex, but only during waking and for specific frequency
bands.

To investigate whether this 1=f scaling is associated
with self-organized critical states, we first analyzed the
ISI distributions from neurons recorded in cat parietal
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cortex. Unit activity was recorded simultaneously with
LFPs at 8 locations separated by 1 mm [10]. The distribu-
tion of ISIs was computed for individual neurons, and was
represented in log-linear scale (Fig. 2; log-log scale in
insets). For both wakefulness and slow-wave sleep
[Fig. 2(a) and 2(b)], the distributions showed no evidence
for power-law behavior. During waking, the ISI distribu-
tions were close to exponentially distributed ISIs, as gen-
erated by Poisson stochastic process with same statistics as
the neurons analyzed (Fig. 2, Poisson). For 22 neurons
recorded during the wake state, the Pearson coefficient
was of 0:91� 0:13 for exponential distribution fits, and
of 0:86� 0:16 for power-law distribution fits. Taking only
the subset of 7 neurons with more than 2000 spikes, the fit
was nearly perfect for exponential distributions (Pearson
coefficient of 0:999� 0:001). However, during slow-wave
sleep, there was a marked difference between the experi-
mental ISI and the corresponding Poisson process

[Fig. 2(b)]. In this state, neurons tended to produce long
periods of silences, which are related to EEG slow waves
[10,12], and which is visible as a prominent tail of the
distribution for large ISIs. This tail was well fit by a
Poisson process of low rate [Fig. 2(b), dashed line].
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FIG. 2. Absence of power-law distributions in neuronal activ-
ity. The logarithm of the distribution of ISI during waking
(Wake, (a), 1951 spikes) and slow-wave sleep (SWS, (b),
15997 spikes) is plotted as a function of ISI length, or log ISI
length (insets). A Poisson process of the same rate and statistics
is displayed in (a) (Poisson; gray curve displaced upwards for
clarity). The exponential ISI distribution predicted by Poisson
processes of equivalent rates is shown as straight lines (smooth
curve in inset). The dotted line in (b) indicates a Poisson process
with lower rate which fits the tail of the ISI distribution in SWS.
(c) Avalanche analysis realized by taking into account the
statistics from all simultaneously recorded cells in Wake. The
distribution of avalanche sizes scales exponentially (black
curves), similar to the same analysis performed on a Poisson
process with same statistics (gray curves).
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FIG. 1. Frequency scaling of local field potentials from cat
parietal cortex. Top traces: LFPs recorded in cat parietal cortex
during wake and slow-wave sleep (SWS) states. Bottom: Power
spectral density of LFPs, calculated from 55 sec sampled at
300 Hz (150 Hz 4th-order low-pass filter), and represented in
log-log scale (dashed lines represent 1=f� scaling). During
waking (black), the frequency band below 20 Hz scales approxi-
mately as 1=f (* shows the peak at 20 Hz beta frequency),
whereas the frequency band between 20 and 65 Hz scales
approximately as 1=f3. During slow-wave sleep (gray; displaced
upwards), the power in the slow frequency band is increased, and
the 1=f scaling is no longer visible, but the 1=f3 scaling at high
frequencies remains unaffected. PSDs were calculated over
successive epochs of 32 sec, which were averaged over a total
period of 200 sec for Wake and 500 sec for SWS.
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To further check for criticality, we have performed an
avalanche analysis by taking into account the collective
information from the multisite recordings. We used the
same method as for Ref. [6], which amounts to detecting
clusters of contiguous events separated by silences, by
binning the system in time windows of 1 to 16 ms [6].
As there was no evidence for any recognizable event in
LFPs which could be taken as avalanche (see Fig. 1), we
used the spike times among the ensemble of simulta-
neously recorded neurons. The distribution of avalanche
size does not follow power-law scaling [Fig. 2(c), black],
but is closer to an exponential distribution as predicted by
Poisson processes [Fig. 2(c), gray]. This analysis therefore
confirms the absence of avalanche dynamics in this system
[13].

To explain the 1=f scaling of LFPs, we attempted to
reconstruct LFPs from unit activity. Unit activity is dis-
played in Fig. 3 (top) for the same experiment as that of
Fig. 1. Because LFPs are generated primarily by synaptic
currents in neurons [11,14], and because synaptic currents
are very well modeled by simple exponential relaxation
processes [15], we modeled the synaptic current from the
following convolution [16]:

 C�t� �
Z 1
�1

D�t0� exp���t� t0�=�s�dt
0; (1)

where C�t� is the synaptic current and D�t� is the ‘‘drive’’
signal which consisted in the experimentally-recorded
spike trains. The PSD of the synaptic current is then given
by

 S�!� � jC�!�j2 �
jD�!�j2

1�!2�2
s
: (2)

The PSD of synaptic currents reconstructed from experi-
mentally recorded spikes showed an approximate Lorent-
zian behavior (1=f2 scaling) during wakefulness (Fig. 3,
Wake), as expected from the exponential nature of synaptic
events. During slow-wave sleep, there was more power for
slow frequencies, but the 1=f2 scaling at high frequencies
was still present (Fig. 3, SWS). The Lorentzian form of the
PSD in Fig. 3 (Wake) shows that in the waking state,
jD�!�j2 is approximately constant, therefore the drive
D�t� is statistically equivalent to a white noise process,
consistent with the apparent Poisson statistics of spikes
identified in Fig. 2 (see also Refs. [17] for similar findings
in awake monkeys). During slow-wave sleep, however, the
deviation from the Lorentzian suggests that D�t� is a
stochastic process statistically different from white noise,
and contains in addition increased power at low frequen-
cies, also consistent with the analysis of Fig. 2.

This model, however, does not yield PSD consistent
with the 1=f and 1=f3 scaling of LFPs shown in Fig. 1.
Interestingly, the scaling of this model is in 1=f0 or 1=f2

for the same frequency bands that displayed 1=f or 1=f3 in
LFPs, respectively. Using a similar convolution equation to
model the PSD of LFPs

 LFP �t� �
Z 1
�1

C�t0�F�t� t0�dt0; (3)

where C�t� is the synaptic current source and F�t� is a
function representing a filter. As above, the PSD is given by

 P�!� � jLFP�!�j2 � jC�!�j2jF�!�j2: (4)

In this model, the frequency scaling of the PSD of both
wakefulness and slow-wave sleep LFPs in Fig. 1 can be
explained by assuming that the filter scales as 1=f, or
equivalently that jF�!�j2 	 1=!. In other words, this
model can explain qualitatively the 1=f and 1=f3 scaling
of LFPs under the condition that neuronal current sources
are subject to an 1=f filter. Such a filter is most likely due
to the filtering of extracellular currents through the tissue,
before it reaches the electrode [18].

Finally, we provide an intuitive justification for this
predicted 1=f filter, as well as possible ways to test it
experimentally. The 1=f filtering of extracellular media
can be justified intuitively by considering the complex
structure of such media, and, in particular, its spatial
irregularity. Extracellular space consists of a complex ar-
rangement of cellular processes of various size and irregu-
lar shape, while the extracellular fluid represents only a few
percent of the available space [19]. The effect of a current
source in such media will be a combination of resistive

FIG. 3. Frequency scaling of synaptic currents reconstructed
from spike times. Top traces: raster plot of spiking times of 8
multiunit recordings in cat cortex during wakefulness (same
experiment as in Fig. 1; data from Ref. [10]). Middle
trace: total synaptic current obtained by convolving the spike
times with exponential relaxation processes (�s � 10 ms).
Bottom: PSD of synaptic currents for wake (black) and slow-
wave sleep (SWS; PSD in gray displaced upwards for clarity);
dashed lines represent 1=f� scaling.
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effects, due to the flow of current in the conductive fluids,
and capacitive effects, due to the high density of mem-
branes (for a theoretical treatment see Refs. [18]). Such a
complex arrangement of resistors and capacitors with ran-
dom values is known to produce an 1=f filter, as found for
inhomogeneous materials [20]. Although such materials
are different from the structure of biological media, it is
plausible that similar considerations may explain the 1=f
filtering predicted here. Linear arrangements ofRC circuits
with random values (RC line) also generate 1=f noise [21].
Superposition of a large number of exponential relaxation
processes with different relaxation rates can also generate
1=f scaling [22,23]. Understanding of the 1=f filtering by
extracellular media based on plausible biophysical models
is presently under investigation. The predicted 1=f filter
could also be tested experimentally by injecting white
noise currents (of amplitude comparable to neuronal cur-
rent sources) in extracellular space, and measuring the
resulting field potential at some distance from the injection
site. This measured LFP should scale as 1=f.

In conclusion, we have shown that the PSD of bipolar
LFPs from cat parietal cortex displays several scaling
regions, as 1=f or 1=f3 depending on the frequency band
and behavioral state. By analyzing neuronal unit activity
from the same experiments, we did not see evidence that
this 1=f scaling is associated with critical states. Neither
ISI distributions nor avalanche size distributions display
power-law scaling, but are rather consistent with Poisson
processes. We have provided an alternative explanation for
1=f frequency scaling which does not rely on critical
states, but rather stems from the filtering properties of
extracellular media. We have given an intuitive explanation
for a possible physical origin of such 1=f filtering, as well
as a way to test it experimentally. These results may appear
to contradict previous evidence for critical states in vitro
[6] or in the early visual system in vivo [7]. However, the
absence of critical states reported here may instead reflect
fundamental differences between association cortex and
other structures more directly related to sensory inputs.
Future work should clarify why different structures show
different scaling, and what implications it may have for
brain dynamics and coding.

The experimental data analyzed in this article were
obtained with Drs. Diego Contreras and Mircea Steriade,
and were published previously [10]. We are grateful for
support by NSERC Canada (H. K.), CNRS, the European
Commission (FET program), and the HFSP program
(A. D.).
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Macroscopic Models of Local Field Potentials and the Apparent 1/f Noise
in Brain Activity

Claude Bédard and Alain Destexhe*
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ABSTRACT The power spectrum of local field potentials (LFPs) has been reported to scale as the inverse of the frequency, but
the origin of this 1/f noise is at present unclear. Macroscopic measurements in cortical tissue demonstrated that electric conduc-
tivity (as well as permittivity) is frequency-dependent, while other measurements failed to evidence any dependence on
frequency. In this article, we propose a model of the genesis of LFPs that accounts for the above data and contradictions. Starting
from first principles (Maxwell equations), we introduce a macroscopic formalism in which macroscopic measurements are natu-
rally incorporated, and also examine different physical causes for the frequency dependence. We suggest that ionic diffusion
primes over electric field effects, and is responsible for the frequency dependence. This explains the contradictory observations,
and also reproduces the 1/f power spectral structure of LFPs, as well as more complex frequency scaling. Finally, we suggest
a measurement method to reveal the frequency dependence of current propagation in biological tissue, and which could be used
to directly test the predictions of this formalism.

INTRODUCTION

Macroscopic measurements of brain activity, such as the

electroencephalogram (EEG), magnetoencephalogram or

local field potentials (LFPs), display ~1/f frequency scaling

in their power spectra (1–4). The origin of such 1/f noise

is at present unclear. The 1/f spectra can result from self-

organized critical phenomena (5), suggesting that neuronal

activity may be working according to such states (6). Alter-

natively, the 1/f scaling may be due to filtering properties of

the currents through extracellular media (2). The latter

hypothesis, however, was resting on indirect evidence, and

still needs to be examined theoretically, which is one of

the motivations of this article.

A continuum model (7) of LFPs incorporated the inhomo-

geneities of the extracellular medium into continuous spatial

variations of conductivity (s) and permittivity (3) parame-

ters. This model reproduced a form of low-pass frequency

filtering in some conditions, while considering the extracel-

lular medium as locally neutral with s and 3 parameters inde-

pendent of frequency. This model was not entirely correct,

however, because macroscopic measurements in cortex

revealed a frequency dependence of electrical parameters

(8). We will show here that it is possible to keep the same

model structure by including plausible causes for the

frequency dependence.

In a polarization model (9) of LFPs, the variations of

conductivity and permittivity were considered by explicitly

taking into account the presence of various cellular processes

in the extracellular space around the current source. In partic-

ular, it was found that the phenomenon of surface polariza-

tion was fundamental to explain the frequency dependence

of LFPs. The continuum model (7) incorporated this effect

phenomenologically through continuous variations of s

and 3. In the polarization model, the extracellular medium

is reactive in the sense that it reacts to the electric field by

polarization effects. It is also locally nonneutral, which

enables one to take into account the noninstantaneous char-

acter of polarization, which is at the origin of frequency

dependence according to this model (9).

In this article, we propose a diffusion-polarization model

that synthesizes these previous approaches and which takes

into account both microscopic and macroscopic measure-

ments. This model includes ionic diffusion, which we will

show has a determinant influence on frequency filtering

properties. The model also includes electric polarization,

which also influences the frequency-dependent electric prop-

erties of the tissue. We show that taking into account ionic

diffusion and electric polarization allows us to quantitatively

account for the macroscopic measurements of electric

conductivity in cortical tissue according to the experiments

of Gabriel et al. (8).

However, recent measurements of Logothetis et al. (10)

evidenced that the frequency dependence of cortical tissue

was negligible, therefore in contradiction with the measure-

ments of Gabriel et al. (8). We show here that the diffusion-

polarization model can be consistent with both types of

experiments, and thus may reconcile this contradiction. We

will also examine whether this model can also explain the

1/f frequency scaling observed in LFP or EEG power spectra.

Finally, we consider possible ways for experimental test of

the predictions of this model.

The final goal of this approach is to obtain a model of local

field potentials, which is consistent with both macroscopic

measurements of conductivity and permittivity, and the

microscopic features of the structure of the extracellular

space around the current sources.
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MATERIALS AND METHODS

Numerical Simulation of Macroscopic Measurements (see Numerical

Simulation of Macroscopic Measurements, below) describes the impedance

of the extracellular medium based on

Zðr1;uÞ ¼
1

4p

Z N

r1

dr0
1

r02
1

sMðr0;uÞ þ iu3Mðr0;uÞ: (1)

This equation gives the u-frequency component of the impedance at point r1

in extracellular space, in spherical symmetry (see (7) and Eq. 11 for details).

To evaluate this equation, we use MATLAB (The MathWorks, Natick,

MA), which computes the Riemann sum,

Zðr1;uÞ ¼
1

4p

XN

r1

Dr0

r02
1

sMðr0;uÞ þ iu3Mðr0;uÞ; (2)

where Dr0 is the integration step (1 mm) and N is determined for a slice of

1 mm.

We also use the parametric model of Gabriel et al. (8) to simulate the

frequency dependence of electrical parameters s and 3 of the extracellular

fluid from gray matter (at a temperature of 37�C). This model is valid for

frequencies included in the range of 10 Hz to 4 � 108 Hz (11). According

to this model, the absolute complex and macroscopic permittivity and

conductivity (measured between 10 and 1010 Hz) in cortical gray matter is

given by the Cole-Cole parametric model (12),

3�u ¼ �i
s�

u
¼ 3N3o þ 3o

Xn¼ 4

n¼ 1

D3n

1 þ ðiutnÞ1�an
� i

s

u
; (3)

where the sum runs over four polarization modes n, 3o¼ 8.85� 10�12 F/m is

vacuum permittivity, 3N ¼ 4.0 is the permittivity relative to f ¼ 1010 Hz,

s¼0.02 S/m is the static conductivity at f¼0 Hz according to the chosen para-

metric model. The parameters under the sum of Eq. 3 are given in Table 1.

RESULTS

We start by outlining a macroscopic model with frequency-

dependent electrical parameters (Macroscopic Model of

Local Field Potentials), and we discuss the main physical

causes for this frequency dependence (Physical Causes for

Frequency-Dependent Electrical Parameters). We then

constrain the model to macroscopic measurements of electri-

cal parameters, and provide numerical simulations to test the

model and reproduce the experimental observations (Numer-

ical Simulation of Macroscopic Measurements). Finally, we

propose a possible way to test the model experimentally

(Measurement of Frequency Dependence).

Macroscopic model of local field potentials

In this section, we derive the equations governing the time

evolution of the extracellular potential. We follow a formalism

similar to the one developed previously (7), except that we

reformulate the model macroscopically, to allow the electrical

parameters (the conductivity s and permittivity 3) to depend

on frequency, as demonstrated by macroscopic measurements

(8,11,13). The physical causes of this macroscopic frequency

dependence will be examined in Physical Causes for

Frequency-Dependent Electrical Parameters.

General formalism

We begin by deriving a general equation for the electrical

potential when the electrical parameters are frequency-

dependent. We start from Maxwell equations, taking the first

and the divergence of the fourth Maxwell equation in

a medium with constant magnetic permeability, giving

V ,~D ¼ rfree

V ,~j þ vrfree

vt
¼ 0;

(4)

where ~D,~j and rfree are, respectively, the electric displace-

ment, current density, and charge density in the medium

surrounding the sources.

Moreover, in a linear medium the equations linking the

electric field~E with electric displacement ~D, and with current

density~j, gives

~Dð~x; tÞ ¼
Z N

�N

3ð~x; tÞ~Eð~x; t � tÞdt (5)

and

~jð~x; tÞ ¼
Z N

�N

sð~x; tÞ~Eð~x; t � tÞdt: (6)

The Fourier transforms of these equations are respectively
~Du ¼ 3u

~Eu and ~ju ¼ su
~Eu, where we allow s and 3 to

depend on frequency.

Given the limited precision of measurements, we can

consider V�~Ez0 for frequencies <1000 Hz. Thus, we

can assume that ~E ¼ �VV, such that the complex Fourier

transform of the expressions in Eq. 4 can be written as

V , ð3uð~xÞVVuÞ ¼ �rfree
u

V , ðsuð~xÞVVuÞ ¼ iurfree
u :

Consequently, we have

V , ððsu þ iu3uÞVVuÞ ¼ Vðsu þ iu3uÞ , VVu

þ ðsu þ iu3uÞV2Vu ¼ 0:
(7)

Compared to previous derivations (see Eq. 49 in (7)), this

equation is a more general form in which the electrical

parameters can be dependent on frequency.

Macroscopic model

In principle, it is sufficient to solve Eq. 7 in the extracellular

medium to obtain the frequency dependence of LFPs.

However, in practice, this equation cannot be solved because

the structure of the medium is too complex to properly define

TABLE 1 Parameter values for the parametric model of

Gabriel et al. (8) (see Eq. 3)

No. D3n tn (s) an

1 4.50 � 101 7.96 � 10�12 0.10

2 4.00 � 102 15.92 � 10�9 0.15

3 2.0 � 105 106.1 � 10�6 0.22

4 4.5 � 107 5.305 � 10�3 0.00

Biophysical Journal 96(7) 2589–2603

2590 Bédard and Destexhe



the limit conditions. The associated values of electric param-

eters must be specified for every point of space and for each

frequency, which represents a considerable difficulty. One

way to solve this problem is to consider a macroscopic or

mean-field approach. This approach is justified here by the

fact that the values measured experimentally are averaged

values, which precision depends on the measurement tech-

nique. Because our goal is to simulate those measured

values, we will use a macroscopic model, in which we take

spatial averages of Eq. 7, and make a continuous approxima-

tion for the spatial variations of these average values. This

type of approximation can be found in the classic theory of

electromagnetism (15).

To this end, we define macroscopic electric parameters,

3M and sM, as

3M
u ð~xÞ ¼ h3uð~xÞij

V

¼ f ð~x;uÞ
and

sM
u ð~xÞ ¼ hsuð~xÞij

V

¼ gð~x;uÞ;

where V is the volume over which the spatial average is

taken. We assume that V is ~mm3, and is thus much smaller

than the cortical volume, so that the mean values will be

dependent of the position in cortex.

Because the average values of electric parameters are

statistically independent of the mean value of the electric

field, we have

�
~j total

�
j

V

ð~x; tÞ ¼
Z N

�N

sMðtÞh~Eij
V

ð~x; t � tÞdt

þ
Z N

�N

3MðtÞ
vh~Eij

V

vt
ð~x; t � tÞdt;

where the first term on the right-hand side represents the

dissipative contribution, and the second term represents the

reactive contribution (reaction from the medium). Here, all

physical effects, such as diffusion, resistive and capacitive

phenomena, are integrated into the frequency dependence

of sM and 3M. We will examine this frequency dependence

more quantitatively in Physical Causes for Frequency-

Dependent Electrical Parameters.

The complex Fourier transform of h~j totalijVð~x; tÞ then

becomes�
~j total

u

�
j
V

¼
�
sM

u þ iu3M
u

�
h~Euij

V

¼ sM
z h~Euij

V

; (8)

where sz
M is the complex conductivity. We can also assume

sM
z ¼ iu3M

z ; (9)

such that

V ,
�
~j total

u

�
j
V

¼ V ,
�

sM
z h~Euij

V

�
¼ V ,

�
iu3M

z h~Euij
V

�
¼ 0:

(10)

Because sz
M ¼ (su

M þ iu3u
M) and~Eu ¼ �VhVui, the expres-

sions above (Eqs. 10) can also be written in the form

V ,
�
ðsM

u þ iu3M
u ÞVhVuij

V

�
¼ 0: (11)

We note that starting from the continuum model (7), where

only spatial variations were considered, and generalizing

this model by including frequency-dependent electric param-

eters, gives the same mathematical form as the original model

(compare with Eq. 49 in (7)). This form invariance will allow

us to introduce, in Physical Causes for Frequency-Dependent

Electrical Parameters, the surface polarization phenomena by

including an ad hoc frequency dependence in su
M and 3u

M. The

physical causes of this macroscopic frequency dependence is

that the cortical medium is microscopically nonneutral

(although the cortical tissue is macroscopically neutral).

Such a local nonneutrality was already postulated in a

previous model of surface polarization (9). This situation

cannot be accounted for by Eq. 7 if su
M and 3u

M are

frequency-independent (in which case ru¼ 0 when VVu¼ 0).

Thus, including the frequency dependence of these parame-

ters enables the model to capture a much broader range of

physical phenomena.

Finally, a fundamental point is that the frequency depen-

dences of the electrical parameters su
M and 3u

M cannot take

arbitrary values, but are related to each other by the

Kramers-Kronig relations (17–19)

D3MðuÞ ¼ 2

p

Z N

0

sMðu0Þ
u02 � u2

du0 (12)

and

sMðuÞ ¼ sMð0Þ � 2u2

p

Z N

0

D3Mðu0Þ
u02 � u2

du0; (13)

where principal value integrals are used. These equations are

valid for any linear medium (i.e., when Eqs. 5 and 6 are

linear). These relations will turn out to be critical to relate

the model to experiments, as we will see below.

Note that, contrary to frequency dependence, the spatial

dependences of su
M and 3u

M are independent of each other,

because these dependences are related to the spatial distribu-

tion of elements within the extracellular medium.

Simplified geometry for macroscopic parameters

To obtain an expression for the extracellular potential, we

need to solve Eq. 11, which is possible analytically only if

we consider a simplified geometry of the source and

surrounding medium. The first simplification is to consider

the source as monopolar. The choice of a monopolar source

does not intrinsically reduce the validity of the results

because multipolar configurations can be composed from

the arrangement of a finite number of monopoles (20). In

particular, if the physical nature of the extracellular medium

determines a frequency dependence for a monopolar source,

it will also do so for multipolar configurations. A second

Biophysical Journal 96(7) 2589–2603
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simplification will be to consider that the current source is

spherical and that the potential is uniform on its surface.

This simplification will enable us to calculate exact expres-

sions for the extracellular potential and should not affect

the results on frequency dependence. A third simplification

is to consider the extracellular medium as isotropic. This

assumption is certainly valid within a macroscopic approach,

and justified by the fact that the neuropil of cerebral cortex is

made of a quasirandom arrangement of cellular processes of

very diverse size (21). This simplified geometry will allow us

to determine how the physical nature of the extracellular

medium can determine a frequency dependence of the

LFPs, independently of other factors (such as more realistic

geometry, propagating potentials along dendrites, etc.).

Thus, considering a spherical source embedded in an

isotropic medium with frequency-dependent electrical

parameters, combining with Eq. 11, we have

d2hVuij
V

dr2
þ 2

r

dhVuij
V

dr

þ 1

ðsu þ iu3uÞ
dðsu þ iu3uÞ

dr

dhVuij
V

dr
¼ 0:

(14)

Integrating this equation gives the following relation

between two points r1 and r2 in the extracellular space,

r2
1

dhVuij
V

dr
ðr1Þ½suðr1Þ þ iu3uðr1Þ�

¼ r2
2

dhVuij
V

dr
ðr2Þ½suðr2Þ þ iu3uðr2Þ�: (15)

Assuming that the extracellular potential vanishes at large

distances (hVui ¼ 0), we find

hVuij
V

ðr1Þ ¼
Iu

4p

Z N

r1

dr0
1

r02
1

suðr0Þ þ iu 3uðr0Þ
: (16)

This equation is analogous to a similar expression derived

previously (Eq. 25 in (7)), but more general. The two formal-

isms are related by

h~juij
V

¼ szh~Euij
V

¼ ðsM
u þ i3M

u Þh~Euij
V

instead of~ju ¼ sM~Eu (see Eq. 4 in (7)). This difference is

because the conductivity here depends on frequency.

In the following, we will use the simplified notations
~ju;~Eu and Vu instead of h~juijV , h~EuijV and hVuijV , respec-

tively.

Using the relation Vu ¼ ZuIu, the impedance Zu is given

by

ZuðrÞ ¼
1

4p

Z N

r

dr0
1

r02

1

sM
u ðr0Þ½1 þ iutuðr0Þ�

; (17)

where tuðr0Þ ¼ 3M
u

sM
u

and r is the distance between the center of

the source and the position defined by~r.

Physical causes for frequency-dependent
electrical parameters

In the following, we successively consider two different cases

of extracellular medium: first, nonreactive media, in which the

current passively flows into the medium; and second, reactive

media, in which some properties (such as charge distribution)

may change after current flow. For each medium, we will

consider two types of physical phenomena—the current

produced by the electric field, and the current produced by

ionic diffusion, as schematized in Fig. 1).

Nonreactive media with electric fields (Model N)

Nonreactive media (
u3M

u

sM
u
� 1; sM

u ¼ sM and 3u
M ¼ 3M) are

equivalent to resistive media, in which the resistance (or

equivalently, the conductivity) does not change after the

flow of current. The simplest type of such configuration

consists of a resistive medium (such as a homogeneous

conductive fluid) in which current sources solely interact

via their electric field. Applying Eq. 17 to this configuration

is equivalent to model the extracellular potential by

Coulomb’s law,

Vuð~rÞ ¼
1

4psM
,

Iu

r
; (18)

where Vuð~rÞ is the extracellular potential at a position defined

by ~r in extracellular space, and r is the absolute distance

between ~r and the center of the current source. Here, the

conductivity (su
M(r) ¼ sM) is independent of space and

frequency, and thus, this model is not compatible with macro-

scopic measurements of frequency dependence (8,11,13).

FIGURE 1 Illustration of the two main physical phenomena involved in

the genesis of local field potentials. A given current source produces an elec-

tric field, which will tend to polarize the charged membranes around the

source, as schematized on the top. The flow of ions across the membrane

of the source will also involve ionic diffusion to reequilibrate the concentra-

tions. This diffusion of ions will also be responsible for inducing currents in

extracellular space. These two phenomena influence the frequency filtering

and the genesis of LFP signals, as explored in this article.
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It is, however, the most frequently used model to calculate

extracellular field potentials (22). This model will be referred

to as Model N in the following.

Nonreactive media with ionic diffusion (Model D)

Because current sources are ionic currents, there is flow of

ions inside or outside of the membrane, and another physical

phenomena underlying current flow is ionic diffusion. Let us

consider a resistive medium such as a homogeneous extra-

cellular conductive fluid with electric parameters

sm
z ¼ sm

u ðrÞð1 þ i
u3m

u ðrÞ
sm

u ðrÞ
Þ ¼ sm

�
1 þ i

u3m

sm

	
zsm ;

in which the ionic diffusion coefficient is D. When the extra-

cellular current is exclusively due to ionic diffusion, the

current density depends on frequency as
ffiffiffiffi
u
p

(see Appen-

dices ). A resistive medium behaves as if it had a resistivity

equal to að1þ b=
ffiffiffiffi
u
p
Þ, where b is complex. The parameter

a is the resistivity for very high frequencies, and reflects the

fact that the effect of ionic diffusion becomes negligible

compared to calorific dissipation (Ohm’s law) for very high

frequencies. When ionic diffusion is dominant compared

to electric field effects, the real part of b is much larger

than a.

The frequency dependence of conductivity will be given

by

sM
u ¼

sm
ffiffiffiffi
u
pffiffiffiffi

u
p
þ k

: (19)

Applying Eq. 17 to this configuration gives the following

expression for the electric potential as a function of distance:

Vuð~rÞ ¼
1

4psM
z

,
Iu

r
¼

ffiffiffiffi
u
p
þ kffiffiffiffi
u
p ,

1

4psm
,

Iu

r
: (20)

This expression shows that, in a nonreactive medium, when

the extracellular current is dominated by ionic diffusion

(compared to that directly produced by the electric field),

then the conductivity will be frequency-dependent and will

scale as
ffiffiffiffi
u
p

. This model will be referred to as Model D in

the following. Note that, if the electric field primes over ionic

diffusion, then we have the situation described by Model N

above.

Reactive media with electric fields (Model P)

In reality, extracellular media contain different charge densi-

ties, for example due to the fact that cells have a nonzero

membrane potential by maintaining differences of ionic

concentrations between the inside and outside of the cell.

Such charge densities will necessarily be influenced by the

electric field or by ionic diffusion. As above, we first consider

the case with only electric field effects and will consider next

the influence of diffusion and the two phenomena taken

together.

Electric polarization is a prominent type of reaction of the

extracellular medium to the electric field. In particular, the

ionic charges accumulated over the surface of cells will

migrate and polarize the cell under the action of the electric

field. It was shown previously in a theoretical study that this

surface polarization phenomena can have important effects

on the propagation of local field potentials (9). If a charged

membrane is placed inside an electric field ~ES
0, there is

production of a secondary electric field ~ES
u given by (see

Eq. 31 in (9))

~ES
u ¼

~ES
0

1 þ iutM

: (21)

This expression is the frequency-domain representation of

the effect of the inertia of charge movement associated with

surface polarization, reflecting the fact that the polarization

does not occur instantaneously but requires a certain time to

set up. This frequency dependence of the secondary electric

field was derived in Bédard et al. (9) for a situation where

the current was exclusively produced by electric field. The

parameter tM is the characteristic time for charge movement

(Maxwell-Wagner time) and equals 3memb/smemb, where

3memb and smemb are, respectively, the absolute (tangential)

permittivity and conductivity of the membrane surface,

respectively, and are in general very different from the permit-

tivity and the conductivity of the extracellular fluid.

Let us now determine for zero-frequency the amplitude

of the secondary field ~ES
0 produced between two cells

embedded in a given electric field. First, we assume that it

is always possible to trace a continuous path which links

two arbitrary points in the extracellular fluid (see Fig. 2 B).

Consequently, the domain defined by extracellular fluid is

said to be linearly connex. In this case, the electric potential

arising from a current source is necessarily continuous in the

extracellular fluid. Second, in a first approximation, we can

consider that the cellular processes surrounding sources are

FIGURE 2 Monopole and dipole arrangements of current sources. (A)

Scheme of the extracellular medium containing a quasidipole (shaded) rep-

resenting a pyramidal neuron, with soma and apical dendrite arranged verti-

cally. (B) Illustration of one of the monopoles of the dipole. The extracellular

space is represented by cellular processes of various size (circles) embedded

in a conductive fluid. The dashed lines represent equipotential surfaces. Thecab line illustrates the fact that the extracellular fluid is linearly connex.
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arranged randomly (by opposition to being regularly struc-

tured) and their distribution is therefore approximately

isotropic. Consequently, the field produced by a given source

in such a medium will also be approximately isotropic. Also

consequent to this quasirandom arrangement, the equipoten-

tial surfaces around a spherical source will necessarily cut the

cellular processes around the source (Fig. 2 B).

Suppose that at time t ¼ 0, an excess of charge appears at

a given point in extracellular space, then a static electric field

is immediately produced. At this time, currents begins to flow

in extracellular fluid, as well as inside the different cellular

processes surrounding the source. These cells begin to

polarize, with tMW as the characteristic polarization time.

Asymptotically, the system will reach an equilibrium where

the polarization will neutralize the electric field, such that

there is no electric field inside the cells (zero current). Now

suppose that, in the asymptotic regime, there would still be

a current flowing in between cells (in the extracellular fluid);

then we have two possibilities. First, the equipotential surfaces

are discontinuous, or they cut the membrane surfaces (as illus-

trated in Fig. 2 B). The first possibility is impossible because it

would imply an infinite electric field. The second possibility is

also impossible, because cells are isopotential due to polariza-

tion. Therefore, we can say that, asymptotically, there is no

current flowing in extracellular fluid at f ¼ 0, and necessarily

this is equivalent to a dielectric medium. In other words,

a passive inhomogeneous medium with randomly distributed

passive cells is a perfect dielectric at zero frequency. In this

case, the conductivity must tend to 0 when frequency tends

to 0. Thus, in the following, we assume that~ES
0 ¼ �~EP

0 where
~EP

0 is the field produced by the source.

It follows that the expression for the current density in

extracellular space as a function of the electric field is given

by

~ju ¼ sM
z
~EP

u ¼ sm ,

�
1 þ i

u3m

sm

	
,
�
~EP þ ~ES

�
¼ sm ,

�
1 þ i

u3m

sm

	
,

iutM

1 þ iutM

, ~EP
u:

In addition, for cerebral cortical tissue, we have 1þ u3m

sm z1

for frequencies >10 Hz and <1000 Hz (see (8). Thus, an

excellent approximation of the conductivity can be written as

sM
z ¼ sm ,

iutM

1 þ iutM

: (22)

Applying Eq. 17 gives

Vuð~rÞ ¼
1

4psM
z

,
Iu

r
¼ iutM

1 þ iutM

,
1

4psm
,

Iu

r
: (23)

This model describes the effect of polarization in reaction to

the source electric field, and will be referred to as Model P in

the following.

Reactive media with electric field and ionic
diffusion (Model DP)

The propagation of current in the medium is dominated by

ionic diffusion currents or by currents produced by the elec-

tric field, according to the values of k and k1 with respect toffiffiffiffi
u
p

. The values of k and k1 are, respectively, inversely

proportional to the square root of the global ionic diffusion

coefficient in the extracellular fluid, and of membrane

surface (see Appendices ).

We apply the reasoning based on the connex topology of

the cortical medium (see above) to deduce the order of

magnitude of the induced field for zero frequency ~ES
0,

~ES
u ¼ �

~EP
0

1 þ i
ffiffiffiffi
u
p

t
; (24)

where

t ¼ ð
ffiffiffiffi
u
p
þ k1ÞtM ¼

ffiffiffiffi
u
p 3memb

smemb
;

because the tangential conductivity on membrane surface is

given by

smemb
u ¼ sMemb

ffiffiffiffi
u
pffiffiffiffi

u
p
þ k1

;

when the current is dominated by either electric field or ionic

diffusion (see Eq. 19).

It follows that the expression for the current density in

extracellular space as a function of the electric field is given

by

~ju ¼ sM
z
~EP

u ¼
sm

ffiffiffiffi
u
pffiffiffiffi

u
p
þ k

,
�

1 þ i
u3m

u

sm
u

Þ ,
�
~EP þ ~ES

�
z

sm
ffiffiffiffi
u
pffiffiffiffi

u
p
þ k

,
i
ffiffiffiffi
u
p

t

1 þ i
ffiffiffiffi
u
p

t
, ~EP

u;

because 1þ i
u3m

u

sm
u

z1 in cortical tissue for frequencies>10 Hz

and <1000 Hz (see (8)).

Thus, we have the expression for the complex conduc-

tivity of the extracellular medium,

sM
z ¼ sM

u þ iu3M
u ¼

sm
ffiffiffiffi
u
pffiffiffiffi

u
p
þ k

,
i
ffiffiffiffi
u
p

t

1 þ i
ffiffiffiffi
u
p

t
; (25)

where t ¼ ð
ffiffiffiffi
u
p
þ k1ÞtM.

Thus, we have obtained a unique expression (Eq. 25) for

the apparent conductivity in extracellular space outside of

the source, and its frequency dependence due to differential

Ohm’s law, electric polarization phenomena, and ionic diffu-

sion. These phenomena are responsible for an apparent

frequency-dependence of the electric parameters, which

will be compared to the frequency dependence observed in

macroscopic measurements of conductivity (see Numerical

Simulation of Macroscopic Measurements, below).
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Finally, Eqs. 17 and 25 imply that the macroscopic imped-

ance of a homogeneous spherical shell of width R2–R1 is

given by

Zu ¼
1

4p

Z R2

R1

1

r02
dr0

sM
u þ iu3M

u

¼ R2 � R1

4pR1R2

,
1

sM
u þ iu3M

u

:

(26)

In the following, this model will be referred as the diffusion-

polarization or DP model, and we will use the above

expressions (Eqs. 25 and 26) to simulate experimental

measurements.

Numerical simulation of macroscopic
measurements

Experiments of Gabriel et al. (8,11,13)

We first consider the experiments of Gabriel et al. (8,11,13),

who measured the frequency dependence of electrical

parameters for a large number of biological tissues. In these

experiments, the biological tissue was placed in between two

capacitor plates, which were used to measure the capacitance

and leak current using the relation Iu ¼ YVu, imposing the

same current amplitude at all frequencies. Because the admit-

tance value is proportional to su
M þ iu3u

M, measuring the

admittance provides direct information about su
M and 3u

M.

To stay coherent with the formalism developed above, we

will assume that the capacitor has a spherical geometry. The

exact geometry of the capacitor should, in principle, have no

influence on the frequency dependence of the admittance,

because the geometry will only affect the proportionality

constant between sz and Yu. In the case of a spherical capac-

itor, by applying Eq. 26, we obtain

Yu ¼
1

R
þ iuC ¼ 4p

R1R2

R2 � R1

½sM
u þ iu3M

u �

¼ 4p
R1R2

R2 � R1

sM
z : (27)

We also take into account the fact that the resistive part is

always greater than the reactive part for low frequencies

(<1000 Hz), which is expressed by

u3M
u =sM

u � 1:

This relation can be verified, for example, from the measure-

ment of Gabriel et al. (8), where it is true for the whole

frequency band investigated experimentally (between 10

and 1010 Hz).

The real part of su
M ¼ sz then takes the form

sM
u z

sM
ffiffiffiffi
u
pffiffiffiffi

u
p
þ k

,
ut2

ut2 þ 1
; (28)

where t ¼ ð
ffiffiffiffi
u
p
þ k1ÞtM.

By substituting this value of t, the inverse of the conduc-

tivity (the resistivity) is given by

Finally, to reproduce the experiments of Gabriel et al., we

assume k1[
ffiffiffiffi
u
p

. By developing in series the last term (in

parentheses) of Eq. 29, we obtain

1

sM
u

zK0 þ
K1

u1=2
þ K2

u
þ K3

u3=2

¼ K0 þ
K1

f 1=2
þ K2

f
þ K3

f 3=2
: (30)

Equation 30 corresponds to the conductivity sM, as

measured in the experimental conditions of the experiments

of Gabriel et al. (the permittivity 3M is obtained by applying

Kramers-Kronig relations). Fig. 3 shows that this expression

for the conductivity can explain the measurements in the

frequency range of 10–1000 Hz, which are relevant for

LFPs. To obtain this agreement, we had to assume in

Eq. 25 a relatively low Maxwell-Wagner time of ~0.15 s

(fc ¼ 1/(2ptM) between 1 Hz and 10 Hz), k1 >
ffiffiffiffi
u
p

> k
(for frequencies <100 Hz).

This value of Maxwell-Wagner time is necessary to

explain Gabriel’s experiments, and may seem very large at

first sight. However, the Maxwell-Wagner time is not limited

by physical constraints, because we have by definition

tMW ¼ 3u

su
. In principle, the value of su can be very small,

approaching zero, while 3u can take very large values. For

example, taking the measurements of Gabriel et al. in

aqueous solutions of NaCl and in gray matter (8), gives

values of tMW comprised between 1 ms and 100 ms for

frequencies at ~10 Hz.

Thus, the model predicts that in the experiments of Gabriel

et al., the transformation of electric current carried by elec-

trons to ionic current in the biological medium necessarily

implies an accumulation of ions at the plates of the capacitor.

This ion accumulation will in general depend on frequency,

because the conductivity and permittivity of the biological

medium are frequency-dependent. This will create a concen-

tration gradient across the biological medium, which will

cause a ionic diffusion current opposite to the electric current.

This ionic current will allow a greater resulting current

because surface polarization is opposite to the electric field.

Fig. 3 shows that such conditions give frequency-dependent

macroscopic parameters consistent with the measurements

of Gabriel et al.

The parameter choices to obtain this agreement can be justi-

fied qualitatively because the ionic diffusion constant on

cellular surfaces is probably much smaller than in the extracel-

lular fluid, such that k1 [ k. This implies the existence of

1

sM
u

z
1

sM
,

�
1 þ kffiffiffiffi

u
p
	

,

�
1 þ 1

ut2
Mð

ffiffiffiffi
u
p
þ k1Þ2

	

¼ 1

sM
,
�
1 þ kffiffiffiffi

u
p þ

�
1

ut2
M

þ k

u3=2t2
M

	

�
�

1

u þ 2k1

ffiffiffiffi
u
p
þ k2

1

	�
: (29)
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a frequency band Bf for which
ffiffiffiffi
u
p

is negligible with respect to

k1, but not with respect to k because these constants are

inversely proportional to the square root of their respective

diffusion coefficients. Thus, the approximation that we

suggest here is that this band Bf finishes at ~100 Hz in the

experimental conditions of Gabriel et al. It is important to

note that this parameter choice is entirely dependent on the

ratio between ionic diffusion current and the current produced

by the electric field, and thus will be depend on the particular

experimental conditions.

It is interesting to note that this model and the phenome-

nological Cole-Cole model (12) predict different behaviors

of the conductivity for low frequencies (<10 Hz). In this

model, the conductivity tends to zero when frequency tends

to zero, while in the Cole-Cole extrapolation, it tends to

a constant value (13). The main difference between these

models is that the Cole-Cole model is phenomenological

and has never been deduced from physical principles for

low frequencies, unlike this model, which is entirely deduced

from well-defined physical phenomena.

Logothetis et al. (10) measurements

We next consider the experiments of Logothetis et al. (10),

which reported a resistive medium, in contrast with the

experiments of Gabriel et al. In these experiments, four elec-

trodes were aligned and spaced by 3 mm in monkey cortex.

The first and last electrodes were used to inject current, while

the two intermediate electrodes were used to measure the

extracellular voltage. The voltage was measured at different

frequencies and current intensities.

One important point in this experimental setup is that the

intensity of the current was such that the voltage at the

extreme (injecting) electrodes saturates. One of the conse-

quences of this saturation was to limit ionic diffusion effects,

as discussed in Logothetis et al. (10). This voltage saturation

will diminish the concentration difference near the source

(we would have an amplification if this was not the case).

It follows that, in the experiments of Logothetis et al., the

ratio between diffusion current and electric field current is

very small. Thus, in this case, we use values of parameters

ki very different from those assumed above to reproduce

the experiments of Gabriel et al., in particular k1 �
ffiffiffiffi
u
p

.

As we will see in Discussion, this situation may be different

from the physiological conditions.

Nevertheless, the large distance between electrodes

suggests that the relation between current and voltage is linear

because the current density is roughly proportional to the

inverse of squared distance to the source. Consequently, we

can suppose that in the experiments of Logothetis et al., the

ionic gradient is negligible, which prevents ionic diffusion

currents. Thus, in this experiment, most—if not all—of the

extracellular current is due to electric-field effects.

In this situation, the conductivity (Eq. 25) becomes

sM
u zsm ,

ðutMÞ2

1 þ ðutMÞ2
; (31)

which is similar to the Model P above.

Moreover, taking the same Maxwell-Wagner time tM as

above for the experiments of Gabriel et al. (which corre-

sponds to a cutoff frequency of 1 Hz), we have for frequen-

cies >10 Hz,

ðutMÞ2

1 þ ðutMÞ2
z1;

similar to a resistive medium.

Thus, in the experiments of Logothetis et al., the saturation

phenomenon entrains current propagation in the biological

medium as if the medium was quasiresistive for frequencies

>10 Hz. This constitutes a possible explanation of the con-

trasting results in the measurements of Logothetis et al. and

Gabriel et al.

FIGURE 3 Models of macroscopic extracellular conductivity compared to

experimental measurements in cerebral cortex. The experimental data

(labeled G) show the real part of the conductivity measured in cortical tissue

by the experiments of Gabriel et al. (8). The curve labeled E represents the

macroscopic conductivity calculated according to the effects of electric

field in a nonreactive medium. The curve labeled D is the macroscopic

conductivity due to ionic diffusion in a nonreactive medium. The curve

labeled P shows the macroscopic conductivity calculated from a reactive

medium with electric-field effects (polarization phenomena). The curve

labeled DP shows the macroscopic conductivity in the full model, combining

the effects of electric polarization and ionic diffusion. Every model was fit to

the experimental data by using a least-square procedure, and the best fit is

shown. The DP model’s conductivity is given by Eq. 30 with K0 ¼ 10.84,

K1 ¼ �19.29, K2 ¼ 180.35, and K3 ¼ 52.56. The experimental data (G) is

the parametric Cole-Cole model (12), which was fit to the experimental

measurements of Gabriel et al. (8). This fit is in agreement with

experimental measurements for frequencies >10 Hz. No experimental

measurements exist for frequencies <10 Hz, and the different curves show

different predictions from the phenomenological model of Cole-Cole and

these models.
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Frequency dependence of the power spectral density of
extracellular potentials

The third type of experimental observation is the fact that the

power spectral density (PSD) of LFPs or EEG signals

displays 1/f frequency scaling (1–4). To examine whether

this 1/f scaling can be accounted for by this formalism, we

consider a spherical current source embedded in a continuous

macroscopic medium. We also assume that the PSD of the

current source is a Lorentzian, which could derive, for

example, from randomly occurring exponentially decaying

postsynaptic currents (2) (see Fig. 4).

To simulate this situation, we used the diffusion-polarization

model with ionic diffusion and electric field effects in a reactive

medium. We have estimated above that surface polarization

phenomena have a cutoff frequency of ~1 Hz, and will not

play a role above that frequency. So, if we focus on the PSD

of extracellular potentials in the frequency range >1 Hz, we

can consider only the effect of ionic diffusion (in agreement

with the experiments of Gabriel et al.; see above).

Thus, we can approximate the conductivity as (see Eq. 25)

sM
u ¼ a

ffiffiffiffi
u
p

; (32)

where a is a constant.

It follows that the extracellular voltage around a spherical

current source is given by (see Eq. 17)

where R is the radius of the source.

In other words, we can say that the extracellular potential

is given by the current source Iu convolved with a filter in

1=
ffiffiffiffi
u
p

, which is essentially due to ionic diffusion (Warburg

impedance; see the literature (23–25).). A white noise current

source will thus result in a PSD scaling as 1/f, and can

explain the experimental observations, as shown in Fig. 4.

Experimentally recorded LFPs in cat parietal cortex display

LFPs with frequency scaling as 1/f for low frequencies,

and 1/f3 for high frequencies (Fig. 4, A and B). Following

the same procedure as in Bédard et al. (2), we reconstructed

the synaptic current source from experimentally recorded

spike trains (Fig. 4, C and D). The PSD of the current source

scales as a Lorentzian (Fig. 4 E) as expected from the expo-

nential nature of synaptic currents. Calculating the LFP

around the source and taking into account ionic diffusion,

gives a PSD with two frequency bands, scaling in 1/f for

low frequencies, and 1/f3 for high frequencies (Fig. 4 F).

This is the frequency scaling observed experimentally for

LFPs in awake cat cortex (2). We conclude that ionic diffu-

sion is a plausible physical cause of the 1/f structure of LFPs

for low frequencies.

A

B

C

D

E F

FIGURE 4 Simulation of 1/f frequency scaling of LFPs

during wakefulness. (A) LFP recording in the parietal

cortex of an awake cat. (B) Power spectral density (PSD)

of the LFP in log scale, showing two different scaling

regions with a slope of �1 and�3, respectively. (C) Raster

of eight simultaneously-recorded neurons in the same

experiment as in panel A. (D) Synaptic current calculated

by convolving the spike trains in panel C with exponentials

(decay time constant of 10 ms). (E) PSD calculated from

the synaptic current, shown two scaling regions of slope

0 and �2, respectively. (F) PSD calculated using a model

including ionic diffusion (see text for details). The scaling

regions are of slope �1 and �3, respectively, as in the

experiments in panel B. Experimental data taken from

Destexhe et al. (37); see also Bédard et al. (2) for details

of the analysis in panels B–D.

Vðr;uÞ ¼ Iu

4pa
ffiffiffiffi
u
p

r
¼ Vðr; 1Þffiffiffiffi

u
p ¼ VðR; 1ÞR

r
ffiffiffiffi
u
p ; (33)
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Two important points must be noted. First, the diffusion-

polarization model does not automatically predict 1/f scaling

at low frequencies, but rather implements an 1/f filter, which

may result in frequency scaling with larger slopes. Second,

the same experimental situation may result in different

frequency scaling, and this is also consistent with the diffu-

sion-polarization model. These two points are illustrated in

Fig. 5, which shows a similar analysis as Fig. 4 but during

slow-wave sleep in the same experiment. The LFP is domi-

nated by slow-wave activity (Fig. 5 A), and the different units

display firing patterns characterized by concerted pauses

(shaded lines in Fig. 5 B), characteristic of slow-wave sleep

and which are also visible in the reconstructed synaptic

current (Fig. 5 C). The PSD shows a similar scaling as 1/f3

as for wakefulness, but the scaling at low frequencies is

different (slope at ~�2 at low frequencies; see Fig. 5 D).

The PSD reconstructed using the diffusion-polarization

model displays similar features (compare with Fig. 5 E).

This analysis shows that the diffusion-polarization model

qualitatively accounts for different regions of frequency

scaling found experimentally in different frequency bands

and network states.

Measurement of frequency dependence

In this final section, we examine a possible way to test the

model experimentally. The main prediction of the model

is that, in natural conditions, the extracellular current

A

B

C

D E

FIGURE 5 Simulation of more complex frequency

scaling of LFPs during slow-wave sleep. (A) Similar LFP

recording as in Fig. 4 A (same experiment), but during

slow-wave sleep. (B) Raster of eight simultaneously-re-

corded neurons in the same experiment as in panel A.

The vertical shaded lines indicate concerted pauses of firing

which presumably occur during the down states. (C)

Synaptic current calculated by convolving the spike trains

in panel B with exponentials (decay time constant of

10 ms). (D) Power spectral density (PSD) of the LFP in

log scale, showing the same scaling regions with a slope

of �3 at high frequencies as in wakefulness (the PSD in

wake is shown in shading in the background). At low

frequencies, the scaling was close to 1/f2 (shaded line;

the dotted line shows the 1/f scaling of wakefulness). (E)

PSD calculated from the synaptic current in panel C, using

a model including ionic diffusion. This PSD reproduces the

scaling regions of slope �2 and �3, respectively (shaded

lines). The low-frequency region, which was scaling as

1/f in wakefulness (dotted lines), had a slope close to �2.

Experimental data taken from Destexhe et al. (37).
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perpendicular to the source is dominated by ionic diffusion.

The experiments realized so far (8,10,11,13) used macro-

scopic currents that did not necessarily respect the correct

current flow in the tissue.

We suggest creating more naturalistic current sources by

generating ionic currents with a micropipette placed in the

extracellular medium. By using periodic current injection

during very short time Dt compared to the period (small

duty cycle), we can measure, using the same electrode, the

extracellular voltage Vpr (using a fixed reference far away

from the source). If the period of the source is shorter than

the relaxation time of the system, the voltage will integrate,

which is due to charge accumulation.

Because Vpr is directly proportional to the amount of

charge emitted as a function of time during Dt (capacitive

effect of the extracellular medium), the time variation of

Vpr is directly proportional to the ionic diffusion current. In

such conditions, if the extracellular medium is purely resis-

tive as predicted by the experiments of Logothetis et al.,

the relaxation time should be very small, of ~10�12 s (9),

which would prevent any integration phenomena and charge

accumulation for frequencies <1012 Hz. If the medium has

a slower relaxation due to polarization and ionic diffusion,

then we should observe voltage integration and charge accu-

mulation for physiological frequencies (<1000 Hz).

To illustrate the difference between these two situations,

we consider the simplest case of a nonreactive medium (as

in Model D above), in which the current can be produced

by ionic diffusion or by the electric field, or by both. To

calculate the time variations of ionic concentration and extra-

cellular voltage, we consider the current density:

~j ¼ DVe½c� þ s~E: (34)

According to the differential law for charge conservation and

Poisson law, we have

V~j þ vr

vt
¼ D V2r þ s

3
r þ vr

vt
¼ 0: (35)

When ionic diffusion is negligible compared to Ohm’s law,

we have

vr

vt
þ s

3
rz0:

It follows that the charge density is given by

r ¼ ro exp
�
�s

3
t
�
: (36)

On the other hand, if ionic diffusion is the primary cause of

current propagation in the extracellular medium, then the relax-

ation time should be much larger and thus, integration should

be observed. When ionic diffusion is dominant, we have

vr

vt
þ D V2rz0

instead of Eq. 35.

The general solution is

r ¼ 1ffiffiffiffiffiffiffiffi
2Dt
p

Z N

0

rðr; 0Þe��r2

4Dt dr: (37)

The difference between the expressions above (Eqs. 36 and

37) shows that the time variation of charge density is

different according to which current dominates, electric field

current or ionic diffusion current. The same applies to the

electric potential between the electrode and a given refer-

ence, because this potential is linked to charge density

through Poisson’s law. Therefore, this experiment would

be crucial to clearly show which of the two currents primes

for currents perpendicular to the source (this would not apply

to longitudinal currents, like axial currents in dendrites). In

the hypothetical case of dominant ionic diffusion, the cortex

would be similar to a Warburg impedance and one can esti-

mate the macroscopic diffusion coefficient using Eq. 37.

Thus, using a micropipette injecting periodic current

pulses, it should be possible to test the capacity of the

medium to create charge accumulation for physiological

frequencies. If this is the case, it would constitute evidence

that ionic currents are nonnegligible in the physiological

situation.

DISCUSSION

In this article, we have proposed a framework to model local

field potentials, and which synthesizes previous measure-

ments and models. This framework integrates microscopic

measurements of electric parameters (conductivity s and

permittivity 3) of extracellular fluids, with macroscopic

measurements of those parameters (su
M, 3u

M) in cortical tissue

(8,10). It also integrates previous models of LFPs, such as

the continuum model (7), which was based on a continuum

hypothesis of electric parameters variations in extracellular

space, or the polarization model (9), which explicitly

considered different media (fluid and membranes) and their

polarization by the current sources. This model is more

general and also integrates ionic diffusion, which is

predicted as a major determinant of the frequency depen-

dence of LFPs. This diffusion-polarization model also

accounts for observations of 1/f frequency scaling of LFP

power spectra, which is due here to ionic diffusion, and is

therefore predicted to be a consequence of the genesis of

the LFP signal, rather than being solely due to neuronal

activity (see (2)). Finally, this work suggests that emphatic

interactions between neurons can occur not only through

electric fields but that ionic diffusion should also be consid-

ered in such interactions.

As discussed in Simplified Geometry for Macroscopic

Parameters, this model rests on several approximations,

which were necessary to obtain the analytic expressions

used here. These approximations were that current sources

were considered as monopolar entities (longitudinal currents
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such as axial currents in dendrites were not taken into

account), the current source was spherical and the extracel-

lular medium was considered isotropic. Because multipolar

effects can be reconstructed from the superposition of mono-

poles (20), the monopolar configuration should not affect the

results on frequency dependence, as long as the extracellular

current perpendicular to the source is considered. Similarly,

the exact geometry of the current source should have no

influence on the frequency dependence far away from the

sources. However, in the immediate vicinity of the sources,

the geometric nature and the synchrony of synaptic currents

can have influences on the power spectrum (26). Another

assumption is that the extracellular medium is isotropic,

which was justified within the macroscopic framework fol-

lowed here. These factors, however, will influence the exact

shape of the LFPs. More quantitative models including

a more sophisticated geometry of current sources and the

presence of membrane excitability and action potentials

should be considered (e.g., (26,27)).

The main prediction of this model is that ionic diffusion is

an essential physical cause for the frequency dependence of

LFPs. We have shown that the presence of ionic diffusion

allows the model to account quantitatively for the macro-

scopic measurements of the frequency dependence of elec-

tric parameters in cortical tissue (8). Ionic diffusion is

responsible for a frequency dependence of the impedance

as 1=
ffiffiffiffi
u
p

for low frequencies (<1000 Hz), which directly

accounts for the observed 1/f frequency scaling of LFP and

EEG power spectra during wakefulness (1–4) (see Fig. 4).

Note that the EEG is more complex because it depends on

the diffusion of electric signals across fluids, dura matter,

skull, muscles, and skin. However, this filtering is of low-

pass type, and may not affect the low-frequency band, so

there is a possibility that the 1/f scaling of EEG and LFPs

have a common origin. This model is consistent with the

view that this apparent 1/f noise in brain signals is not gener-

ated by self-organized features of brain activity, but is rather

a consequence of the genesis of the signal and its propaga-

tion through extracellular space (2).

It is important to note that the fact that ionic diffusion may

be responsible for 1/f frequency scaling of LFPs is not incon-

sistent with other factors, which may also influence frequency

scaling. For example, the statistics of network activity—and

more generally network state—can affect frequency scaling.

This is apparent when comparing awake and slow-wave sleep

LFP recordings in the same experiment, showing that the 1/f
scaling is only seen in wakefulness but 1/f2 scaling is instead

seen during sleep (2) (see Fig. 5). In agreement with this,

recent results indicate that the correlation structure of synaptic

activity may influence frequency scaling at the level of the

membrane potential, and that correlated network states scale

with larger (more negative) exponents (28).

We also investigated ways to explain the measurements of

Logothetis et al. (10), who reported that the extracellular

medium was resistive and therefore did not display frequency

dependence, in contradiction with the measurements of

Gabriel et al. (8). We summarize and discuss our conclusions

below.

In the experiments of Gabriel et al. (8), one measures

permittivity and conductivity in the medium in between two

metal plates. This forms a capacitor, which (macroscopic)

complex impedance is measured. This measure actually

consists of two independent measurements, the real and imag-

inary part of the impedance. These values are used to deduce

the macroscopic permittivity and macroscopic conductivity

of the medium. However, at the interface between the medium

and the metal plates, the flow of electrons in the metal corre-

sponds to a flow of charges in the tissue, and a variety of

phenomena can occur, which can interfere with the measure-

ment. The accumulation of charges that occurs at the interface

between the electrode and the extracellular fluid implies

a polarization impedance, which depends on the interaction

between ions and the metal plate. Because this accumulation

of charge implies a variation of concentration, the flow of ions

may involve an important component of ionic diffusion.

In the experiments of Logothetis et al., a system of four

electrodes is used; the two extreme electrodes inject current

in the medium, while the two electrodes in the middle are

exclusively used to measure the voltage. This system is

supposed to be more accurate than Gabriel’s, because the

electrodes that measure voltage are not subject to charge

accumulation. However, the drawback of this method are

nonlinear effects. The magnitude of the injected current is

such that the voltage at the extreme electrodes saturates.

This voltage saturation also implies saturation of concentra-

tion (capacitive effect between electrodes), which limits

ionic diffusion currents. Thus, the ratio between ionic diffu-

sion currents and the currents due to the electric field is

greatly diminished relative to the experiments of experi-

ments of Gabriel et al.

We think that natural current sources are closer to the situ-

ation of Gabriel et al. for several reasons. First, the magni-

tude of the currents produced by biological sources is far

too low for saturation effects. Second, the flow of charges

across ion channels will produce perturbations of ionic

concentration, which will be reequilibrated by diffusion.

The effects may not be as strong as the perturbations of

concentrations induced by the experiments of Gabriel

et al., but ionic diffusion should play a role in both cases.

This is precisely one of the aspects that should be evaluated

in further experiments.

The experiments of Logothetis et al. were done using

a four-electrode setup, which neutralizes the influence of

electrode impedance on voltage measurements (29,30). This

system was used to perform high-precision impedance

measurements, also avoiding ionic diffusion effects (10).

Indeed, these experimental conditions, and the apparent resis-

tive medium, could be reproduced by this model if ionic diffu-

sion was neglected. This model therefore formulates the

strong prediction that ionic diffusion is important, and that
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any measurement technique should allow ionic diffusion to

reveal the correct frequency-dependent properties of imped-

ance and electric parameters in biological tissue.

The critical question that remains to be solved is whether,

in physiological conditions, ionic diffusion plays a role as

important as suggested here. We propose a simple method

to test this hypothesis. The frequency dependence could be

evaluated by using an extracellular electrode injecting current

in conditions as close as possible to physiological conditions

(a micropipette would be appropriate). By measuring the inte-

gration of the extracellular voltage after periodic current injec-

tion, one could estimate the relaxation time of the medium

with respect to charge accumulation. If this relaxation time

occurs at timescales relevant to neuronal currents (millisec-

onds) rather than the fast relaxation predicted by a purely

resistive medium (picoseconds), then ionic diffusion will

necessarily occur in physiological conditions, which would

provide evidence in favor of this mechanism.

APPENDIX A: ESTIMATION OF IONIC DIFFUSION
CURRENT VERSUS ELECTRIC DIFFUSION IN SEA
WATER AND IN CORTEX

In this Appendix, we evaluate the ratio between ionic diffusion currents and

electric field currents in the extracellular space directly adjacent to the

source. This ratio measures whether the ionic diffusion current perpendicular

to the membrane is greater than the electric field current. We will design this

ratio by the term rie.

We have in general

~jTotal ¼ eDV½C� þ sVV; (38)

where the first term on the right-hand side is the electric current density

produced by ionic diffusion, and the second term is that produced by differ-

ential Ohm’s law.

For a displacement Dr ¼ 10 nm in the direction across the membrane (from

inside to outside), we have approximatively

~jTotal , d~rx~jTotal , D
/

r ¼ eD½C�Dr¼ 10 nmþ suDVDr¼ 10 nm:

(39)

Suppose that we have a spherical cell of 10-mm radius, embedded in sea

water and at resting potential. The resting membrane potential is a dynamic

equilibrium between inflow and outflow of charges, in which these two

fluxes are equal on (temporal) average. Fluctuations of current around this

average in the extracellular medium around the membrane have all charac-

teristics of thermal noise (31) because the shot noise (see (16,32)) is zero

when the current is zero on average, such that the net charge on the external

side of the membrane varies around a mean value with the same character-

istics as white noise (thermal noise). These fluctuations will therefore be

present also at the level of the membrane potential. In this Appendix, we

evaluate the order of magnitude of the electric current caused by ionic diffu-

sion, relative to the electric field for this situation of dynamic equilibrium.

First, the ratio between the membrane voltage noise and the variation of total

charge concentration is given by

DQtot ¼ CDVmembrane ¼ k1DVmembrane

¼ 1:25 � 10�11DVmembrane; (40)

because the cell’s capacitance is given by C ¼ 4pR2Cm ¼ 0.04pR2

(Cm x 10�2 F/m2).

Second, mass conservation imposes

DQtot ¼ e�veff
�D½C�tot; (41)

where e ¼ 1.69 � 10�19 C and veff is the volume of the spherical shell con-

taining the charges. Because the charges are not uniformly distributed inside

the cell, but rather distributed within a thin spherical shell adjacent to the

membrane, because the electric field developed across the membrane is

very intense (of ~70�10�3

7�10�9 ¼ V/m ¼ 107 V/m). Thus, the width of the shell

is ~dRx10�4R < 1nm, where the volume of the spherical shell is approx-

imately equal to 4pR2dR. In this case, we have for monovalent ions (jzj ¼ 1)

DQtot ¼ k2D½C�totx2:2 � 10�38D½C�tot

¼ 2:2 � 10�38D½C�Dr¼ 10 nm (42)

if we assume that the variation of concentration on the adjacent border of the

exterior surface of the cell is within a width of 10 nm.

In this case, we have

D½C�Dr¼ 10 nm

DVmembrane

¼ k1

k2

x1027 C=m3V: (43)

Third, the potential difference between the cell surface and 10 nm away from

it, is given by

DVDr¼ 10 nm ¼ DVmembrane

� RDVmembrane

R þ r
x10�3DVmembrane: (44)

Consequently, the ratio between ionic diffusion current and electric diffusion

current caused by thermal noise in sea water obeys

riez
eDseaD½C�Dr¼ 10 nmDt

ssea
u DVDr¼ 10 nm

¼ eDseak1

ssea
u k2

x
102

ssea
u

; (45)

where the diffusion constant of Kþ or Naþ in sea water is ~10�9 m2

s . This

implies that the ratio r is [1 for frequencies <1000 Hz because su
sea of

sea water is necessarily <2 S/m.

Because tortuosity is given by l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dsea=Dcortex

p
, and is comprised

between 1.6 and 2.2 (for small and large molecules, respectively) in cerebral

cortex (33–35), the macroscopic diffusion constant in cortex is certainly

larger than Dsea/10. Thus, we have

rcortex
ie >

10

scortex
u

(46)

where scortex
f¼100Hz x 0.1 S/m (see (11)).

This evaluation shows that the phenomenon of ionic diffusion is essential

to determine the current field in the cortex.

Finally, we note that we did not need to evaluate the absolute magnitude of

DV in our evaluation. This evaluation is valid for a physical situation where

we have a permanent white noise over a distance of 10 nm, independently of

the intensity of this noise (which in practice will depend on many factors,

such as the size of the cell, the number of ion channels, etc).

APPENDIX B: FREQUENCY SCALING OF IONIC
DIFFUSION

In this Appendix, we calculate the frequency dependence of ionic diffusion

current outside of a spherical current source. We consider a constant

variation of ionic concentration, DXi, on the surface of the source, and a null

variation at an infinite distance (Warburg conditions).
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The diffusion equation for a given ionic species is

vDXi

vt
¼ DiV

2DXi; (47)

where DXi is the perturbation of concentration Xi of ion i around the steady-

state value, and Di is the associated diffusion coefficient. This diffusion coef-

ficient depends of the ionic species considered and the structure of the medium.

Because the geometry of the problem and the limit conditions respect spher-

ical symmetry, we use spherical coordinates. In this coordinate system, we

have

vDXi

vt
¼ Di


v2DXi

vr2
þ 2

r

vDXi

vr

�
(48)

because DXi does not depend on q and of F (spherical symmetry).

The Fourier transform of DXi with respect to time gives

v2Xiu

vr2
þ 2

r

vDXiu

vr
¼ d2Xiu

dr2
þ 2

r

dDXiu

dr
¼ iu

Di

DXiu ; (49)

which general solution is given by

DXiu ¼ AðuÞe
ffiffiffi
iu
Di

p
r

r
þ BðuÞe

�
ffiffiffi
iu
Di

p
r

r
: (50)

For a variation of concentration at the source border which is independent

of frequency and which satisfies the Warburg hypothesis (the variation of

concentration tends to zero at an infinite distance (23,36)), we have

DXiuðrÞ ¼ DXiuðRÞ ,
R e
�
ffiffiffi
iu
Di

p
ðr�RÞ

r
; (51)

where r is the distance between the center of the source and R is the radius of

the source.

Thus, the electric current density produced by ionic diffusion is given by

~jiðrÞ ¼ ZeDi

vDXi

vr
br ¼ �ZeDi

�
1

r
þ

ffiffiffiffiffiffi
iu

Di

r 	
DXiuðrÞ br;

(52)

where Ze is the charge of ions i.

Because we can consider that the source and extracellular medium form

a spherical capacitor, the voltage difference between the surface of the

source and infinite distance is given by ZeCDXiu ðRÞ, where C is the capac-

itance value. Thus, the electric impedance of the medium is given by

Zu ¼
C

Di

�
1
R
þ

ffiffiffiffi
iu
Di

q �: (53)

For a source of radius R ¼ 10 mm and a macroscopic ionic diffusion coeffi-

cient of ~10�11 m2/s, and for frequencies >1 Hz, we can approximate the

impedance by

Zuz
Cffiffiffiffiffiffiffiffiffiffiffi

iuDi

p : (54)

The same expression for the impedance is also obtained in cylindrical

coordinates or planar Cartesian coordinates (not shown).

Note that if several ionic species are present, then the superposition principle

applies (Fick equations are linear) and therefore the contribution of each ion

will add up. The diffusion constants for different ions are of the same order

of magnitude (for Naþ, Kþ, Cl�, Ca2þ), so no particular ion would be

expected to dominate.
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Abstract

Existing models of EEG have mainly focused on relations to network dynamics characterized by firing rates [L. de Arcangelis,

H.J. Herrmann, C. Perrone-Capano, Activity-dependent brain model explaining EEG spectra, arXiv:q-bio.NC/0411043 v1, 23

Nov 2004; D.T. Liley, D.M. Alexander, J.J. Wright, M.D. Aldous, Alpha rhythm emerges from large-scale networks of realistically

coupled multicompartmental model cortical neurons, Network 10(1) (1999) 79–92; O. David, J.K. Friston, A neural mass model for

MEG/EEG: coupling and neuronal dynamics, NeuroImage 20 (2003) 1743–1755]. Generally, these models assume that there exists a

linear mapping between network firing rates and EEG states. However, firing rate is only one of several descriptors for network activity

states. Other relevant descriptors are synchrony and irregularity of firing patterns [N. Brunel, Dynamics of sparsely connected networks

of excitatory and inhibitory spiking neurons, J. Comput. Neurosci. 8(3) (2000) 183–208]. To develop a better understanding of the

EEG we need to relate these state descriptors to EEG states. Here, we try to go beyond the firing rate based approaches described in

[D.T. Liley, D.M. Alexander, J.J. Wright, M.D. Aldous, Alpha rhythm emerges from large-scale networks of realistically coupled

multicompartmental model cortical neurons, Network 10(1) (1999) 79–92; O. David, J.K. Friston, A neural mass model for MEG/EEG:

coupling and neuronal dynamics, NeuroImage 20 (2003) 1743–1755] and relate synchronicity and irregularity in the network to EEG

states. We show that the transformation between network activity and EEG can be approximately mediated by linear kernel with the

shape of an a- or g-function, allowing us a comparison between EEG states and network activity space. We find that the simulated EEG

generated from asynchronous irregular type network activity is closely related to the human EEG recorded in the awake state, evaluated

using power spectral density characteristics.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Simulated EEG; EEG model; Human EEG; Cortical dynamics; Brain state; Asynchronous irregular activity; Parallel computing; Power

spectral density

1. Introduction

Cortical activity can be recorded at various levels of
details ranging from in vivo intracellular recording
(microscopic activity) to global population activity such
as LFP, ECoG, and EEG (macroscopic activity). While
there is a good understanding of the origin of the
microscopic activity, very little is known about the origin
of the macroscopic activity. It has long been speculated
that the macroscopic cortical activity is generated as a

consequence of network activity [5,11,10]. In fact, several
modeling studies have been able to relate network
dynamics to EEG states by assuming a linear mapping
between the network firing rates and oscillations in the
EEG [1,7,4]. However, network dynamics is not only
characterized by firing rates, but also by synchronization in
neural populations and irregularity of single-neuron firing
patterns [3]. To understand how cortical background
activity states generate the EEG we need to relate these
state descriptors to EEG states. We show that the mapping
between the population activity in the network can be
approximated by a linear kernel described by either an
a-function or a g-function. The simulated EEG (see
materials and methods) corresponding to asynchronous
irregular (AI) and synchronous irregular states showed a
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good match with the human EEG– especially in theta and
delta bands. Heterogeneous network simulations re-
sembled the human background EEG even better – also
in the alpha and beta bands.

2. Material and methods

2.1. Networks

We performed simulations of homogeneous and hetero-
geneous networks consisting of 50,000 leaky integrate and
fire type neurons (80% excitatory and 20% inhibitory
neurons), representing � 0:5mm2 slice of cortex [2]. The
neurons were connected randomly with a connection
probability of 0.1. In a homogeneous network all neurons
had identical passive properties. To introduce heterogene-
ity into the network, the passive properties (membrane
capacity C and conductivity at resting condition Grest) and
the spiking threshold ðV threshÞ of the neurons were chosen
from a normal distribution (mean � SD); C ¼ 250� 25 pF,
Grest ¼ 16; 7� 1:5 nS and V thresh ¼ �55� 5:5mV. The
mean values of the passive parameters in the heterogeneous
network were identical to the values of the passive
properties in the homogeneous network. The simulations
of the neuronal networks were performed using the NEST
[9,12] simulation environment. The output of the spiking
network simulations (spike patterns of sustained activity in
dynamical networks recorded over several seconds) were
then used for further analysis.

We obtained a network population signal ðNpopÞ by
binning the spikes ðbinwidth ¼ 2msÞ of all neurons in the
network. To characterize the dynamical states of simulated
network activity, both at the level of single neurons and
neuron populations, we employed the following descrip-
tors, see [6] for details:

Mean firing rate of the activity was estimated as the
mean spike count per second of the neurons in the network.

Synchrony in the network was measured by the pair wise
correlations ðrnetÞ in the network. A population of identical
independent Poisson processes yield a rnet ¼ 0, any mutual
dependence results in an increase in rnet.

Irregularity of individual spike trains was measured by
the squared coefficient of variation of the corresponding
inter-spike interval (ISI) distribution. Low values reflect
more regular spiking, and a clock-like pattern yields
CV 2 ¼ 0. By contrast, CV 2 ¼ 1 indicates Poisson-type
behavior (cf. Fig. 1a and b).

2.2. Generating simulated EEG

The spectral bandwidth of Npop is much wider than the
EEG signal bandwidth. To draw a comparison between
Npop and EEG, it is required to limit the bandwidth of
Npop. To achieve that we transformed Npop to Sim-EEG by
convolving Npop with either an a-function or a g-function
shaped kernel (cf. Fig. 1c). The parameters for the two
kernels were determined in an optimization process by

maximizing the similarity of power spectral densities
(PSDs) obtained from the Sim-EEG generated using one
AI network state (see Section 3) and EEG data from two
healthy, awake subjects who were asked to focus on a
fixation point. After the optimization process, the kernel
parameters were fixed. In an independent test set (both
networks and EEG data) we then compared different
network states (both homo- and heterogeneous) as the
basis for Sim-EEG using the aforementioned kernels and
comparing the resulting Sim-EEG to the human back-
ground EEG data from more than 90 subjects (cf. [8]). We
used the cross correlation ðrÞ between the powerspectra of
the SIM-EEG and the recorded EEG (data was kindly
provided by the Center for Epilepsy, University Clinics
Freiburg) to quantify the similarity between the two
signals.

3. Results

3.1. Network activity dynamics

A large random network of integrate and fire neurons
exhibits a continuum of activity states, depending on the
intensity of external excitatory inputs ðnextÞ, and on the
recurrent inhibition/excitation balance ðgÞ. The firing
pattern of individual neurons varies between regular ðRÞ
ðCV ISI � 0Þ and irregular ðIÞ ðCV ISI � 1Þ, population
activity varies between synchronous ðSÞ ðrnet � 1Þ and
asynchronous ðAÞ ðrnet � 0Þ. Still, the network activity
state can be attributed to one of four characteristic states,
viz. AI, SI, AR, or SR as a function of next and ðgÞ [cf. 3,6].
Of these, it is the AI regime where network activity is
considered to most closely resemble cortical spiking
activity in vivo (Fig. 1a and b). Note that in the AI regime
rnet � 0:002, this results in transient synchrony in the
network [6]. The rnet can be further reduced by introducing
heterogeneities in the network (data not shown). The
homogeneous and heterogeneous networks, however, do
not differ systematically in the repertoire of states they
exhibit.

3.2. Sim-EEG

As the AI state resembles the ongoing activity in vivo
most closely, we assumed the AI state to be the network
activity underlying the EEG obtained from healthy awake
human subjects and used the corresponding Npop to
optimize the time constant of the convolution kernels
(a-function and g-function). The resulting optimal width of
the a-function was estimated to be � 40ms (cf. Fig. 1c).
Examples for the resulting power spectra for the generated
SIM-EEG based on different network states in comparison
to the recorded EEG are shown in Fig. 1d. To quantify the
similarity between the power spectra we chose to calculate
the mean correlation coefficient for relevant frequency
bands. Fig. 1e shows the correlation coefficients in the
independent test set ðrÞ between PSD of Sim-EEG
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(homogeneous and heterogeneous networks) and PSDs of
EEG recorded in human subjects, in four different
frequency bands (viz. a½8213Hz�, b½14235Hz�,
y½427Hz�, and d½p3Hz�). The Sim-EEG corresponding
to the AI-2 and SI states showed a good match with the
human EEG ðrX0:6Þ in the y and d bands, less in the a and

b bands. The Sim-EEG generated from the heterogeneous
network simulations resembled the human EEG even
better ðrX0:7Þ, now also in the a and b frequency bands.
We observed a small mismatch between the Sim-EEG

and human EEG, which could be due to an inappropriate
choice of the convolution kernel. Therefore we changed the

ARTICLE IN PRESS

Fig. 1. Network activity states, kernels, and power spectra; correlation of SIM-EEG to EEG: (a) synchrony and (b) irregularity in the homogeneous

network as a function of next and g. The contour ðrnet ¼ 0:02Þ in (a) separates synchronous states from asynchronous states, while the contour ðCV2 ¼ 0:8Þ
in (b) separates regular states from irregular states. Characteristic network states (e.g. SR, AI, and SI) are indicated. (c) Visualization of estimated a- and g-
kernel with respective parameters. (d) Exemplary power spectra for two different simulated network states (nAI and AI–SI) and human EEG. (e)

Correlation coefficients ðrÞ between different characteristic bands (a; b; d, and y) for the PSDs of SIM-EEG obtained from homogeneous networks

mapping different states (asynchronous irregular (AI-1), nearly AI (AI-2), slow synchronous irregular (SSI), and fast synchronous irregular (FSI)) and

heterogeneous networks with AI and SI states (HAI and HSI) to human EEG representing normal and awake behaving activity.
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kernel function to be a g-function, and repeated the
function fitting and re-evaluated the correlations of the
PSDs. We found that convolution of Npop with a g-
function kernel gave a slightly better fit, measured by
correlation of PSD bands with the human EEG (data not
shown).

4. Discussion

Here we presented a first attempt to relate the spiking
activity of cortical network, to the macroscopic activity of
the brain, as captured by the scalp EEG. Generally, the
models AI state very closely resembles cortical activity in
vivo in awake, behaving animals. Therefore, we assumed
that healthy human EEG recordings correspond to an AI
state in the cortical network model.

Our comparison of Sim-EEG based on AI state net-
works and recorded EEG from awake humans supports
this assumption. For this comparison we started with an a-
function shaped kernel. This choice was motivated by the
fact that the network activity is low-pass filtered by the
cortical tissue and the skull. The a-function shaped kernel
resulted in a reasonably high correlation between Sim-EEG
and real EEG. However, there were also notable differ-
ences between the SIM-EEG and EEG. Therefore we used
another kernel (g-function), which additionally allowed us
to control the rising behavior of the kernel. The g-function
shaped kernel indeed resulted in a higher correlation and
the spectra of SIM-EEG resembled recorded human EEG
slightly better. This might be due to the additional degree
of freedom allowed in the kernel-estimation process.

For this study we ignored the orientation of cortical cells
with respect to the recording surface electrode. We
assumed that all neurons in our simulations contribute
equally to the surface background EEG. From previous
modeling studies it is known, that the state space of
networks studied here does not change considerably when
the total number of neurons is increased [6]. This might
allow us, in a first approach, to consider only neurons
contributing to (SIM-) EEG recordings. Moreover, since a
comparison of spectral properties from both, SIM-EEG
and EEG, eliminates temporal causality, potential intra-
cortical firing patterns in neurons of different orientations
cannot currently be studied by this approach. However,
this basic approach, with the aim of building up a simple
phenomenological connection between the background
EEG and microscopic network activity, can be extended
to connect the activity of layered/oriented networks to
EEG–where it naturally would be important to character-
ize the role of parallel currents.

Currently we are investigating the potential mapping of
various network activity states to clinically and behavio-
rally relevant EEG states. Though there is good hope for
bridging the gap between network simulations and
electrophysiological population activity data from human
recordings, further improvements in both, network models
and conversion procedures, will be needed.
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a b s t r a c t

In this review, we present the voltage-sensitive dye imaging (VSDI) method. The possibility offered for
in vivo (and in vitro) brain imaging is unprecedented in terms of spatial and temporal resolution. How-
ever, the unresolved multi-component origin of the optical signal encourages us to perform a detailed
analysis of the method limitation and the existing models. We propose a biophysical model at a meso-
scopic scale in order to understand and interpret this signal.

� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Optical imaging comes within the scope of new imaging tech-
niques that allow us to visualize the functioning brain at both high
spatial and temporal resolutions. Specifically, there are two tech-
niques mostly used in vivo (see Grinvald et al. (1999) for a detailed
review); the first is based on intrinsic signals, and the second is
based on voltage-sensitive dyes (VSDs). In this review, we focus
on the second technique, aiming at better understand the origin
of the optical signal. Extensive reviews of VSDI have been pub-
lished elsewhere (e.g. Grinvald et al., 2004; Roland, 2002).
Although the underlying mechanism of this optical method is now-
adays well understood, the recorded signal remains very complex
and it seems difficult to isolate the contributions from its different
components. This review suggests modeling as the appropriate
solution. Few models of the VSD signal exist that help to under-
stand the optical signal in terms of functional organization and
dynamics of a population neural network. A closer interaction be-
tween VSDI experimentalists and modelers is desirable.

In the first part of this review, we give a general introduction to
VSDI, followed by examples of applications to brain imaging. We
compare in vitro and in vivo recordings obtained with VSDI in sev-
eral animal studies. In a second part, we make the underlying lim-
itations of this method explicit: what does the VSD signal
measure? A question that is not completely answered in the liter-
ature. Finally, this review shows the benefit of brain activity mod-
eling for optical signal analysis. Models of VSDI measures are
reported. We both address what has already been done and what
will be interesting to do in order to interpret the origins of the opti-
cal imaging signal.

2. VSDI for beginners

2.1. General principle

VSDI offers the possibility to visualize, in real time, the cortical
activity of large neuronal populations with high spatial resolution
(down to 20—50 lm) and high temporal resolution (down to the
millisecond). With such resolutions, VSDI appears to be the best

technique to study the dynamics of cortical processing at neuronal
population level.

This invasive technique is also called ‘‘extrinsic optical imaging”
because of the use of voltage-sensitive dyes (Cohen et al., 1974;
Ross et al., 1977; Waggoner and Grinvald, 1977; Gupta et al.,
1981). After opening the skull and the dura mater of the animal,
the dye molecules are applied on the surface of the cortex
(Fig. 1A). They bind to the external surface of the membranes of
all cells without interrupting their normal function and act as
molecular transducers that transform changes in membrane po-
tential into optical signals. More precisely, once excited with the
appropriate wavelength (Fig. 1B), VSDs emit instantaneously an
amount of fluorescent light that is function of changes in mem-
brane potential, thus allowing for an excellent temporal resolution
for neuronal activity imaging (Fig. 1C). The fluorescent signal is
proportional to the membrane area of all stained elements under
each measuring pixel.

‘‘All elements” means all neuronal cells present in the cortex
but also all non-neuronal cells, like glial cells (see Section 3.1 for
more details). Moreover, neuronal cells include excitatory cells
and inhibitory cells, whose morphology and intrinsic properties
are quite different (see Salin and Bullier (1995) for a review on
the different type of neurons and connections in the visual cortex).
Furthermore, each cell has various compartments, including den-
drites, somata and axons. The measured signal thus combine all
these components, which are all likely to be stained in the same
manner. The dye concentration is only depending on the depth of
the cortex.

The fluorescent signal is then recorded by the camera of the
optical video imaging device and displayed as dynamic sequences
on computer (see Fig. 1). The submillisecond temporal resolution is
reached by using ultra sensitive charge-coupled device (CCD) cam-
era, whereas the spatial resolution is limited by optical scattering
of the emitted fluorescence (Orbach and Cohen, 1983).

2.2. Optical imaging of neuronal population activity

2.2.1. General history
The earliest optical recordings were made, at the single neuron

level, both from cultured cells (Tasaki et al., 1968) and from various
invertebrate preparations like ganglia of the leech (Salzberg et al.,
1973), or the giant axon of the squid (Davila et al., 1973). For all
other VSDI experiments, the VSD signal has a neuronal population
resolution.

The VSDI method has then been used in vitro on brain slices,
mainly in rodent and ferret. It allowed to optically record from
the hippocampus (Grinvald et al., 1982), the visual cortex (Bolz
et al., 1992; Albowitz and Kuhnt, 1993; Nelson and Katz, 1995;
Yuste et al., 1997; Contreras and Llinas, 2001; Tucker and Katz,
2003a; Tucker and Katz, 2003b), the somatosensory cortex (Yuste
et al., 1997; Antic et al., 1999; Contreras and Llinas, 2001; Petersen
et al., 2001; Jin et al., 2002; Laaris and Keller, 2002; Berger et al.,
2007) and from the auditory cortex (Jin et al., 2002; Kubota
et al., 2006).

The salamander, largely used in vitro (Orbach and Cohen, 1983;
Cinelli and Salzberg, 1992), was the first species also used in vivo
for studying the olfactory system using VSDI (Orbach and Cohen,
1983), followed by the frog for the visual system (Grinvald et al.,
1984), and the rodent for the somatosensory system. Indeed, initial
in vivo studies of the somatosensory cortex have been made in
anesthetized rodents, taking advantage of the thinness of the cor-
tical dura (Orbach et al., 1985). More recently, VSDI in freely mov-
ing mice has also been performed with success (Ferezou et al.,
2006).

Rodent and ferret were also used for studying the visual cortex
in vivo (Roland et al., 2006; Lippert et al., 2007; Xu et al., 2007;

Fig. 1. VSDI principle in three steps. The imaging chamber allows a direct access of
the primary visual cortex V1 represented as a patch of cortex with its six layers. (A)
The dye, applied on the surface of the cortex, penetrates through the cortical layers
of V1. (B) All neuronal and non-neuronal cells are now stained with the dye and
when the cortex is illuminated, the dye molecules act as molecular transducers that
transform changes in membrane potential into optical signals. (C) The fluorescent
signal (red arrow) is recorded by a CCD camera.
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Ahmed et al., 2008). However, the main VSDI experiments on vi-
sual modality were conducted on two other mammalian species:
cat and monkey (Grinvald et al., 1994; Arieli et al., 1995; Sterkin
et al., 1998; Shoham et al., 1999; Sharon and Grinvald, 2002; Slovin
et al., 2002; Seidemann et al., 2002; Jancke et al., 2004; Sharon
et al., 2007; Benucci et al., 2007; Reynaud et al., 2007; Yang
et al., 2007). Experiments on anesthetized cats are very attractive
for mapping and studying the primary visual cortex, whereas mon-
key experiments also associate behavioral measures.

2.2.2. High spatial resolution for brain mapping
One domain of application of the VSDI, as other brain functional

imaging, is brain mapping. Indeed, VSDI allows to build high-reso-
lution functional maps, such as orientation or ocular-dominance
maps (Shoham et al., 1999; Grinvald et al., 1999; Slovin et al.,
2002; Sharon and Grinvald, 2002), as also obtained with optical
imaging based on intrinsic signals (ISI) (Blasdel and Salama,
1986; Ts’o et al., 1990; Grinvald et al., 1991; Bonhoeffer and Grin-
vald, 1991; Hubener et al., 1997; Rubin and Katz, 1999). Compari-
son between the two imaging techniques (Shoham et al., 1999;
Grinvald et al., 1999; Slovin et al., 2002) confirms the high spatial
resolution of VSDI methodology for mapping the functional archi-
tecture of the visual cortex. However, although it is possible to do
such brain mapping using VSDI, it does not take advantage of the
possibility to inspect neuronal activation dynamics.

2.2.3. High temporal resolution unveils the dynamics of cortical
processing

The main benefit of the VSDI technique is the possibility for
neuroscientists to go further electrophysiological studies and low

resolution (either temporal or spatial) imaging techniques, since
visualizing in real time with high spatial resolution large popula-
tions of neurons, while supplying information about cortical net-
works temporal dynamics. Many neuroscientists are motivated to
investigate how a sensory stimulus is represented dynamically
on the cortical surface in space and time (Grinvald et al., 1984;
Grinvald et al., 1994; Arieli et al., 1996; Petersen et al., 2003; Civ-
illico and Contreras, 2006). More precisely, the spatiotemporal
dynamics of the response to simple stimuli, e.g. local drifting-ori-
ented gratings or single whisker stimulation, have been visualized
using VSDI on in vivo preparations (Cat: Sharon et al., 2007; Ro-
dent: Petersen et al., 2003). Complex stimuli, e.g. the line motion
or apparent motion illusions, have also been achieved using VSDI
in the visual cortex of cats (Jancke et al., 2004) or ferrets (Ahmed
et al., 2008), revealing fundamental principles of cortical process-
ing in vivo. Nowadays, rapid and precise dynamic functional maps
can even be obtained on behaving animals, as shown by Seide-
mann et al. (2002), Slovin et al. (2002) and Yang et al. (2007) on
behaving monkeys, or by Ferezou et al. (2006) in freely moving
mice.

There questions are conceivable thanks to the persistent devel-
opment of novel dyes (Shoham et al., 1999; Grinvald et al., 2004;
Kee et al., 2009). Indeed, the developed dyes allowed to monitor
in real time neuronal activation both in in vivo and in vitro prepa-
rations (Arieli et al., 1996; Grinvald et al., 1999; Petersen et al.,
2001; Petersen et al., 2003).

2.2.4. Functional connectivity reveals its dynamics
Combining the spatial and temporal advantages, an other direct

application of VSDI is the possibility to study the functional con-

Table 1
Non-exhaustive list of publications related to VSDI, classified by experimental conditions (either in vitro or in vivo) and by species.

Conditions Species Related publications Structure Dye kexc ðnmÞ

In vitro
(invertebrate
preparations,
cultured cells or
brain slices)

Invertebrate
(squid,
skate, snail,
leech)

Tasaki et al. (1968), Davila et al. (1973), Salzberg et al.
(1973), Woolum and Strumwasser (1978), Gupta et al.
(1981), Konnerth et al. (1987), Cinelli and Salzberg
(1990), Antic and Zecevic (1995), and Zochowski et al.
(2000)

Giant
neurons

Styryl JPW1114 optimized for intracellular
applications

540

Axons JPW1114 (fluorescence) 520
Cerebellar
parallel
fibres

Pyrazo-oxonol RH482, RH155 (absorption)

Goldfish Manis and Freeman (1988) Optic tectum Styryl RH414 (fluorescence) 540
Salamander Orbach and Cohen (1983) and Cinelli and Salzberg

(1992)
Olfactory
bulb

Merocyanine XVII optimized for absorption
measurements (Ross et al., 1977; Gupta
et al., 1981), RH414, RH155

Rodent Grinvald et al. (1982), Bolz et al. (1992), Albowitz and
Kuhnt (1993), Yuste et al. (1997), Antic et al. (1999),
Petersen et al. (2001), Contreras and Llinas (2001),
Laaris and Keller (2002), Jin et al. (2002), Kubota et al.
(2006), Berger et al. (2007), Carlson and Coulter
(2008), and Kee et al. (2009)

Visual cortex Fluorochrome Di-4-ANEPPS, RH414, Styryl
RH795 (fluorescence)

500, 540

Barrel cortex JPW2038, RH155, RH482, NK3630,
JPW1114, RH414, RH795

Auditory
cortex

RH795 for fluorescence, Oxonol NK3630
for absorption

520, 705

hippocampus WW401 520
Ferret Nelson and Katz (1995) and Tucker and Katz (2003a,b) Visual cortex RH461 (fluorescence) 590

In vivo
(anesthetized or
awake)

Frog Grinvald et al. (1984) Visual cortex Styryl RH414 520
Salamander Orbach and Cohen (1983) and Kauer (1988) Olfactory

bulb
Styryl RH160 and RH414 optimized for
fluorescence measurements (Grinvald
et al., 1982)

510, 540

Rodent Orbach et al. (1985), Orbach and Van Essen (1993),
Petersen et al. (2003), Derdikman et al. (2003),
Civillico and Contreras (2006), Ferezou et al. (2006),
Berger et al. (2007), Lippert et al. (2007), Xu et al.
(2007), and Brown et al. (2009)

Barrel cortex RH795, Oxonol RH1691, RH1692 and
RH1838 optimized for in vivo fluorescent
measurements (Shoham et al., 1999; Spors
et al., 2002)

540, 630

Visual cortex RH1691, RH1838 630
Ferret Roland et al. (2006) and Ahmed et al. (2008) Visual cortex RH795, RH1691 530, 630
Cat Arieli et al. (1995), Sterkin et al. (1998), Shoham et al.

(1999), Sharon and Grinvald (2002), Jancke et al.
(2004), Sharon et al. (2007), and Benucci et al. (2007)

Visual cortex
(area 17/18)

RH795, RH1692 530-40,
630

Monkey Grinvald et al. (1994), Shoham et al. (1999), Slovin
et al. (2002), Seidemann et al. (2002), Reynaud et al.
(2007), and Yang et al. (2007)

Visual cortex
(V1/V2)

RH1691, RH1692, RH1838 630

FEF RH1691 630
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nectivity of neuronal populations. Yuste et al. (1997) for example,
investigated the connectivity diagram of rat visual cortex using
VSDI. Vertical and horizontal connections have been detected.
More generally, intracortical and intercortical interactions, occur-
ring during sensory processing (especially visual), have been lar-
gely explored using VSDI, either in vitro or in vivo: Mapping
functional connections using VSDI, has been done in vitro in the
rat visual cortex (Bolz et al., 1992; Carlson and Coulter, 2008), in
the guinea pig visual cortex (Albowitz and Kuhnt, 1993) and in
the ferret visual cortex (Nelson and Katz, 1995; Tucker and Katz,
2003a; Tucker and Katz, 2003b), providing not only functional,
but also anatomical and physiological information on the local net-
work. For example, Tucker and Katz (2003a) investigated with
VSDI how neurons in layer 2/3 of ferret visual cortex integrate con-
vergent horizontal connections.

Orbach and Van Essen (1993) used VSDI in the visual system of
the rat in vivo to map striate and extrastriate pathways. Feedfor-
ward propagating waves from V1 to other cortical areas, and feed-
back waves from V2 to V1 have been recently reported by Xu et al.
(2007), thanks to VSDI. In addition, feedback depolarization waves
(from areas 21 and 19 toward areas 18 and 17) were extensively
studied by Roland et al. (2006) in ferrets after staining the visual
cortex with VSD.

2.3. Conclusion

By adding a new dimension to existing brain functional imaging
techniques, VSDI directly reports the spatiotemporal dynamics of
neuronal populations activity. Many VSDI studies have then been
conducted in order to investigate the spatiotemporal patterns of
activity occurring in different parts of the CNS, in vitro or in vivo,
on several preparations or animal species. The Table 1 lists most
articles presenting experimental results using VSDI techniques.
The publications are first classified by the condition of the experi-
ment, either in vitro or in vivo, and then by the experimental prep-
arations or animal species. Additional information about dyes is
available in the last columns (see Ebner and Chen (1995) for a com-
pilation of the commonly used dyes and their properties).

3. The multi-component origin of the optical signal

3.1. About the contribution from glial cells

In general, glial cells have been neglected by neuroscientists for
a long time, especially because unlike neurons, they do not carry
action potentials. However, glial cells have important functions
(see Cameron and Rakic (1991) for a review) and they may contrib-
ute to the VSD signal.

Glial cells are known as the ‘‘supporting cells” of the CNS and
are estimated to outnumber neurons by as much as 50–1. How-
ever, their role in information representation or processing re-
mains unresolved. Indeed, in vitro studies have shown increasing
evidence for an active role of astrocytes in brain function. However,
little is known about the behavior of astrocytes in vivo.

When interpreting the VSD signal, we face two conflicting view-
points. Konnerth and Orkand (1986), Lev-Ram and Grinvald (1986),
Konnerth et al. (1987), Konnerth et al. (1988) and Manis and Free-
man (1988) showed that the optical signal has two components: a
‘‘fast” followed by a ‘‘slow” signal. The latter has been revealed by
doing successive staining with different dyes (e.g. RH482 and
RH155), since each of them may preferentially stain different neu-
ronal membranes. The authors then present evidence that this
slow signal has a glial origin.

However, Kelly and Van Essen (1974) showed that the glial re-
sponses are weak (depolarizations of only 1–7 mV in response to

visual stimuli) and have a time scale of seconds. Recent paper of
Schummers et al. (2008) confirms that the astrocyte response is
delayed 3–4 s from stimulus onset, which is a very slow temporal
response compared to neuron response. Generally, in VSDI, only
the first 1000 ms are considered, since intrinsic activity may affect
the signal after this time.

We understand here that the controversy about glial contribu-
tion is directly link to the used dye (Ebner and Chen, 1995), and
the time course of the optical signal generated. Thus, glial activity
is very unlikely to participate significantly to the VSD signal (when
considering recent fast dyes), since the amplitude of glial response
is weak and its time course is very slow.

3.2. About the contribution from excitatory versus inhibitory cells

In the neocortex, neurons (despite their morphologic diversity)
can be functionally classified in two groups: excitatory neurons,
which represent about 80% of the cortical cells, and inhibitory neu-
rons which represent about 20% of cortical cells (Douglas and Mar-
tin, 1990). Thus, it is tempting to say that the VSD signal mainly
reflects the activity of excitatory neurons (Grinvald et al., 1999).

However, the VSD signal is proportional to changes in mem-
brane potential. Thus, both excitatory and inhibitory neurons con-
tribute positively to the VSD signal and it is hard to teaze apart
contributions from excitatory or inhibitory cells. An additional le-
vel of complexity arises from the fact that inhibition operates gen-
erally in a shunting ‘‘silent” mode (Borg-Graham et al., 1998). In
this mode, inhibition suppresses synaptic excitation without
hyperpolarizing the membrane potential.

To conclude, the contribution of inhibitory cells to the VSD sig-
nal is unclear and would obviously benefit from modeling studies.

3.3. About the contribution from the various compartments

Neurons can be also decomposed into their main various com-
partments, whose surface and electrical activity are different (see
Fig. 2, green part):

(a) The soma, whose electrical activity can be either synaptic
(SP for synaptic potential) or spiking (AP for action
potential).

(b) The dendrites, that integrate presynaptic AP information
from others cells. The electrical activity is mainly synaptic,
however, back-propagating AP could be recorded in the den-
drites (see Waters et al. (2005) for a review). Dendritic sur-
face area of mammalian neurons have been estimated by
Sholl (1955a), Aitken (1955), and Young (1958) to be 10–
12 times larger than cell bodies surface area, and to repre-
sents 90% of the total neuronal cell membrane (Eberwine,
2001).

(c) The axon, which carries spiking signals from the soma to the
axon terminal. Spiking activity can be recorded on this part
of neuron. In contrast with dendrites, the surface area of
axons represents 1% of the total neuronal cell surface (Eber-
wine, 2001).

In the literature, regarding the difference in membrane areas of
the various neuronal components and the nature of the signal, it is
commonly accepted that the optical signal, in a given pixel, mostly
originates from the dendrites of cortical cells, and therefore, mainly
reflects dendritic post-synaptic activity (Orbach et al., 1985; Grin-
vald et al., 2004). Extensive comparisons between intracellular
recordings from a single neuron and VSDI also showed that the
optical signal correlates closely with synaptic membrane potential
changes (Petersen et al., 2003; Contreras and Llinas, 2001). How-
ever, no real quantitative analysis has been performed to date
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and it is more correct to state that the optical signal is multi-com-
ponent since the VSD signal reflects the summed intracellular
membrane potential changes of all neuronal compartments at a gi-
ven cortical site. The aim then, is to determine the exact contribu-
tion of each component, which remains unknown. More precisely,
what is quantitatively the contribution of dendritic activity? Can
spiking activity be neglected?

3.4. About the contribution from cortical layers

The depth of the neocortex is about 2 mm. It is made up of six
horizontal layers principally segregated by cell types and neuronal
connections. The layer II mostly contains small pyramidal neurons
that make strong connections with large pyramidal neurons of the
layer V (Thomson and Morris, 2002).

Improved dyes, when put at the surface of the exposed cortex,
can reach a depth of about 400–800 lm from the cortical surface,
which mainly corresponds to superficial layers (Grinvald et al.,
1999; Petersen et al., 2003). Furthermore, measures of the distribu-
tion of dye fluorescence intensity in rat visual and barrel cortex
confirm that the optical signal mostly originates from superficial
layers I–III (Ferezou et al., 2006; Lippert et al., 2007). Note that Lip-
pert et al. (2007) used a special staining procedure, i.e. keeping the
dura mater intact, but dried.

However, they did not take into account the fact that the activ-
ity in superficial layers could arise from neurons in deep layers,
due to their dendritic arborization. Indeed, large pyramidal neu-
rons in layer V have apical dendrites that reach superficial layers
and may contribute to the signal. Therefore, the exact contribution
of each cortical layer still has to be clarified.

3.5. About the contribution from thalamic versus horizontal
connections

The origin of the signal can also be problematic when looking at
the contribution from the different presynaptic activity origins, e.g.
direct thalamic synaptic inputs, or horizontal inputs. Indeed, in re-
sponse to a local stimulation, slow propagating waves can be re-
corded (Grinvald et al., 1994; Jancke et al., 2004; Roland et al.,
2006; Xu et al., 2007; Benucci et al., 2007). We can question what
is the relative contribution of all the synaptic input sources of this
phenomenon, i.e. feedforward, horizontal or feedback inputs. Ded-
icated models could help teazing apart those various contributions.

3.6. Conclusion

Fig. 2 summarizes the four main questions not completely clar-
ified to date:

(a) What are the contributions of the various neurons and neu-
ronal components to the optical signal?

(b) What is the ratio between spiking and synaptic activity?
(c) What are the respective contributions of cells from deep ver-

sus superficial layers?
(d) What is the origin of the synaptic input? More precisely,

what are the respective contributions of thalamic, local
and long-range inputs?

To answer these questions, a possibility is to develop computa-
tional models in order to reproduce and analyse VSD signals. Mod-
els of VSD signals are reported in the next and last part of this
review.

4. Benefits of modeling for optical signal analysis

The goal of this section is to investigate the different models
from the literature, used to reproduce and analyse the VSD signal.
We quickly emphasize three of these models because of their scale
of analysis. In the last subsection, we present, in detail, an interme-
diate model that would allow to answer the previous questions
about the VSD signal contributions.

4.1. Which scale for which model?

As previously described, the origin of the VSD signal is complex
and remains to be estimated and explored. Therefore, it could be
interesting to see if the activity of a computational model could
be related to this signal. However, the choice of the model’s scale
is very important and depends on what exactly the model is de-
signed for. We propose in the following paragraphs that the meso-
scopic scale seems would be the best scale for analyzing the
population VSD signal. In neuroscience, this scale is generally used
to define the elementary processing unit in the brain, the cortical
column. We start by defining our concept of cortical columns.

Since the 1950s, thanks to the work of Mountcastle (1957), we
know that the cerebral cortex has a columnar organization. In
1960s and 1970s, Hubel and Wiesel (1962, 1965, 1977) followed

Fig. 2. Contributions of the optical signal. Once neurons are stained by the VSD, every neuronal membrane contributes to the resulting fluorescent signal, but from where?
and in which proportion? Answering these four questions could clarify the optical signal origins: (1) Which cells? (2) Which parts of the cell? (3) Which layers? (4) Which
presynaptic origins?
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Mountcastle’s discoveries by showing that ocular dominance and
orientations are organized in a columnar manner in cat and mon-
key visual cortex. Today, the notion of cortical column becomes a
large controversy since the original concept is expanding, year
after year, discovery after discovery, to embrace a variety of differ-
ent structures, principles and names. A ‘column’ now refers to cells
in any vertical cluster that share the same tuning for any given
receptive field attribute (see Horton and Adams (2005) for a de-
tailed review on the cortical column concept). A novel and useful
concept is to propose that each definition of cortical column de-
pends on its type (anatomical, functional, physico-functional) and
its spatial scale, as detailed in Table 2. A minicolumn or a microcol-
umn is an anatomical column of about 100 neurons, since its spa-
tial scale is about 40 lm. Next, orientation or ocular dominance
columns are classified as functional columns whose the spatial
scale is between 200 and 300 lm, containing several minicolumns.
An hypercolumn in V1 or a macrocolumn in the general case, then
represents a physico-functional unit containing a full set of values
for any given functional parameter. Its spatial scale can be up to
600 lm and contains about 104 neurons. Finally, neural mass is a
mesoscopic concept which depends on the spatial scale. When
looking at a cortical area, it can be used to represent, for example,
all the pyramidal neurons contained in it (about 105 neurons).

Into these definitions and in order to reproduce exactly the
same signal, i.e. time course and spatial extent, it seems appropri-
ate to construct models at a large mesoscopic scale which could
represent an entire cortical area. Models from Miikkulainen et al.
(2005), Grimbert et al. (2007), Rangan et al. (2005) and La Rota
(2003) consider this scale, that can be view as the neurons popula-
tion scale.

An other point of view is to choose a much finer scale allowing
to construct a more detailed biophysical model in order to quanti-
tatively estimate the exact contribution of the VSD signal (excita-
tion vs. inhibition, parts of the neuron, layers participation, etc.).
In optical imaging, the visual scale studied, which is about
50 lm, corresponds to one pixel. It is still a population activity
since it represents about 200 neurons, but the scale being relatively
small, we will call it ‘‘intermediate mesoscopic scale”. This model is
detailed in the last section.

4.2. Mesoscopic scale: models of a cortical area

4.2.1. Extended LISSOM model
The Laterally Interconnected Synergetically Self-Organizing

Map (LISSOM) family of models was developed by Bednar, Choe,
Miikkulainen and Sirosh, at the University of Texas (Miikkulainen
et al., 2005; Sirosh and Miikkulainen, 1994), as models of human
visual cortex at a neural column level. It is based on the Self-Orga-
nizing Maps (SOM) algorithm (from Kohonen, 2001) used to visu-
alize and interpret large high-dimensional data sets. When
extended, the LISSOM neural network models takes into account
lateral interactions (excitatory and inhibitory connections), allow-
ing to reproduce the pinwheel organization of the primary visual
cortex map, such as orientation, motion direction selectivity and
ocular-dominance maps.

Sit and Miikkulainen used such a LISSOM model to represent V1
and tried to show how the activity of such a computational model
of V1 can be related to the VSD signal (Sit and Miikkulainen, 2007).
Indeed, with an extended LISSOM model including propagation de-
lays in the cortical connections, they showed that the orientation
tuning curve and the response dynamics of the model were similar
to those measured with VSDI.

The model is a couple of two layers of neural units that repre-
sent the retina and V1. In V1, neural units account for a whole ver-
tical column of cells. They receive input from the retina and also
from neighbour columns (short-rang lateral excitatory and long-
rang lateral inhibitory connections). Thus, the neuronal activity
of unit r in V1 writes:

Aðr; tÞ ¼ r Vðr; tÞð Þ;
Vðr; tÞ ¼

X
q

cq

X
r0

Wq;r;r0Aðr0; t � dðr; r0ÞÞ þ
X

s

vsRs;r; ð1Þ

where r is a sigmoid activation function and the two terms are
respectively the weighted sum of the lateral activations and the in-
put activation from the retina. Wq;r;r0 and Rs;r are respectively the
synaptic weights matrix of lateral and retinal connections, and
dðr; r0Þ is the delay function between unit r and unit r0. This is thus
a scalar model of the neural activity.

Then, the computation of the VSD signal is done by looking only
at the subthreshold activity Vðr; tÞ, given by the weighted sum of
presynaptic activity. To simplify, the authors have extended the
LISSOM model with delayed lateral connections to compute the
VSD signal from subthreshold signal. This is thus a scalar linear
model of the VSD signal built on convolutions.

This model, based on Hebbian self-organizing mechanisms, is
simple and efficient to replicate the detailed development of the
primary visual cortex. It is thus very useful to study VSDI func-
tional maps. However, this model is not specific enough to answer
the previous asked questions (see Section 3.6).

4.2.2. Neural field model of a cortical area
Another approach, introduced by Grimbert et al. (2007) and

Grimbert et al. (2008), proposes neural fields as a suitable meso-
scopic models of cortical areas, in link with VSD. Neural field are
continuous networks of interacting neural masses, describing the
dynamics of the cortical tissue at the population level (Wilson
and Cowan, 1972; Wilson et al., 1973). It could thus be applied
to solve the direct problem of the VSD signal, providing the right
parameters. More precisely, the authors showed that neural fields
can easily integrate the biological knowledge of cortical structure,
especially horizontal and vertical connectivity patterns. Hence,
they proposed a biophysical formula to compute the VSD signal
in terms of the activity of a field.

The classical neural field model equation is used, either written
in terms of membrane potential or in terms of activity of the differ-
ent neural masses present in a cortical column. For example, if r
represents one spatial position of the spatial domain defining the
area, then the underlying cortical column is described, at time t,
by either a vector Vðr; tÞ or Aðr; tÞ:

Table 2
The different types of cortical columns.

Anatomical Ol pixel Functional Physico-functional Cortical area

Type of cortical
column

Microcolumn or
minicolumn

Our column Orientation, ocular
dominance column

Macrocolumn or
hypercolumn (V1)

Neural mass

Spatial scale 40–50 lm 50–100 lm 200–300 lm 600 lm (and more) 10 mm
Number of

neurons
80–100 neurons 200 neurons Several minicolumns 60–100 minicolumns or

10,000 neurons
100X Thousand neurons of the same type
(pyr, stellate, etc.)
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_Vðr; tÞ ¼ �LVðr; tÞ þ
Z

X
Wðr; r0ÞSðVðr0; tÞÞdr0 þ Iextðr; tÞ; ð2Þ

and

_Aðr; tÞ ¼ �LAðr; tÞ þ S
Z

X
Wðr; r0ÞAðr0; tÞdr0 þ Iextðr; tÞ

� �
ð3Þ

Here, Vðr; tÞ contains the average soma membrane potentials of
the different neural masses present in the column (the vector’s
dimension then represents the number of neuronal types consid-
ered in every column). Aðr; tÞ contains the average activities of
the masses. For example, Ai is the potential quantity of post-synap-
tic potential induced by mass i on the dendrites of all its post-syn-
aptic partners. The actual quantity depends on the strength and
sign (excitatory or inhibitory) of the projections (see Grimbert
et al. (2007, 2008) and Faugeras et al. (2008) for more details on
the model’s equations). The model include horizontal intercolum-
nar connections and also vertical intracolumnar connections be-
tween neural masses. The latter gives an advantage to this model
compared to the previous one, since the vertical connectivity was
not taken into account in the extended LISSOM model. Further-
more, extracortical connectivity is not made explicit here, though
taken into account in Grimbert et al. (2007).

Hence, based on this biophysical formalism (and especially the
activity-based model, which is more adapted than the voltage-
based model), the authors propose a formula involving the vari-
ables and parameters of a neural field model to compute the VSD
signal:

OIðr; tÞ ¼
XN

j¼1

Z
X

~wjðr; r0ÞAjðr0; tÞdr0; ð4Þ

where ~wjðr; r0Þ contains all the biophysical parameters accounting
for a cortical area structure stained by a voltage-sensitive dye, i.e.
the different layers, the number of neurons, the number of dye mol-
ecules per membrane surface unit, the attenuation coefficient of
light and also the horizontal and vertical distribution patterns of in-
tra and intercortical connectivities.

This formula is the result of many decompositions of the total
optical signal, from layer level to cellular membrane level, where
the signal is simply proportional to the membrane potential.

Better than the Lissom model for our considerations, this large-
scale model reproduces the spatiotemporal interactions of a corti-
cal area in response to complex stimuli, e.g. line motion illusion,
and allows, on average, to answer at the mesoscopic scale some
previous questions (see Section 3.6). However, improvements on
parameters tuning are still needed.

4.2.3. Conductance-based IAF neuronal network model
Another large-scale computational model of the primary visual

cortex have been proposed by Rangan et al. (2005). The model is a
two-dimensional patch of cortex, containing about 106 neurons
with a preferred orientation, whose 80% are excitatory and 20%
are inhibitory. The dynamics of single cell i is described by a single
compartment, conductance-based, exponential integrate-and-fire
equation (see Geisler et al. (2005) for more details on this neuron
model). The derivation of this equation gives the membrane poten-
tial of neuron i of spatial position ri:

Vðri; tÞ ¼
gLVL þ gA

i ðtÞ þ gN
i ðtÞ

� �
VE þ gG

i ðtÞV
I

gL þ gA
i ðtÞ þ gN

i ðtÞ þ gG
i ðtÞ

ð5Þ

where gL; gA
i ; gN

i and gG
i are respectively leak, AMPA, NMDA and

GABA conductances, and VL; VE and VI are respectively leak, excit-
atory and inhibitory reversal potentials.

The authors then use Vðr; tÞ to represent the VSD signal, i.e. the
subthreshold dendritic activity in the superficial layers of the cor-

tex. Poisson processes are used to simulate inputs from the thala-
mus and background noise.

This model allows, like the previous one Grimbert et al. (2007),
to reproduce the spatiotemporal activity patterns of V1, as re-
vealed by VSDI, in response to complex stimuli, e.g. the line motion
illusion. However, in comparison with Grimbert et al. (2007), no
laminar structure is taken into account.

4.2.4. Linear model of the raw VSD signal
With the same scale of analysis, La Rota (2003) presented an

interesting linear model in order to study the neural sources of
the mesoscopic VSD signal. The author chose a compromise be-
tween a detailed and a ‘‘black-box” model of the signal, by taking
into account the important properties of the VSD signal and also
the artefacts directly linked to its measure, in a mesoscopic, linear
and additive model. The VSD signal of a cortical area can then be
modeled by an intrinsic and an extrinsic components:

OIðtÞ ¼ AðtÞ þ qðtÞ; ð6Þ

where A(t) represents the activity of the intrinsic component of the
optical signal (i.e. the synaptic activity of the cortical area observed)
and qðtÞ represents all the noise and artefacts due to the measure
(e.g. hemodynamic artefact, cardiovascular and respiratory move-
ments, instrumental noise, etc.). In this model, inputs from the thal-
amus are considered as background noise and thus enter in the q
component.

The model is interesting because it both takes into account the
intrinsic and the extrinsic variability of the VSD signal. The latter
being supposed already removed, when analyzing the signal in
the three other presented models.

4.3. Biophysical model at the intermediate mesoscopic scale

Since none of the previous models was specific enough to deter-
mine the different contributions of the optical signal, a biological
cortical column model, at an intermediate mesoscopic scale, has
also been proposed in order to better understand and interpret bio-
logical sources of VSD signals (Chemla et al., 2007). This scale cor-
responds to one pixel of optical imaging: about 50 lm and the
related model solves the direct VSD problem, i.e. generates a VSD
signal, given the neural substrate parameters and activities. Using
a detailed compartmental model allows to push the state of the art
at this level. This model confirms and quantifies the fact that the
VSD signal is the result of an average from multiple components.

4.3.1. Model specifications
Into the above cortical columns paradigm and for our specific

model, we introduced a new distinction of a cortical column (see
Fig. 2, second column). The spatial scale is about 50 lm, corre-
sponding to one pixel of optical imaging. Given this spatial scale,
the number of neurons, that has been evaluated from Binzegger
et al. (2004), is about 200.

We then consider a class of models based on a cortical microcir-
cuit (see Raizada and Grossberg (2003), Douglas and Martin (2004),
and Haeusler et al. (2007) for more details on this concept), whose
synaptic connections are made only between six specific popula-
tions of neurons: two populations (excitatory and inhibitory) for
three main layers (2/3, 4, 5/6).

Each neuron is represented by a reduced compartmental
description (see Bush and Sejnowski (1993) for more details on
the reduction method) with conductance-based Hodgkin–Huxley
neuron model (see Hodgkin and Huxley, 1952) in the soma and
the axon. Thus, the dynamics of single cells are described by the
following equation:
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Cm
dV
dt
¼ Iext �

X
i

giðVÞðV � ViÞ ð7Þ

where V is the membrane potential, Iext is an external current in-
jected into the neuron, Cm is the membrane capacitance, and where
three types of current are represented: leak, potassium and sodium
conductances or respectively GL; GK and GNa. GL is independent of V
and determines the passive properties of the cells near resting po-
tential. The sodium and potassium conductances are responsible
for the spike generation. Furthermore, a slow potassium conduc-
tance was included in the dynamics of the excitatory population
to reproduce the observed adaptation of the spike trains emitted
by these neurons (see Nowak et al., 2003). This feature seems to
be absent in inhibitory neurons, as taken into account in this model.

Only passive dendrites were considered. Each neuron repre-
sented with seven to nine compartments. The link between com-
partments can then be described by Eq. (8) (Hines and Carnevale,
1997).

Cj
dVj

dt
þ Iionj ¼

X
k

Vk � Vj

Rjk
ð8Þ

where Vj is the membrane potential in compartment j; Iionj is the
net transmembrane ionic current in compartment j; Cj is the mem-
brane capacitance of compartment j and Rjk is the axial resistance
between the centers of compartment j and adjacent compartment k.

Synaptic inputs are modeled as conductance changes. Excit-
atory AMPA synapses are converging on soma and dendrites of
each neuron, whereas inhibitory GABA synapses are only converg-
ing on soma of each neuron (Salin and Bullier, 1995). The number
of synapses involved in the projections between these different
neuronal types, including the afferent from the LGN, were recalcu-
lated for a 50 lm cortical column, based on Binzegger et al. (2004)
for the considered layers, while latencies have been introduced for
each connection following Thomson et al. (2007).

Input signals from the thalamus into the neocortex layer IV was
simulated by applying random spike trains to each neuron in layer
IV and random latency have been introduced for each input con-
nection to simulate the temporal properties of geniculocortical
pathway. Then we increased the frequency of the spike trains in or-
der to represent stimulus contrast and see how the model trans-
forms an increasing input, i.e. the contrast response function (see
Albrecht et al., 1982). At this point, the column is isolated. A step
further, the conditions relative to a larger network are reproduced
as follows: First, ‘‘background noise” was introduced in each neu-
ron of the column. Typically, noise can be introduced in the form
of stochastic fluctuation of a current or an ionic conductance. The
stochastic model of Destexhe et al. (2001), containing two fluctuat-
ing conductances, is used here, allowing us to simulate synaptic
background activity similar to in vivo measurements, for a large
network. Second, lateral connections between two neighboring
columns are reproduced by introducing an other set of random
spike trains inputs whose frequency, synaptic delays and synaptic
weights are adapted for fitting experimental data. Fig. 3 shows a
schematic of the model, with thalamic input, background activity
and lateral interactions. Examples of neuronal response have been
plotted in function of increasing input or contrast.

4.3.2. Computation of the VSD signal
The VSD signal is simulated using a linear integration on the

membrane surface of neuronal components. Here, the use of com-
partmental model has a real interest. Indeed, the computation of
the VSD signal, for a given layer L, is given by:

OIL ¼ kL
X

i2 Compartmentsf g
ViSi ð9Þ

where Si and Vi are respectively the surface and the membrane po-
tential of the ith compartment and kL represents the fluorescence’s
gradient or the illumination intensity of the dye in layer L.

Fig. 3. Model representation taking into account thalamic input contrast, background activity and lateral connections and offering the possibility to compute the VSD signal
with a linear formula. In output, inhibitory and excitatory neuronal responses are plotted in function of increasing input or contrast (right inset). The temporal evolution of
the VSD signal in response to 600 ms stimuli and in function of increasing input is also emphasized.
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Thus, this model takes into account soma, axon and dendrites
influences, introduces 3D geometrical properties (dendrites of
large pyramidal neurons in layer 5 can reach superficial layers)
and fluorescence gradient depending on depth. According to Lip-
pert et al. (2007) and Petersen et al. (2003), k2 ¼ 0:95; k4 ¼ 0:05
and k5 ¼ 0. Then, the total optical imaging signal is given by the
following formula:

OI ¼
X

L2 Layersf g
OIL ð10Þ

Following this framework, the VSD signal is simulated in response
to known stimuli (Fig. 3, bottom right inset) and compared to
experimental results (Chemla et al., 2008).

Thanks to its compartmental construction, this model can pre-
dict the different contributions of the VSD signal. It thus gives
the possibility to quantitatively answer the previous asked ques-
tions: excitation vs. inhibition, spiking vs. synaptic activity and
superficial vs. deep layers: The model confirms that the VSD signal
mainly reflects dendritic activity (75%) of excitatory neurons (80%)
in superficial layers (80%). However, these numbers are changing
when increasing the level of input activity. At high level of activity,
inhibitory cells, spiking activity and deep layers become non-neg-
ligible, and should be taken into account in the computation of the
VSD signal. These results will be the subject of a future publication.

5. Conclusion

In this review, we have presented the voltage-sensitive dyes
imaging (VSDI) technique in a general and elementary manner.
This optical technique, thanks to its excellent spatial and temporal
resolution, offers many possibilities for in vitro and more interest-
ingly in vivo brain imaging.

However, the recorded optical signal is multi-component and
its origins are still unresolved. Indeed, the contribution of each
component, i.e. glial cells, excitatory cells, inhibitory cells, somas,
axons, dendrites, layers, is very difficult to isolate from the others.

This review suggests modeling as the appropriate solution. We
reported four existing models that try to reproduce and analyse the
VSD signal. The main advantage of these models, all built at a mes-
oscopic scale, is the ability to compare the same signal, i.e. the sig-
nal of an entire cortical area. However, for our considerations, i.e.
find the different contributions of the VSD signal, those models
have not the right scale. Thus, we proposed a biophysical cortical
column model, at an intermediate mesoscopic scale, in order to
find the biological sources of the VSD signal. Using a such compart-
mental model should be of great value for doing a quantitative
analysis of the different contributions of the optical signal.
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a b s t r a c t

The plexus of long and short range lateral connections is a prominent feature of the layer 2/3 microcircuit
in the primary visual cortex. Despite the scope for possible functionality, the interdependence of local
and long range circuits is still unclear. Spatiotemporal patterns of activity appear to be shaped by the
underlying connectivity architecture and strong inhibition. A modelling study has been conducted to
capture population activity that has been observed in vitro using voltage sensitive dyes. The model
demonstrates that the precise spatiotemporal spread of activity seen in the cortical slice results from
long range connections that target specific orientation domains whilst distinct regions of suppressed
activity are shown to arise from local isotropic axonal projections. Distal excitatory activity resulting
from long range axons is shaped by local interneurons similarly targeted by such connections. It is shown
that response latencies of distal excitation are strongly influenced by frequency dependent facilitation
and low threshold characteristics of interneurons. Together, these results support hypotheses made
following experimental observations in vitro and clearly illustrate the underlying mechanisms. However,
predictions by the model suggest that in vivo conditions give rise to markedly different spatiotemporal
activity. Furthermore, opposing data in the literature regarding inter-laminar connectivity give rise to
profoundly different spatiotemporal patterns of activity in the cortex.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Lateral connections are a prominent feature of the visual cortex
and comprise the dominant synaptic input to layer 2/3 cortical
cells (Binzegger, Douglas, &Martin, 2004). Such projections exhibit
striking specificity in their patterns of connectivity (Bosking,
Zhang, Schofield, & Fitzpatrick, 1997; Buzás et al., 2006; Gilbert
& Wiesel, 1983; Kisvárday, Tóth, Rausch, & Eysel, 1997; Malach,
Amir, Harel, & Grinvald, 1993; Schmidt, Goebel, Löwel, & Singer,
1997; Sincich & Blasdel, 2001; Tanigawa, Wang, & Fujita, 2005).
Within layer 2/3, glutamatergic lateral connections appear to form
twodistinct circuits. Local axonal projections extend in an isotropic
pattern over several hundred microns and synapse on cells of
all orientation tunings. Long range connections can extend many
times further. Evidence also shows that these connections tend
to project anisotropically in directions that are coaxial with the
orientation tuning of the presynaptic cell (Bosking et al., 1997;
Schmidt et al., 1997; Sincich & Blasdel, 2001). In addition, such
projections target postsynaptic cells that have a similar orientation
tuning to the presynaptic cell. In contrast the inhibitory lateral

∗ Corresponding author. Tel.: +44 1752 23 3593; fax: +44 1752 23 3349.
E-mail address: thomas.wennekers@plymouth.ac.uk (T. Wennekers).

circuitry of layer 2/3 appears far less extensive (Kisvárday et al.,
1997). Such a proliferation of highly specific axonal projections
suggests that they play an important role in cortical behaviour.
As such, horizontal connections have been associated with a
number of cortical functions; non-classical receptive fields (Seriés,
Lorenceau, & Frégnac, 2003); orientation tuning (Ferster & Miller,
2000); motion selectivity (Seriés, George, Lorenceau, & Frégnac,
2002). To better understand the implications of such hypotheses
we consider the spatiotemporal dynamics of both the local and
long range microcircuits, and their interdependence.
In vitro focal extracellular stimulation of ferret layer 2/3

slices produces very specific spatiotemporal patterns of activity
(Tucker & Katz, 2003a, 2003b). Voltage sensitive dye (VSD) tech-
niques (Fitzpatrick, 2000) allowed the authors to image activity in
vitro at the population level. Clear distinctions can be made in the
patterns of activity proximal or distal to the stimulus site. Local
activity is extensive and diffuse whilst distal activity is more dis-
crete and correlatedwith iso-orientation domains. Inhibition plays
a prominent role in activity observed both locally and distally. The
authors hypothesised that various mechanisms such as frequency
dependent facilitation and plasticity might underlie these obser-
vations. It is proposed here that these spatiotemporal patterns of
excitatory and inhibitory activity result directly from the specific
underlying microcircuitry and in particular the dichotomy of lo-
cal and long range connection architectures. We present a mod-

0893-6080/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
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elling study which clearly demonstrates such behaviour through a
combination of characteristic axonal projections and electrophys-
iological properties of cortical cells. Furthermore, the specific
underlyingmechanisms responsible for the observed data are clar-
ified. In addition, the work presented here provides additional ev-
idence regarding which elements are activated by extracellular
stimulation, and the interpretation of VSD signals. Finally, predic-
tions were made of the expected activity in the layer 2/3 lateral
microcircuitry in vivo. Driving the layer 2/3 microcircuit by extra-
laminar input results in profoundly different spatiotemporal pat-
terns of activity. Distal activity is significantly attenuated whilst
proximal activity is more localised and does not regenerate the
same spatiotemporal patterns during repeated stimulation.
A computational model has been developed based on a mean

field premise representing a patch of layer 2/3 visual cortex.
Detailed patterns of connectivity specific to excitatory and in-
hibitory cells are represented including both local and long range
paradigms. The model also captures the differences in temporal
characteristics exhibited by excitatory and inhibitory cells, and
their associated synapses. Propagation delays are incorporated re-
flecting the different synaptic pathways.

2. Methods

A coarse grain modelling approach has been adopted with
activity represented using a mean field model that describes the
time dependent activity of cortical cells. The model represents a
small patch of layer 2/3 of the primary visual cortex approximately
3 mm2, using two arrays of cells, one excitatory the other
inhibitory. Each set is arranged in a 51× 51 grid, a cell at position
(x, y) representing the activity at a corresponding spatial position
on the cortical patch. Thus for 2601 evenly distributed locations
on the cortical patch there is an excitatory and inhibitory model
cell representing the average local activity of a small population
of excitatory and inhibitory neurons. The time dependent activity
of model cells is expressed as a series of ordinary differential
equations that are numerically solved by iteration of Euler’s
method. Representation of both cells and synapses are influenced
by Gerstner and Kistler (2002), Lumer, Edelman, and Tononi (1997)
and Song, Miller, and Abbott (2000). The membrane potential,
V (x, y), of a model cell at location (x, y), is governed by

τ
dV (x, y, t)
dt

= −(V (x, y, t)− Vr)− gex(V (x, y, t)− Eex)

− gin(V (x, y, t)− Ein). (1)

The resting potential of the cell is determined by Vr , and was
set to −70 mV from the observation of the in vitro data that
the population resting potential was close to the GABAA reversal
potential (Tucker & Katz, 2003b). The passive membrane time
constant, τ , for excitatory and inhibitory cells were representative
of regular and fast spiking cells in the cat and took values of
10.4 ms and 7.6 ms respectively (Nowak, Azouz, Sanchez-Vives,
Gray, & McCormick, 2003). The excitatory and inhibitory synaptic
inputs to a cell, representing AMPA and GABAA, are given by gex
and gin, respectively, with associated reversal potentials Eex and
Ein. AMPA and GABAA reversal potentials were set at 0 mV and
−70 mV (Lumer et al., 1997).
As the phenomena under investigation have relatively brief

temporal dynamics, only AMPA and GABAA, with their compara-
tively rapid kinetics, are considered. In keeping with the notion
that each model cell represents a number of individual neurons,
connections betweenmodel cells similarly represent a collection of
neurites and synapses. Connectivity is simplified further by mod-
elling all synaptic input of a given type, i.e., AMPA or GABAA, to a

cell by a two-stage low-pass filter of the form

τr
dg
dt
= −g + h (2)

τf
dh
dt
= −h+ w

∑
x,y

φ(d)f (V (x, y, t −∆t)). (3)

This represents essentially a difference of exponentials with τr
and τf the rise and fall time constants for conductance changes in
response to spikes. Rise and decay time constants were 0.5 ms and
2.4 ms for AMPA synapses; 1 ms and 7 ms for GABAA synapses
(Lumer et al., 1997). The summation term of Eq. (3) is over all
locations, (x, y), of cells that provide synaptic input. Thus for AMPA
synaptic input this summation is over all excitatory cell locations,
and for GABAA over all inhibitory cell locations. The distance
between each of these cells and the cell that they provide synaptic
input to is given by d. Synaptic efficacy is considered to decrease as
the separation between pre- and postsynaptic cells increases and
is reflected by the term φ(d). f (V (x, y, t − ∆t)) is an activation
function that determines the firing rate of cell at location (x, y) at
time t−∆t where t is the current time and∆t a propagation delay
determined by d. Propagation delays were based on a conduction
velocity of 0.2m/s in keeping with experimental data (Bringuier,
Chavane, Glaeser, & Frégnac, 1999; Grinvald, Lieke, Frostig, &
Hildesheim, 1994; Tucker &Katz, 2003b). The activation function is
essentially the rectification model of Carandini and Ferster (2000).
Spike threshold was the same for both excitatory and inhibitory
cells at −54 mV (Carandini & Ferster, 2000). Gain in terms of
spikes per mV had values of 2.5 spikes/mV and 10.0 spikes/mV
for excitatory and inhibitory cells respectively. The value of w is
determined by the type, excitatory or inhibitory, of pre- and post
synaptic cells. It is a tuneable parameter that controls the relative
strengths of the four connection types; excitatory to excitatory;
excitatory to inhibitory; inhibitory to excitatory; and inhibitory
to inhibitory. This makes the selection of gain parameters for the
activation function somewhat arbitrary.
Modelling studies suggest that the number of synapses made

between cells is a function of their separation (Stepanyants &
Chklovskii, 2005; Stepanyants et al., 2008). It is assumed here
that the number of synapses made between two cells reflects a
putative connection strength. To reflect this connection strength,
the efficacy of connections between cells is determined by a simple
Gaussian function. Locally within layer 2/3, lateral connectivity is
isotropic (Bosking et al., 1997; Buzás et al., 2006; Kisvárday et al.,
1997; Malach et al., 1993; Roerig & Kao, 1999; Schmidt et al.,
1997; Sincich & Blasdel, 2001; Tanigawa et al., 2005; Tucker &
Katz, 2003b), with excitatory and inhibitory model cells making
projections in a radially symmetric halo (Kisvárday et al., 1997).
For local isotropic connections the connection efficacy, φ(d), is
given by

φ(d) = e−
d2

2σ2 . (4)

Data from Kisvárday et al. (1997) suggests that the density
and extent of lateral excitatory connections in cat layer 2/3
is significantly greater than that of inhibitory connections. This
characteristic is captured in the model by using different values of
σ for connections from excitatory and connections from inhibitory
cells. Whilst biological data suggests excitatory connections are
2–3 times more extensive than inhibitory connections (Kisvárday
et al., 1997), results derived frommodelling software (Stepanyants
et al., 2008) would imply the two networks are more similar
in extent. Here, connections from excitatory cells assume σ =
300 µm and those from inhibitory cells that σ = 200 µm.
From Eq. (4), the efficacy of a connection from a presynaptic

cell located at (x, y) to postsynaptic cell located at (xj, yj) is
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Fig. 1. Model of extracellular stimulation of axons. The upper panel depicts an
8× 3 grid of model cells. An extracellular stimulus is applied at the shaded square
location (3, 2). The 5 solid shaded circles to the right of the stimulus site indicate
presynaptic cells and the shaded lines their axonal projections; circles and lines of
the same shade denote a model cell and its axonal projection. The gradient shaded
circle to the left of the stimulus site at location (1, 2) marks a postsynaptic cell.
Axonal projections are considered to follow a straight line frompre- to postsynaptic
cell. For this postsynaptic cell only those afferent axons shown will be activated by
the stimulus as no other afferent axons lie on a straight line through the stimulus
site. For modelling purposes an axon passes through the stimulus site if the (x, y)
location of the stimulus cell lies on the line connection the (x, y) locations of
pre- and postsynaptic cells. The lower panel shows the efficacy of connections
between pre- and postsynaptic cells. Each circle corresponds to the horizontal
location of a presynaptic cell in the upper panel. For each circle, the line of the
same shade shows the connection efficacy of projections to progressively more
distant horizontal locations. The value of each linewhere it crosses the y-axis (i.e., at
horizontal location 1) shows the efficacy of the corresponding axonal projection at
the postsynaptic cell.

exp(−0.5((x− xj)2+ (y− yj)2)/σ 2). Model cells are also assumed
to make long range connections to a number, n, of distal patches
each of which has a centre located at (xi, yi), i = 1, . . . , n. For local
and long range connections, the combined efficacy for a connection
from presynaptic cell at (x, y) to postsynaptic cell at (xj, yj) is

C(x, y, xj, yj) = max
i=1,...,n

e (x−xj)2+(y−yj)22σ2 , aie
(xi−xj)

2
+(yi−yj)

2

2σ2i

 . (5)

The parameter ai enables weighting of distal patchy connection
strengths relative to each other and the local isotropic connec-
tions. The spatial extent, σi, of each patch was identical, with value
135µm (Tucker & Katz, 2003b). As the current study is not specifi-
cally concerned with the relationship between long range patches
and orientation tuning, their number, n, and location, (xi, yi) was
arbitrarily chosen.
Both experimental (Nowak & Bullier, 1998a, 1998b) and theo-

retical evidence (McIntyre&Grill, 1999) indicate activity evokedby
extracellular stimulation originates in axons rather than somata.
Modelling the excitation of such fibres by extracellular stimulation
is kept very simple. Consider the 8×3 grid ofmodel cells in the up-
per panel of Fig. 1 where an extracellular stimulation is applied to
location (3, 2), and is indicated by the diffusely shaded square. Lat-
eral connections are considered to project in a straight line. Thus
the postsynaptic model cell at location (1, 2), indicated by the gra-
dient shaded circle (leftmost circle), will receive input from stimu-
lated fibres that lie in a straight line between itself and the stimulus
location. The presynaptic cells that project these fibres (the 5 solid
shaded circles to the right of the stimulus site) are seen to be those
cells that lie on a straight line that passes through the stimulus site
to the postsynaptic cell.

Fig. 2. Input from extracellular stimulation of axons. A 1.76 mm× 1.76 mm patch
of cortex is modelled and an extracellular stimulus applied to the central location.
The normalized efficacy of stimulated afferents for each location is shown. Efficacy
is greatest for cells located at the stimulus site and drops of sharply formore distant
cells.

From Fig. 1 the total efficacy of afferent projections to the post-
synaptic cell is

∞∑
i=s+1

e−
a2i
2σ2 . (6)

This is given the connection efficacy specified by Eq. (4). The hor-
izontal location of the stimulus is given by s whilst a is the corti-
cal distance between model cells. Using a continuous sum over all
possible presynaptic cells, including the stimulus site, Eq. (6) can
be rewritten as∫
∞

s
e−

x2

2σ2 dx. (7)

Here x is the distance between pre- and postsynaptic cells and s the
distance between postsynaptic cell and stimulus. Normalising, the
efficacy function, eff (s), is given by

eff (s) = 1− erf
(
s
√
2σ

)
. (8)

Fig. 2 shows the efficacy of afferents for a 1.76× 1.76 mm cor-
tical patch when a stimulus is applied at the centre of the grid. For
postsynaptic cells at location (x, y), the z axis gives the efficacy of
stimulated afferent axons. Axons are considered to project fromex-
citatory cells with σ = 300 µm (see Eq. (4)). This model only cap-
tures orthodromic input and not antidromic propagation. Inclusion
of antidromic activation would simply lead to a fractional eleva-
tion of all cell membrane potentials. Further, this may be dwarfed
by potential amplification of axonal activity by chemical synapses
(Kandel, Schwartz, & Jessell, 2000).
The afferent efficacy eff (s) only considers local isotropic con-

nections and so must be augmented to include contributions from
long range anisotropic connections. However, such connections
are very specific regarding pre- and postsynaptic cells. Of those
anisotropic afferents that might augment eff (s), contribution from
axons of presynaptic cells at the stimulus site will dominate. Thus
for a cell at location (x, y), including anisotropic afferents, gives the
new definition

eff (x, y, xs, ys) = max
i=1,...,n

(
1− erf

(√
(x− xs)2 + (y− ys)2

√
2σ

)
,

aie
−

√
(x−xi)2+(y−yi)2
√
2σi

)
. (9)
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Fig. 3. Decay in field strength. The decay in electric field strength is plotted against
horizontal distance from the electrode tip. The circles show normalised data taken
directly from Figure 3 of Gimsa et al. (2006). The solid line shows the fitted estimate
of field strength.

Here, (xs, ys) denotes the location of the extracellular stimulus;
n specifies the number of distal patches that cells located at
(xs, ys)make long range anisotropic projections to; (xi, yi) are the
corresponding centres of each patch, i = 1, . . . , n; and ai controls
the relative weighting of each patch.
Modelling studies suggest that extracellular stimulation with

bipolar electrodes produces a very localised electric field (Gimsa,
Schreiber, Habel, Flehr, van Rienen, & Gimsa, 2006). These pre-
dicted electric fields were used to estimate the decay in strength
with horizontal distance. Fig. 3 shows the results for a round tipped
electrodewith anouter pole diameter of 125µmasused for in vitro
stimulation (Tucker & Katz, 2003b) (personal communication with
author).
From Fig. 3 it can be seen that the spatial extent of the electric

field may cover an area representing a number of model cells,
rather than just one as in Fig. 1. Tomaintain simplicity, eachmodel
location stimulated by the field is treated independently. Thus
an addition grid of model cells is created representing excitatory
afferent axons. Each of these cells is governed by

τ
dV (x, y, t)
dt

= −(V (x, y, t)− Vr)+ wI(x, y). (10)

This model is similar to Eq. (1), with V (x, y, t) the axon
membrane potential of axonal afferents at location (x, y), Vr the
resting potential equal to −65 mV, τ the passive membrane time
constantwith value 1.5ms (Beecroft, Alkhateeb, &Gaumond, 1994;
Nowak & Bullier, 1998a) and I(x, y) the field strength at location
(x, y). The weight parameter, w, is adjusted to represent different
stimulus strengths. From Eq. (10) a firing rate, F(x, y, t − ∆t),
is determined using an activation function as in Eq. (3), with
threshold−54 mV and gain 10 spikes/mV. From Eqs. (9) and (10),
the input to a cell at location (xi, yi) from afferents stimulated at
location (xj, yj) is

G(xi, yi, xj, yj) = eff (xi, yi, xj, yj)F(xj, yj, t −∆t). (11)

A second set of afferent axon cells is created to represent
stimulation of afferents from GABAergic cells. Eq. (3) can then
be rewritten to include input from extracellular stimulation of
afferents. GABAA synapses receive input from GABAergic afferents
whilst AMPA synapses receive input from glutamatergic afferents.
Given a cell at location (p, q), the general form of Eq. (3) for either
type of synapse is then

τf
dh
dt
= −h+ w

∑
x,y

φ(d)f (V (x, y, t −∆t))

+w
∑
x,y

G(p, q, x, y). (12)

Interpreting signals from voltage sensitive dye experiments is
not straightforward. The signal results from the combined activity
of all membrane surfaces stained by the dye (Ebner & Chen,
1995; Grinvald et al., 1999). In terms of excitatory and inhibitory
cell activity, the signal is biased by activity in the dendritic
tree (Grinvald et al., 1994). To reflect the observation that the
synaptic potential is slower than the current (Kandel et al., 2000)
and that averaging across an area of cortex will temporally spread
dendritic activity, synaptic input to a cell is low pass filtered to give
the voltage sensitive dye signal

τ
dS(x, y)
dt

= −S(x, y)+ K(x, y). (13)

Here S(x, y) is the voltage sensitive dye signal generated by a
model cell at location (x, y). K(x, y) is the sum of synaptic inputs
to the model cell located at (x, y), i.e., gex(Eex− V (x, y))+ gin(Ein−
V (x, y)) of Eq. (1), whilst τ = 5 ms. Recall that the model repre-
sents both excitatory and inhibitory cells. As such at each location
(x, y) there is an inhibitory and excitatory model cell. To reflect
the relative contribution of both excitatory and inhibitory cells to
the voltage sensitive dye signal, the final signal at location (x, y), is
given by

VSD(x, y) = pSex(x, y)+ (1− p)Sin(x, y). (14)

The values Sex(x, y) and Sin(x, y) are the excitatory and inhibitory
cell voltage sensitive dye signals at (x, y) as defined by Eq. (13). The
relative contribution of the two cell types to the VSD signal is con-
trolled by p. As the combined surface area of excitatory dendritic
trees is expected to be significantly larger than that attributable
to inhibitory dendrites p was set to 0.8. Running simulations with
p = 0.7 and 0.9 did not give rise to significantly different results.

3. Results

A mean field computational model representing the extensive
lateral microcircuitry of primary visual cortex layer 2/3 has
been constructed, including both local and long range lateral
connectivity (Bosking et al., 1997; Buzás et al., 2006; Gilbert
& Wiesel, 1983; Grinvald et al., 1994; Hirsch & Gilbert, 1991;
Kisvárday et al., 1997; Malach et al., 1993; Schmidt et al., 1997;
Sincich & Blasdel, 2001; Stepanyants et al., 2008; Tanigawa
et al., 2005; Tucker & Katz, 2003b). This model has subsequently
been used to determine the mechanisms that underlie specific
patterns of spatiotemporal activity observed in vitro in layer
2/3 of ferret primary visual cortex (Tucker & Katz, 2003b).
These authors present data largely at the population level in
the form of optical signals from voltage sensitive dyes (Ebner
& Chen, 1995; Fitzpatrick, 2000). A qualitative rather than
quantitative comparison is only possible due to a number of
uncertainties including; precisely what voltage sensitive dye
(VSD) signals reflect (Grinvald et al., 1999); the exact stimulus
parameters associated with observed data; and which neural
elements are stimulated (McIntyre & Grill, 1999; Nowak &
Bullier, 1998a, 1998b). In addition to the VSD data, simultaneous
single cell intracellular recordings were made. Such combined
recording techniques have demonstrated that optical signals
from voltage sensitive dyes at the population level serve as
a good predictor of subthreshold membrane activity observed
in individual cells (Grinvald et al., 1999; Petersen, Grinvald, &
Sakmann, 2003; Tucker & Katz, 2003b). Whilst the in vitro data
revealed a number of different characteristic behaviours this study
focuses on three; the spatiotemporal spread of activity; local
inhibition; and reduction in time to peak of distal activity patches.
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Fig. 4. Model spatiotemporal activity. Four weak focal pulses of an extracellular stimulus at 100 Hz were modelled at the centre of the grid. The plots A, B, C and D show the
induced activity 3, 15, 25 and 40 ms after the initial pulse. As with the results of Tucker and Katz, an initial diffuse zone of activity centred on the stimulation site is followed
by more distal patches of activity that emerge in panel B and are fully established in panel D. Lighter shades indicate higher activity.

3.1. Spatiotemporal activity

Tucker andKatz observed that in vitro 4weak focal extracellular
pulses at 100Hz elicited a diffuse spreading zone of activity centred
on the stimulus site. A number of discrete distal zones of activity,
termed ’’optical clusters’’, were also produced. In the model, weak
focal stimulation was applied to the central position of a 51 × 51
grid of cells representing a patch of layer 2/3 cortex ∼3 mm2. A
distinct spatiotemporal pattern of activity similar to the in vitro
data was produced and can be seen in Fig. 4. A large, spreading
zone of activity is centred on the stimulus site, with two distal
zones of activity beginning to emerge approximately 5ms after the
initial stimulus. These distal zones become more fully established
by 40 ms as the diffuse zone is decaying. Activation spread follows
specific excitatory pathways, but propagationdelays induce typical
temporal response dispersal. The emergence of distinct distal
regions of activity is mediated by the precise targeting of long
range connections. The spatial characteristics of a local diffuse
zone and distal optical clusters are regenerated after each stimulus
pulse. The diffuse zone 15 ms after the initial pulse has a full
width at half maximum (FWHM) of approximately 527µm, whilst
the mean FWHM for the optical clusters is 342 µm. A closer
inspection revealed that all cell activity was subthreshold. Hence
the VSD signal shown in Fig. 4 results entirely from dendritic
activity driven by excitation of lateral axons. The model makes
two significant assumptions regarding extracellular stimulation.
The first of these is that axons, rather than somata are activated
by extracellular stimulation. The second is the efficacy with which
this activity is propagated laterally. To test their validity, these
two assumptions were tested with additional simulations. Testing
the first assumption simply required activation of somata by the
stimulus. The second required employing a different distribution
for the efficacy of laterally propagated activity. In this case it
was decided to use a Gaussian function. In the first validation
simulation, activation of somata by extracellular stimulation was
achieved by replacing Eq. (1) with

τ
dV (x, y, t)
dt

= −(V (x, y, t)− Vr)− gex(V (x, y, t)− Eex)

− gin(V (x, y, t)− Ein)+ I(x, y). (15)

The term I(x, y) denotes the field strength at location (x, y).
Furthermore, synaptic equation (3) rather than (12) is used. Adopt-
ing this stimulation protocol resulted in anomalous patterns of ac-
tivity not observed in vitro, consisting of a deep crater situated at
the electrode position that appeared immediately following stim-
ulation (data not shown). This reduction in VSD signal was not
due to inhibition but resulted from elevated membrane potentials
of cells at this location. When the stimulus only activates axons,
membrane potentials remain very low and similar for neighbour-
ing cells.When only somata are activated, themembrane potential
of such cells, Va, must be suprathreshold in order to observe later-
ally propagating activity. However, as the stimulus is extremely lo-
calised (see Fig. 3) the membrane potential of neighbouring cells,
Vn, is initially much lower and near the resting potential. Imme-
diately following a stimulus pulse AMPA dominates synaptic ac-
tivity. Since Va � Vn then gex(Eex − Va) � gex(Eex − Vn) and so
from Eqs. (13) and (14) the model voltage sensitive dye signal for
cells neighbouring the stimulus site is much greater than that of
cells activated by the stimulus. This result supports the proposition
that axons rather than somata are excited by extracellular stim-
ulation (McIntyre & Grill, 1999; Nowak & Bullier, 1998a, 1998b).
For the second validation experiment, simulations were also con-
ducted that replaced Eq. (8) by a Gaussian function as in Eq. (4).
Under these conditions, a combination of the less peaked Gaussian
function and propagation velocity resulted in a noticeable expand-
ing ring of activity following stimulus pulses which gave the ap-
pearance of an inhibitory region (data not shown). This disparity
of the validation results with the in vitro data supports the model
for extracellular stimulation adopted here.

3.2. Local inhibition

A distinctive characteristic of the optical signals recorded
by Tucker and Katz was a region of suppression centred on
the stimulus site. Following each stimulus pulse activity in this
inhibitory region was observed to deepen and expand. In some
cases this appeared to form a ring around the stimulus site
(Figure 7 in Tucker and Katz (2003b)) whilst in another instance
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Fig. 5. Expanding region of inhibition. Four focal pulses of an extracellular stimulus at 100 Hz were modelled at the centre of the grid. The plots A, B, C and D show the
induced activity 10, 20, 30 and 40 ms after the initial pulse. An expanding and deepening region of inhibition is centred on the stimulus site. Lighter shades indicate higher
activity.

activity at the stimulus site was also suppressed forming more
of a crater than a ring (their Fig. 51). A similar crater region of
suppression was also observed in the simulations. Increasing the
pulse strength of stimuli from that used to generate Fig. 4 resulted
in pronounced inhibition as seen in Fig. 5. Note that the long
range connections have been excluded from this simulation in
order to focus on the local inhibition. Since the distal patches
lay beyond the suppression region they did not affect it in any
way and could safely be excluded from this particular simulation.
The diameter of the inhibited region expanded from 414 µm at
10 ms after the first stimulus (panel A of Fig. 5) to 621 µm at
40 ms after the first stimulus (panel D of Fig. 5). This region
of inhibition was still expanding when the simulation stopped,
45 ms after the initial pulse, by which time it had reached a
diameter of 759 µm. Inspection of cell activity revealed that
suprathreshold activity occurred in the inhibitory population at the
stimulus site. However, this only occurred following the second
stimulus pulse and thus the inhibition observed in panel A of Fig. 5
is independent of suprathreshold interneuron activity. No such
suprathreshold activity was observed in the excitatory population.
In order to determine the contribution of suprathreshold inhibitory
cell activity to the inhibition of Fig. 5, the gain term for the
inhibitory cell activation function (Eq. (3)) was changed from
10 spikes/mV to 0 spikes/mV. Even with no contribution from
inhibitory cells, a similar pattern of inhibition was observed to
that of Fig. 5. For the same stimulus, between 10 ms and 40 ms
following the first pulse the inhibitory region expanded from
414 µm to 552 µm, and reached a maximum of 690 µm when
the simulation stopped at 45 ms. This corresponds to a reduction
in the extent of the inhibitory region of 69 µm at both 40 ms
and 45 ms, or 11% and 9% respectively. Hence the contribution

1 This is more apparent in the complete set of time series data pertaining to this
figure as kindly supplied by the author in the form of an animated movie.

of suprathreshold interneuron activity to the observed inhibitory
region is very small. Rather, the strong inhibition shown in Fig. 5
is a consequence of direct stimulation of GABAergic axons and the
resultant suppression of excitatory cells they target.
All activity in Fig. 5 is above the baseline signal observed at rest

before stimulation. This is in contrast to in vitro results where VSD
signals were observed to fall below resting values on occasions.
The model VSD results remained positive largely due to; the
proximity of the resting potential to the GABAA reversal potential;
and inhibitory to excitatory connection weights. Elevating both
parameters resulted in negative VSD signals in the inhibitory
region (data not shown).
A search of the parameter space specifying w in Eq. (3) did

not produce a ring of inhibition as observed by Tucker and Katz
(2003b) and illustrated in their Fig. 7. However, the search was
not exhaustive and employing an optimisation technique such a
genetic algorithm might prove more successful. As an alternative
hypothesis to retuning the w parameter it was hypothesised
that the ring of inhibition may be an artefact of stimulated long
range connections. Recall from Eq. (9) that stimulated long range
fibres only contribute to the spatiotemporal activity of distal
patches and not activity close to the stimulus site. To more
accurately determine the contribution of long range fibres during
extracellular stimulation the model of bouton density proposed
by Buzás et al. (2006) was considered. Their model predicts the
bouton density that the axonal projections of a presynaptic cell
will give rise to at a given cortical location. For simplicity, it is
assumed here that the bouton density at a given cortical location
is analogous to connection strength of axonal projections to
postsynaptic cells at the same location. The bouton density model
has two components, a long range orientation tuned term and a
local untuned term. For the long range connections investigated
here, only the tuned component is considered which is defined by

G(x, y, σ )V (φ, κ, µ). (16)
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Fig. 6. Stimulation of long range fibres by extracellular stimulus. A focal extracel-
lular stimulus is applied to the centre of a 100 × 100 grid of model cells. For each
cell the normalised total of stimulated afferent long range axons is shown on the
z-axis. Strongest stimulation occurs in afferents to cells coincident with the stimu-
lus. Stimulation of afferents to regions neighbouring the stimulus site is significantly
attenuated. This region of attenuation extends further in directions parallelwith the
orientation tuning observed at the stimulus site than in orthogonal directions.

The first term, G(x, y, σ ), is an isotropic Gaussian function that
governs the spatial extent of the bouton distribution. The cortical
location of interest is given by (x, y), whilst σ controls the spatial
extent, The second term, V (φ, κ, µ), is a von Mises distribution
that controls bouton density orientation tuning. The orientation at
location (x, y) relative to presynaptic tuning is given by φ;µ is the
meanorientation at all bouton locations; and κ is the concentration
parameter of the von Mises distribution. Averaging the population
data of Buzás et al. (2006) gives µ and κ values of 0.05 and 0.935
respectively. To capture the anisotropy observed in long range
layer 2/3 connections (Bosking et al., 1997; Kisvárday et al., 1997;
Schmidt et al., 1997; Sincich & Blasdel, 2001; Tanigawa et al., 2005)
G(x, y, σ )was replaced by the Gaussian functionG(x, y, σ=, σ⊥, θ)
defined by

G(x, y, σ=, σ⊥, θ) = exp(−(ax2 + bxy+ cy2)) (17)

a =
(
cos(θ)
σ=

)2
+

(
sin(θ)
σ⊥

)2
b =

sin(2θ)
σ=

−
sin(2θ)
σ⊥

c =
(
sin(θ)
σ=

)2
+

(
cos(θ)
σ⊥

)2
.

For a presynaptic cell with orientation tuning θ , σ= and σ⊥
control the spatial extent in directions parallelwith and orthogonal
to θ respectively. The spatial extent, σ , of long range connections
of populations in layer 2/3 are 1105 µm and 889 µm (Buzás et al.,
2006). For themodel here the spatial extent of connections parallel
with orientation tuning, σ=, was set to 997µm. In layer 2/3 of tree
shrew primary visual cortex, the number of boutons in directions
parallel with orientation tuning, n=, is four times greater than the
number, n⊥, in orthogonal directions (Bosking et al., 1997). For
the model, values of σ= and σ⊥ satisfying this relationship are
determined by

n=
n⊥
=

∫
∞

−∞
e
−
p2

2σ2= dp∫
∞

−∞
e
−
p2

2σ2
⊥ dp

= 4. (18)

This condition leads to σ= = 4σ⊥ and so σ⊥ = 249.25 µm. As
with the simplified model for extracellular stimulation presented
earlier, long range axons are considered to project in a straight
line. It is assumed that the contribution of long range fibres during
extracellular stimulation is proportional to that part of the electric
field in which they lie. To determine this first consider an axon
from a presynaptic cell at location (xpre, ypre) to a postsynaptic cell
located at (xpost , ypost ). This axon can be defined by the line segment
ax+by+ c = 0 between (xpre, ypre) and (xpost , ypost ). For each point
p = (xa, ya) satisfying ax + by + c = 0 between (xpre, ypre) and
(xpost , ypost) there is a value S(p) corresponding to the strength of
the extracellular stimulus field at that location. The stimulation
of a single long range fibre for an extracellular stimulus is then
proportional to
H(xpre, ypre, xpost , ypost)

=

∑
p

G(xpost − xpre, ypost − ypre, σ=, σ⊥, θ)V (φ, κ, µ)S(p). (19)

For a given cortical location (a, b), the stimulation of all afferent
long range fibres is proportional to∫
∞

−∞

∫
∞

−∞

H(x, y, a, b)dxdy. (20)

Here a patch of cortex of approximately 18 mm2 was considered.
An orientation map of area 18 (supplied by Zoltán Kisvárday) was
used to determine the orientation of a 100 × 100 grid of cells at
a resolution of 42.56 µm/cell. The electric field was based on a
round tipped concentric bipolar electrode with outer pole radius
of 125 µm positioned at the centre of the patch. The stimulation
of afferent long range fibres was normalised and is presented in
Fig. 6. The results of the model demonstrate that extracellular
stimulation has the greatest influence on those long range fibres
afferent to cells coincident with the stimulus. Stimulation of
afferents to neighbouring cells is significantly reduced. This region
is more extensive in directions parallel with the orientation
tuning of cells coincident with the stimulating electrode than in
orthogonal directions.
The combined stimulation of all afferents to a cell, local and

long range, is used as an indicator of expected VSD activity. The
stimulation of local excitatory afferents, A, and local inhibitory
afferents, B, has been detailed previously in the methodology
(e.g. Fig. 2). These can be combined with the stimulation of long
range fibres, C , by w1A − w2B + w3C where w1, w2 and w3
determine the relative contribution of each type of fibre. Fig. 7
shows a possible combination of local excitatory, local inhibitory
and long range excitatory afferents. Using stimulation of afferents
as an indicator of VSD signal reveals the customary diffuse isotropic
region of activity centred on the stimulus site. However, now
inhibition forms a distinct ring also centred on the stimulus site
with a central region of elevated activity.
The simulated VSD signal and its first derivative at a point

(x, y) close (207 µm) to the stimulus site are presented in Fig. 8.
The derivative at time t is determined by 0.5(VSD(x, y, t + dt) −
VSD(x, y, t − dt))/dt where VSD(x, y, t) is the VSD signal at
position (x, y) at time t and∆t is the simulation integration period.
Maximum rate of decay of the VSD, indicated by the minimum
of the derivative signal, was on average 7 ms after each stimulus
pulse, coincident with the 7 ms figure observed in vitro. From
Fig. 8 it can also be seen that the maximum and minimum of
the VSD signal decreases following each stimulus pulse. For all
points, (x, y), on the simulation grid, the rate of change of the VSD
signal, dVSD(x, y), was also calculated. At 7 ms after each stimulus
pulse positive values of dVSD(x, y) formed a circular region centred
on the stimulus site. The diameter of this region progressively
expanded from 1035 µm to 1311 µm with successive pulses.
Again, a similar characteristic was observed in vitro where the
region expanded from 302± 147 to 631± 164µm (Tucker & Katz,
2003b).
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Fig. 7. Combined stimulated afferents from local and long range connections. The
stimulation of local excitatory, local inhibitory and long range excitatory afferents is
determined for a focal extracellular stimulation applied to the centre of a 100×100
grid of model cells. The stimulation of local inhibitory afferents is subtracted from
the sum of local and long range stimulated afferents. A distinct ring of inhibition is
observed in a more diffuse isotropic region of stimulation. The central 30× 30 cells
have been shown for clarity.

Fig. 8. VSD signal and first derivative near stimulus site. The light grey line presents
the change in VSD signal with time for a point 207 µm from the stimulus site. The
corresponding rate of change of this signal with time is indicated by the darker line.

3.3. Extra-laminar stimulation

The spatiotemporal patterns of activity presented thus far have
resulted fromextracellular stimulation of horizontal axons. It is un-
likely that activity in vivo will originate exclusively from such pro-
cesses. Rather activity observed in the horizontal microcircuitry
of layer 2/3 will more likely be driven by spiking activity orig-
inating from other layers. To this end further studies were con-
ducted in order to determine whether the same spatiotemporal
patterns of activity presented in Fig. 4, and in particular in Fig. 5,
would be expected in vivo. Maps generated by the neurogeometry
model (Stepanyants et al., 2008) were used to estimate the num-
ber of synapses made between layer 4 and layer 2/3 cells. A Gaus-
sian estimate of each map was determined from FWHM values.
The resultant Gaussian parameter values used were σ ≈ 152 µm,

134 µm, 115 µm, 101 µm for excitatory to excitatory; excitatory
to inhibitory; inhibitory to excitatory; and inhibitory to inhibitory
connections. Thus Eq. (9) was replaced by

eff (x, y, xs, ys) = e
−
(x−xs)2+(y−ys)2

2σ2 . (21)

The first point of note is that the spatial extent of vertical pro-
jection from layer 4 to layer 2/3 is smaller than that of lateral
connections in layer 2/3. The second point of note is that unlike
Eq. (9), Eq. (21) does not incorporate long range patchy connec-
tions. As a consequence only disynaptic routes exist from stimu-
lus to distal patches. For the very strong stimulus values presented
in Figs. 10 and 11, long range connections were not included as
such stimuli may induce suprathreshold activity in distal sites thus
long range connections for model cells were not specified. When
long range connections were included for these stimulus strengths
only weak subthreshold activity was observed in distal patches
under parameter regimes 1–4 and thus the inclusion or exclusion
of long range connections is irrelevant with regard to local activ-
ity. Higher, suprathreshold, activity was observed in distal patches
during strong direct stimulation of layer 2/3. However, these sim-
ulations did not incorporate facilitation of distal interneurons as
discussed in the following section. Such a mechanism would have
significantly attenuated any activity in distal patches of excitatory
cells.
Four parameter regimes were considered. Under the first,

the axonal inputs from layer 4 were weighted the same as the
lateral connections within layer 2/3, i.e., the same w parameter
values used in Eq. (3) were applied to axonal inputs from layer
4. The second parameter regime made the unbiased assumption
that all inputs from stimulation of layer 4 projections to layer
2/3 were weighted the same. The value was selected such that
extracellular stimulation could produce suprathreshold activity
in cells. Data from the neurogeometry model (Stepanyants et al.,
2008) suggests weighting the extra-laminar inputs roughly in the
ratio 21:3:3:2 for excitatory to excitatory; excitatory to inhibitory;
inhibitory to excitatory and inhibitory to inhibitory connections.
This ratio was thus used to determineweights for the third regime.
Other modelling studies (Binzegger et al., 2004) suggest that for
these connection types the ratio of total number of synapses is
5.4:4.9:1.6:1.7. Suppose that the volume, V , below the surface
defined by the connection weight of Eq. (4) (V = 2πσ 2) is
proportional to the total number of synapses of that connection
type, e.g. excitatory to excitatory. Using the values of σ for
connections from layer 4 to layer 2/3 gives weight ratios of 5.4

2π382
:

4.9
2π302

:
1.6
2π282

:
1.7
2π302

or approximately 15:22:8:8. These values
were used to determineweights for the fourth regime. Thew value
for excitatory to excitatory connections within layer 2/3 was used
for excitatory to excitatory axonal inputs from layer 4 for each
parameter regime. The connection weights of all other layer 4
axonal inputs were scaled to conform to the specified weight ratio.
Stimulus strengths up to that used for Fig. 5 result in similar

spatiotemporal patterns of activity under all four parameter
regimes. Each parameter regime gives rise to more compact local
activity than observed when layer 2/3 is stimulated directly. For
the latter case the FWHM of local activity 13 ms after the initial
pulse is 515 µm. The FWHM observed 13 ms after the initial
pulse for parameter regimes 1–4, is 410, 340, 344 and 344 µm
respectively. All local activity in layer 2/3 was subthreshold under
all parameter regimes and thus no distal activity was observed.
Examples of the observed activity can be seen in Fig. 9. The
vertical axis represents simulation time, the horizontal axis is
radial distance from the centre of the stimulus site, with lighter
shades indicating higher activity. Hence, activity is a cross-section
of the two dimensional VSD signal. The particular cross-section is
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A B C D E

Fig. 9. Comparison of similarities between parameter regimes for extra-laminar input. For each panel the vertical axis is the simulation time; and the horizontal axis is
the distance from the centre of the stimulus site with positive and negative distances indicating radial directions separated by 180 degree. The specific radial directions are
unimportant due to the radial symmetry of the VSD signals about the stimulus site provided that optical clusters were not bisected. Brighter areas denote increased activity.
Grey scales are specific to each panel, however zero activity is represented by the same shade in order to compare positive and negative regions. Panels B to E are from
parameter regimes 1–4 whilst panel A shows activity when layer 2/3 is directly stimulated for comparison. The same stimulus as used for Fig. 5 was used for each panel.

Fig. 10. Comparison of similarities between parameter regimes for strong extra-laminar input. Panels B to D show the activity generated by parameter regimes 1, 2 and 4
as a result of strong extra-laminar stimulation. For comparison, panel A shows activity when layer 2/3 is directly stimulated by the same strength stimulus. The grey scale
conventions of Fig. 9 are adopted here. Direct stimulation of layer 2/3 results in similar activity being observed for weaker stimuli. Activity for parameter regimes 1, 2 and
4 are similar to each other and display significant attenuation of the optical signal for stimulus pulses 2–4. Activity below that observed at rest is indicated by the darkest
regions and is only observed in panels B, C and D.

arbitrary as activity at a given instant has radial symmetry about
the stimulus site provided an optical cluster is not bisected. Grey
scales are relative to the range of values of each panel and thus
quantitative comparisons should not be made between panels.
However in all panels the same shade indicates zero activity,
thus positive and negative regions can be distinguished. Panels
B to E show the results from regimes 1–4 whilst panel A shows
the activity observed during direct stimulation of layer 2/3 for
comparison. The flattening of each ovoid region of activity and
concomitant concaved upper edge indicates the appearance of an
inhibitory region as observed in Fig. 5. FromFig. 9 it can be seen that
inhibitory regions are present under regimes 1 and 4 (panels B and
D) but are all but absent from regimes 2 and 3 (panels C and D).
Whilst Fig. 9 shows little difference in the activity observed un-

der each parameter regime, a significant divergence in behaviour
became apparent as stimulus strength was increased further. For
stronger stimuli, local activity resulting from direct stimulation
of layer 2/3 remains qualitatively similar to data recorded during
weaker stimulation. This can be seen in panel A of Fig. 10where the
strongest stimulus produced activity characteristic of that seen in
panel A of Fig. 9. Panels B, C andDof Fig. 10 showactivity for param-
eter regimes 1, 2 and 4 using the same stimulus strength. Interest-
ingly, under regime 1, which uses the sameweights as in layer 2/3,

increasing stimulus strength results in a significant attenuation of
activity generated by stimulus pulses 2–4. Also of note are the re-
gions where activity fell below that observed at rest (indicated by
the darkest areas). Fig. 10 shows that parameter regimes 1, 2 and
4 result in qualitatively similar results under strong stimulation.
The most startling results are observed under regime 3. Pan-

els A to D of Fig. 11 show activity observed for increasing stimulus
strengthswith panel D generated using the same stimulus strength
as that for Fig. 10. As noted previously, inhibition was not initially
observed under regime 3. Here it can be seen that inhibition is ini-
tially manifest as the abolition of activity following the final stim-
ulus pulse. Stronger stimuli abolish activity increasingly earlier in
the pulse train. Associated with the appearance of inhibition is a
broadening of the local activity. From panel A of Fig. 11, the FWHM
33 ms after the first pulse is 616 µm compared with 354 µm from
panel D of Fig. 9.
The VSD signal generated by the model was not always an ac-

curate predictor of the concomitant membrane potential of model
cells. Negligible VSD signals were observed in model cells when
their corresponding membrane potentials deviated significantly
from the resting potential. This is presumably because excitatory
and inhibitory dendritic inputs cancel. To test the relationship be-
tweenVSDandmembrane potential the correlation coefficientwas
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Fig. 11. Activity under parameter regime 3 for strong extra-laminar input. Panels A to D show the activity generated by parameter regime 3 as a result of increasing the
strength of extra-laminar stimulation above that used for Fig. 10. The grey scale conventions of Fig. 9 are adopted here. The strongest stimulus strength, used for panel D,
is the same as that used in Fig. 10. Under increasing stimulus strength inhibition becomes more apparent, attenuating the optical signal at earlier points in the pulse train.
Regions of activity below that observed at rest are indicated by the dark areas. The region of local activity is also seen to broaden significantly in comparison with panel D of
Fig. 9.

calculated between the two data sets VSD(x, y, t) and M(x, y, t),
where VSD(x, y, t) is the VSD signal at location (x, y) and time t;
and M(x, y, t) is the excitatory membrane potential at location
(x, y) and time t . As model cells often displayed little or no activ-
ity, correlation coefficients were calculated for (x, y) values in the
range x = xl, . . . , xu and y = yl, . . . , yu. The value of t ranged over
the entire duration of the simulation. Correlation coefficients were
calculated for each parameter regime and for direct stimulation of
layer 2/3 using stimulus strengths up to that used for Fig. 5. All
correlation coefficients irrespective of parameter regime or range
of (x, y) locations were very high, and lay in the range 0.81 to 0.99.
Thus, whilst discrepancies were observed, in general the VSD sig-
nal is a good predictor of the excitatorymembrane potential as ob-
served in vitro (Tucker & Katz, 2003a, 2003b) and in vivo (Petersen
et al., 2003).

3.4. Reduction in latency of distal activity

In vitro, the latency between extracellular stimulation and
concomitant peak activity at distal patches decreased with
successive pulses in a train of four at 100 Hz (Tucker & Katz,
2003b). The previous section has demonstrated that the activity of
excitatory cells local to the stimulus site is always subthreshold.
As excitatory cells are responsible for the long range patchy
connectivity observed in layer 2/3 a simplified model was used
to investigate the latency phenomenon. The model consisted of a
number of axons driven by the extracellular stimulus and a single
postsynaptic excitatory cell, andpostsynaptic inhibitory cell. As the
axons driven by the stimulus were separated by less than 70 µm,
and only a single postsynaptic location was considered, synaptic
efficacy as a function of pre- and postsynaptic cell separation,
φ(d), was set to 1. Using the same parameters as specified in the
methodology, the temporal pattern of activity at the distal site is
shown in Fig. 12. Comparing the time of each peak in Fig. 12 with
the time of the preceding stimulus pulse demonstrates a reduction
with successive pulses, referred to as ‘‘acceleration’’ (Tucker&Katz,
2003b). For a range of weak stimulus strengths themean reduction
after each pulse is shown in Fig. 13 by circles. For comparison
in vitro data is shown by crosses (taken directly from Figure 8
in Tucker and Katz (2003b)). Whilst the model data does show
a reduction in latency it is clearly smaller than that observed in
vitro. Investigation of the model revealed that a combination of
interneuron membrane properties and synaptic time constants
prohibited the rapid inhibitory effects observed in vitro.

Fig. 12. Temporal response profile at a distal site. The activity recorded at the site
of a distal patch is shown for the model.

A number of mechanisms might account for the discrepancy
in latency reduction. Those initially considered in the model were
spiking threshold; the temporal dynamics of synapses; and varia-
tion in conduction velocity. Each of these is now considered in turn.
In vitro evidence suggests that lateral connections more readily
induce a suprathreshold response in interneurons than excitatory
cells (Hirsch & Gilbert, 1991). The relative depolarisation observed
in some interneurons (Jonas, Bischofberger, Fricker, & Miles, 2004)
would produce a similar behaviour in the model. Thus the resting
potential of inhibitory cells was increased by 6 mV. Considering
the second mechanism, the time course of synapses, experimental
data shows significant variation. AMPAmediated postsynaptic cur-
rents can have considerably smaller time constants in hippocam-
pal interneurons than their counterpart in excitatory cells (Jonas
et al., 2004). In the rat, GABAA synapses show slightly smaller time
constants than those used here (Szabadics, Tamás, & Soltesz, 2007)
whilst in the mouse they show a large variation with a minimum
decay time constants of 1.6ms (Nusser, Naylor, &Mody, 2001). Fur-
thermore the rise time and FWHM of postsynaptic potential can
vary with postsynaptic cell type (Thomson, 1997). However, even
significant reduction in the time constants of AMPA and GABAA
synapses was insufficient to account for the reduction in latency
observed in vitro. Even so, the rise and fall time constants of AMPA
synapse on interneurons were reduced to 0.5 ms and 5 ms, whilst
for GABAA synapses rise and fall time constants were reduced to
0.25 ms and 5 ms. The last of the three mechanisms, variation in
conduction velocity is now considered. Any variation in the con-
duction velocity would be expected to disperse postsynaptic ac-
tivity from a population of cells, as represented by a single model
cell, over time. Furthermore, the extent of this dispersal would
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Fig. 13. Reduction in time to peak. The latency between a stimulus pulse and the
corresponding peak activity (acceleration) is shown for a distal patch of activity.
Successive stimulus pulses lead to a reduction in the latency. For comparison,model
results are shown by circles and in vitro data by crosses. Model values represent the
mean latency observed over a range of weak stimulus strengths.

be amplified with increasing distance between pre- and postsy-
naptic cells. Subsequent postsynaptic temporal integration of such
distributed activity may result in a latency reduction between suc-
cessive stimulus pulses. This is of particular interest given the
quoted conduction velocity 0.24± 0.2m/s (Tucker & Katz, 2003b)
which suggests a large standard deviation of 0.2 m/s. Others also
suggest a large variation in conduction velocity (Grinvald et al.,
1994) and propagation delay (Hirsch & Gilbert, 1991). To capture
this variation, conduction velocity, in µm/ms, was assumed to be
normally distributed N(µv, σv) where µv is mean velocity and σv
the standard deviation of the velocity.Maximumandminimumve-
locities, vmax and vmin, were constrained by

vmax = µv +
√
−2 ln(T ) (22)

vmin = max(1, µv −
√
−2 ln(T )). (23)

The threshold value T was set to 0.1. As a result the activation
function, f (V (x, y, t −∆t)), of Eq. (3) was replaced by
vmax∑
v=vmin

1
√
2πσv

e−
1
2

(
v−µv
σv

)2
f (V (x, y, t − d/v)) . (24)

As with Eq. (3), d is the distance between pre- and postsynaptic
cells; and V (x, y) is the membrane potential of presynaptic cell at
location (x, y). Conduction velocity variation did indeed reduce the
latency of distal activity, to the extent that a standard deviation of
0.095 m/s was sufficient alone to account for the average latency
reduction observed in vitro (data not shown). However, in vitro,
weak stimuli result in amaximum latency reduction of≈1.4ms. As
such stimuli are not expected to produce inhibition it is reasonable
to assume that themaximum reduction in latency is attributable to
variation in conduction velocity is 1.4 ms. The model was adjusted
such that themaximum latency attributable to conduction velocity
variation was also≈1.4 ms.
Depolarising inhibitory cells, reduction of synaptic time con-

stants and inclusion of conduction velocity variation did reduce the
latency of distal responses. However they were insufficient to ac-
count for the reduction in distal latency observed in vitro. From
Fig. 13 it can be seen that the rate at which latency reduces is
higher in vitro than observed in the model. This discrepancy re-
mained after the introduction of the aforementioned mechanisms.
The relatively constant acceleration values produced by the model
for stimulus pulses 2–4 results from the observation that each of
these stimulus pulses regenerated the same activity in distal in-
hibitory cells. Consequently the degree of inhibition of distal exci-
tatory cellswas constant following stimulus pulses 2–4. Toproduce

Fig. 14. Temporal response profile of distal site incorporating synaptic facilitation.
The activity recorded at the site of a distal patch is shown for the model when
facilitation is present and absent. The lighter grey line shows distal activity with
no facilitation and is taken from Fig. 12. The darker line indicates activity at a distal
sitewhenEPSP facilitation of AMPA synapseswith interneurons is incorporated. The
result is a marked decrease in the latency at the distal site as seen in the sharpening
of activity peaks.

the required inhibition, the efficacy of a stimulus in exciting distal
interneuronsmust increasewith successive pulses. Trains of presy-
naptic spikes from pyramidal cells have been shown to produce
facilitation in excitatory postsynaptic potentials (EPSPs) of in-
terneurons (Thomson, 1997). In a short series of EPSPs this fa-
cilitation is observed to increase with successive EPSPs. A simple
facilitation model was incorporated into the synapses made by ex-
citatory cells with distal interneurons. Based on the experimental
observations of Thomson (1997), the AMPA input to interneurons
was weighted by

h = 100.22p−0.22. (25)

Here h is the facilitation weighting, and p is the extracellular pulse
number. This facilitation term resulted in a progressive increase
in interneuron activity with successive stimulus pulses and a
corresponding decrease in the distal latency. An example of the
resultant distal VSD signal is shown in Fig. 14.
For low stimulus strengths where inhibition was subthreshold

the latency reduction between the first and last stimulus pulsewas
≈1.3 ms similar to the figure of 1.4 ms observed in vitro. For the
model this value increased with stimulus strength up to moderate
strengths after which it deceased. Again, this behaviour mirrors
that reported for in vitro results. The mean latency between
successive stimuli pulses was calculated over a range of strengths
and is presented in Fig. 15 along with the data recorded in
vitro. The mean latencies for successive stimuli pulses agree with
in vitro data. For some stimulus strengths the latency did not
monotonically decrease with successive pulses, rather the greatest
decrease was observed following the second stimulus pulse.
To further verify the proposed mechanisms underlying activity

at distal patches, the model was compared with in vitro data
obtained under a stimulus protocol consisting of a single pulse
of varying strength. For a single pulse qualitatively termed
weak, moderate and strong, in vitro intracellular and optical
recordings yielded distinct inhibitory signatures. Intracellular in
vitro recordings showing inhibition in distal pyramidal cells were
enhanced by depolarising the recorded cells through current
injection. Such recordings showed that weak stimuli did not
evoke inhibition in distal pyramidal cells, whilst progressively
stronger stimuli induced greater inhibition. Strong stimuli induced
significant hyperpolarisation of the cell below its depolarised
resting potential. Regardless of stimulus strength, the optical signal
did not fall below that observed at rest. However, evidence of
inhibition was observed in the optical signal which developed a
sharper peak with increasing stimulus strength. These in vitro
observations in both intracellular and optical data can be seen in
Fig. 11A–C. For weak, moderate and strong single pulse stimuli
the model produced similar results which are presented in Fig. 16.
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Fig. 15. Reduction in latency with synaptic facilitation. The mean latency over a
range of weak stimulus strengths is shown for a distal patch of activity. Successive
stimulus pulses lead to a significant reduction in the latency. For comparison,model
results are shown by circles and in vitro data by crosses.

The upper three panels from left to right show model voltage
sensitive dye signals for weak, moderate and strong single pulse
stimuli. As with the in vitro data the model results did not fall
below that observed at rest, whilst increasing stimulus strength
produced a more peaked response. The lower three panels from
left to right show the membrane potential of a distal excitatory
cell which was been depolarised by 5 mV from a resting potential
of −70 mV. Again the response developed a sharper peak with
increased stimulus strength as a result of stronger inhibition, a
feature also observed in vitro. The model also demonstrates that
a strong stimulus induced significant hyperpolarising inhibition
which was manifest as membrane potentials below−65 mV.
The qualitative observations of Fig. 16 can be quantified to some

extent by the time to peak and FWHM. Both of these measures for
intracellular and optical recording made in vitro are summarised
in Table 1. For comparison, corresponding data produced by the
model are also presented. The model time to peak data for both
intracellular and optical recordings are representative of that
observed in vitro. The only significant discrepancy between model
and in vitro data is in the FWHM forweak stimuli. For weak stimuli
the model produces FWHM values lower than that recorded in

Table 1
Comparison of model and in vitro results for single stimulus pulse. The time to peak
and FWHM times (in ms) for voltage sensitive dye and membrane potential signals
generated by the model are shown. For comparison with the model, in vitro figures
taken directly from published data are also presented.

Model In vitro

VSD Time to peak 8.41 ms± 6.11 ms 9.5 ms± 4.3 ms
FWHM 12.67 ms± 4.55 ms 30 ms± 5 ms

Membrane
potential

Time to peak 10.24 ms± 5.73 ms 7 ms± 1.9 ms

FWHM 17.87 ms± 3.27 ms 24 ms± 1.5 ms

vitro. In the case of optical data this may be due to the observation
that in vitro optical signals appear to persist for longer than in
the model (c.f., Fig. 14 presented here with figures 8A and 9D
in Tucker and Katz (2003b). Since the optical signal is less peaked
for weak stimuli, the slower decay observed in vitro may increase
the corresponding FWHM. The FWHM for intracellular recordings
generated by weak stimuli in vitro is also longer than the model.
This may result from cellular differences in the model where cells
may have had smaller membrane time constants than was the
case in vitro. A closer agreement between model and in vitro
intracellular FWHM data may reduce the FWHM discrepancies
observed for optical data.

4. Discussion

The vast majority of efferent and afferent connections in layer
2/3 of the primary visual cortex are intralaminar (Binzegger et al.,
2004). Furthermore, an apparent dichotomy shows two distinct ar-
chitectures; one comprising local diffuse connectivity; the other
more specific, consisting of long range patchy connections (Bosk-
ing et al., 1997; Buzás et al., 2006; Gilbert & Wiesel, 1983; Kisvár-
day et al., 1997; Malach et al., 1993; Schmidt et al., 1997; Sincich
& Blasdel, 2001; Tanigawa et al., 2005). The specific functionality
of this architecture is still unclear but elucidation is essential to
understanding cortical processing of visual stimuli. In vitro focal
extracellular stimulation applied to layer 2/3 slices from ferret pri-
mary visual cortex reveal population activity consistent with this
architecture (Tucker & Katz, 2003b). Population activity was im-
aged using voltage sensitive dyes and revealed local diffuse activ-
ity and discrete patches of activity at distal locations. Superficially

Fig. 16. Temporal activity generated by a single stimulus pulse. The upper row shows the voltage sensitive dye signal generated by a single weak, moderate and strong
stimulus pulse. The increasing stimulus strength not only increased the signal amplitude but also reduced the full width at half maximum (FWHM). The lower row shows
the corresponding membrane potentials after depolarisation by 5 mV to increase the resting potential and accentuate inhibition. As with the VSD signal increasing stimulus
strength increased amplitude. The underlying inhibition responsible for the decreases in FWHM was weakly present for a moderate stimulus, and fully established for a
strong stimulus, c.f., Fig. 11A–C.
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these data are consistent with the connectivity architecture. How-
ever, interpretation of optical signals from VSD is not trivial (Ebner
& Chen, 1995; Grinvald et al., 1999). Furthermore, connectivity
patterns alone are insufficient to fully describe the observed pop-
ulation activity. Computational modelling the VSD data offers a
unique opportunity to determine more precisely the physiological
properties and synaptic activity that underlies the behaviour ob-
served in large populations of cortical cells. In addition such mod-
els offer a powerful tool to predict how such in vitro data relates to
in vivo behaviour of the cortical microcircuitry.
Fundamental to the development of suchmodelswas determin-

ing an appropriate input representation, ormore precisely a proper
model of extracellular stimulation. Two simplifying assumptions
were made regarding the model of extracellular stimulation. First
that the path of axonal projections follows the shortest distance
between pre and postsynaptic cells. From even the most cursory
inspection of the cortex it is readily apparent that the path taken
by connections between cells is anything but straight. The second
simplification is that an extracellular field applied to a length of
axon can be treated as a number of independent contiguous seg-
ments. A more accurate compartmental model capturing the cir-
cuitous path taken by axons and the effects of large extracellular
electric fields may reveal discrepancies with the model proposed
here. However, for the spatial resolution of the data modelled the
simplifications adopted gave good results. At this granularity the
shape of the connectivity surface (Fig. 2) dominates the spatiotem-
poral patterns of activity observed.
A specific feature of the spatiotemporal activity is pronounced

suppression of activity local to the stimulus site. A distinct region
of inhibition centred on the stimulus site is observed to deepen
and expand with successive extracellular pulses during repetitive
stimulation. However it should be noted that such spatiotemporal
activity does not appear to be entirely stereotypical with various
forms of local inhibition observed such as a partial ring (figures 4
and 7 in Tucker and Katz (2003b)), and complete suppression at
the stimulus site (figures 5 and 10 in Tucker and Katz (2003b)).
Tucker and Katz consider the role of increased efficacy of excitation
and inhibition during high frequency stimulation and synaptic
plasticity. Here we show that inhibition increases and expands
almost entirely as a result of temporal integration by inhibitory
synapses through lateral propagation. The temporal properties of
synaptic components lead to increased inhibitory activity with
repetitive stimulation at 100 Hz. This expanding and increasing
region of inhibitory activity is manifest as an expanding and
deepening suppression of excitation. The model presented here
demonstrates that the specific balance of excitation and inhibition
in combination with cellular and synaptic characteristics can
combine to produce the suppressive behaviour observed in vitro.
Themodel shows that the ring and crater of inhibition observed

in vitro are attributed to extracellular stimulation of different
axonal pathways. The crater of inhibition emerges as a result of
strong activation of local diffuse axonal projections. Stimulation
of long range circuitry elevates the signal at the stimulus site
giving rise to an inhibitory signature that manifests itself more as a
ring. It is proposed that the appearance of both inhibitory patterns
results from variation in the number of patches formed by long
range axons. Inspection of long range patchy connectivity observed
in the cortex (Bosking et al., 1997; Buzás et al., 2006; Kisvárday
et al., 1997; Sincich & Blasdel, 2001; Tanigawa et al., 2005) appears
less uniform than suggested by the model of Buzás et al. (2006).
Indeed, inspection of their Fig. 5 reveals that their model predicts
more patches than the anatomical data show. In New World
monkeys between 8 and 18 patches are observed (11.7±3.4,mean
±standard deviation, n = 11) (Sincich & Blasdel, 2001). In the
Macaque the number of patches was between 5 and 21 (12± 5.6,
n = 9) (Tanigawa et al., 2005), however these patches were not

correlated with orientation tuning. Variation in the number and
location of such patches will significantly influence the number of
long range afferents to a given cell and the degree to which such
afferents are stimulated. Consequently the combined stimulation
of afferents as depicted in Fig. 7 can be expected to show features
that range from the characteristic ring, as shown, to a crater,
dependent on variations in the cortical microcircuitry.
The latency between stimulus pulse and corresponding peak

in distal activity was observed in vitro to reduce with successive
pulses. A similar characteristic was also observed in the model.
The initial reduction in this latency, following the first pulse, was
≈74% of that observed in vitro. However, subsequent reductions
in model results were significantly less than experimental data.
This model result is largely attributed to temporal integration
characteristics at the distal site. As such it is in opposition to
the proposal of Tucker and Katz that the reduction in latency
results from inhibitory activity at the distal site. Investigation of
the model shows that at the distal site inhibition lags behind
excitation due to the disynaptic temporal integration of the
former, i.e., long range excitation of inhibitory cells and GABAergic
synapses from inhibitory to excitatory cells at the distal patches.
By comparison, excitation only suffers from temporal integration
of long range excitation. As a consequence, the effective rise
rate of inhibitory input to a distal excitatory cell is much
slower than that of excitation. Further, inhibitory cell activity
reaches a maximum early in the stimulus pulse train. Accordingly
inhibition of excitatory cells is similar following successive pulses
and does not result in a discernable reduction in latency. The
introduction of conduction velocity variation provided another
source of temporal integration that also reduced the latency
at distal sites. Interestingly it was possible to produce latency
reductions greater than that observed in vitro simply by increasing
the temporal dispersal of postsynaptic activity. In general, this
has clear implications when interpreting data as behaviour that
initially appears inhibitory might equally be ascribed to temporal
integration. It is particularly relevant when considering the
compound signal of voltage sensitive dyes which confounds both
excitatory and inhibitory activity. Whilst a number of sources of
the latency reduction has been investigated, long range inhibitory
connections have not been considered. Despite their paucity,
GABAergic cells do make long range axonal projections, which
in some cases are myelinated (Payne & Peters, 2001; Somogyi,
Kisvárday, Martin, & Whitteridge, 1983). However, stimulation of
long range excitatory connections are observed to elicit spiking
activity in interneurons (Hirsch & Gilbert, 1991). Therefore it
is entirely possible that both types of long range connections
contribute to the observed reduction in latency.
The model was also used to predict the activity expected

from extracellular stimulation of innervating axons from other
cortical layers. This was considered important as it offers a more
accurate representation of layer 2/3 in vivo behaviour. The results
of this extra-laminar stimulation demonstrate specific differences
from activity elicited by intra-laminar stimulation. A number
of parameter regimes was used to weight innervating axonal
connections from layer 4. These included the parameters used
for interlaminar connections within layer 2/3; assuming unbiased
weighting; and weighting based on data from different modelling
studies (Binzegger et al., 2004; Stepanyants et al., 2008). In all
cases for stimulus strength up to that used to model the in
vitro data only a diffuse local region of activity was observed
with no distal patches. Local inhibition was not observed under
all parameter regimes. For stronger stimulus strength direct
activation of layer 2/3 produced characteristically similar results
to those observed under weaker stimulation. However, profound
changes were observed in the activity of all other parameter
regimes. These included significant attenuation of local activity for
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successive stimulus pulses andmore extensive lateral propagation
of activity. Such predictions suggest that in vivo, the contribution
of diffuse and distal activity to cortical functioning is significantly
less than suggested by in vitro data. This has serious implications
for predicting in vivo behaviour on the basis of activity evoked in
vitro by extracellular stimulation. These results also demonstrate
that current predictions of intra-laminar connectivity (Binzegger
et al., 2004; Stepanyants et al., 2008) lead to profoundly different
spatiotemporal patterns of activity. As such this observation
highlights theneed formore empirical data on cortical connectivity
at the population level.
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A constructive mean-fi eld analysis of multi-population neural 
networks with random synaptic weights and stochastic inputs
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We deal with the problem of bridging the gap between two scales in neuronal modeling. At the 
fi rst (microscopic) scale, neurons are considered individually and their behavior described by 
stochastic differential equations that govern the time variations of their membrane potentials. 
They are coupled by synaptic connections acting on their resulting activity, a nonlinear function of 
their membrane potential. At the second (mesoscopic) scale, interacting populations of neurons 
are described individually by similar equations. The equations describing the dynamical and the 
stationary mean-fi eld behaviors are considered as functional equations on a set of stochastic 
processes. Using this new point of view allows us to prove that these equations are well-posed 
on any fi nite time interval and to provide a constructive method for effectively computing their 
unique solution. This method is proved to converge to the unique solution and we characterize 
its complexity and convergence rate. We also provide partial results for the stationary problem 
on infi nite time intervals. These results shed some new light on such neural mass models as 
the one of Jansen and Rit (1995): their dynamics appears as a coarse approximation of the 
much richer dynamics that emerges from our analysis. Our numerical experiments confi rm 
that the framework we propose and the numerical methods we derive from it provide a new 
and powerful tool for the exploration of neural behaviors at different scales.

Keywords: mean-fi eld analysis, stochastic processes, stochastic differential equations, stochastic networks, stochastic 

functional equations, random connectivities, multi-populations networks, neural mass models

control parameters. This vision, inherited from statistical physics 
requires that the space scale be large enough to include a large 
number of microscopic components (here neurons) and small 
enough so that the region considered is homogeneous. This is in 
effect for instance the case of cortical columns.

However, obtaining the evolution equations of the effective 
mean-fi eld from microscopic dynamics is far from being evident. 
In simple physical models this can be achieved via the law of large 
numbers and the central limit theorem, provided that time cor-
relations decrease suffi ciently fast. This type of approach has been 
generalized to such fi elds as quantum fi eld theory or non equilib-
rium statistical mechanics. To the best of our knowledge, the idea 
of applying mean-fi eld methods to neural networks dates back 
to Amari (Amari, 1972; Amari et al., 1977). In his approach, the 
author uses an assumption that he called the “local chaos hypoth-
esis”, reminiscent of Boltzmann’s “molecular chaos hypothesis”, 
that postulates the vanishing of individual correlations between 
neurons, when the number N of neurons tends to infi nity. Later 
on, Sompolinsky et al. (1998) used a dynamic mean-fi eld approach 
to conjecture the existence of chaos in an homogeneous neural 
network with random independent synaptic weights. This approach 
was formerly developed by Sompolinsky and colleagues for spin-
glasses (Crisanti and Sompolinsky, 1987a,b; Sompolinsky and 
Zippelius, 1982), where complex effects such as aging or coexistence 
of a diverging number of metastable states, renders the mean-fi eld 
analysis delicate in the long time limit (Houghton et al., 1983).

INTRODUCTION
Modeling neural activity at scales integrating the effect of thou-
sands of neurons is of central importance for several reasons. 
First, most imaging techniques are not able to measure individual 
neuron activity (“microscopic” scale), but are instead measuring 
mesoscopic effects resulting from the activity of several hundreds 
to several hundreds of thousands of neurons. Second, anatomi-
cal data recorded in the cortex reveal the existence of structures, 
such as the cortical columns, with a diameter of about 50 μm to 
1 mm, containing of the order of 100–100000 neurons belonging 
to a few different species. These columns have specifi c functions. 
For example, in the visual cortex V1, they respond to preferential 
orientations of bar-shaped visual stimuli. In this case, informa-
tion processing does not occur at the scale of individual neurons 
but rather corresponds to an activity integrating the collective 
dynamics of many interacting neurons and resulting in a mes-
oscopic signal. The description of this collective dynamics requires 
models which are different from individual neurons models. In 
particular, if the accurate description of one neuron requires “m” 
parameters (such as sodium, potassium, calcium conductances, 
membrane capacitance, etc…), it is not necessarily true that an 
accurate mesoscopic description of an assembly of N neurons 
requires Nm parameters. Indeed, when N is large enough averaging 
effects appear, and the collective dynamics is well described by an 
effective mean-fi eld, summarizing the effect of the interactions of 
a neuron with the other neurons, and depending on a few effective 
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On the opposite, these effects do not appear in the neural 
 network considered in Sompolinsky et al. (1998) because the syn-
aptic weights are independent (Cessac, 1995) (and especially non 
symmetric, in opposition to spin-glasses). In this case, the Amari 
approach and the dynamic mean-fi eld approach lead to the same 
mean-fi eld equations. Later on, the mean-fi eld equations derived 
by Sompolinsky and Zippelius (1982) for spin-glasses were rig-
orously obtained by Ben-Arous and Guionnet (Ben-Arous and 
Guionnet, 1995, 1997; Guionnet, 1997). The application of their 
method to a discrete time version of the neural network considered 
in Sompolinsky et al. (1998) and in Molgedey et al. (1992) was done 
by Moynot and Samuelides (2002).

Mean-fi eld methods are often used in the neural network com-
munity but there are only a few rigorous results using the dynamic 
mean-fi eld method. The main advantage of dynamic mean-fi eld 
techniques is that they allow one to consider neural networks where 
synaptic weights are random (and independent). The mean-fi eld 
approach allows one to state general and generic results about the 
dynamics as a function of the statistical parameters controlling the 
probability distribution of the synaptic weights (Samuelides and 
Cessac, 2007). It does not only provide the evolution of the mean 
activity of the network but, because it is an equation on the law of 
the mean-fi eld, it also provides information on the fl uctuations 
around the mean and their correlations. These correlations are of 
crucial importance as revealed in the paper by Sompolinsky et al. 
(1998). Indeed, in their work, the analysis of correlations allows 
them to discriminate between two distinct regimes: a dynamics 
with a stable fi xed point and a chaotic dynamics, while the mean 
is identically 0 in the two regimes.

However, this approach has also several drawbacks explaining 
why it is so seldom used. First, this method uses a generating func-
tion approach that requires heavy computations and some “art” 
for obtaining the mean-fi eld equations. Second, it is hard to gen-
eralize to models including several populations. Finally, dynamic 
mean-fi eld equations are usually supposed to characterize in fi ne 
a stationary process. It is then natural to search for stationary solu-
tions. This considerably simplifi es the dynamic mean-fi eld equa-
tions by reducing them to a set of differential equations (see Section 
“Numerical Experiments”) but the price to pay is the unavoidable 
occurrence in the equations of a non free parameter, the initial 
condition, that can only be characterized through the investigation 
of the nonstationary case.

Hence it is not clear whether such a stationary solution exists, 
and, if it is the case, how to characterize it. To the best of our 
knowledge, this diffi cult question has only been investigated for 
neural networks in one paper by Crisanti et al. (1990).

Different alternative approaches have been used to get a mean-
fi eld description of a given neural network and to fi nd its solu-
tions. In the neuroscience community, a static mean-fi eld study of 
multi-population network activity was developed by Treves (1993). 
This author did not consider external inputs but incorporated 
dynamical synaptic currents and adaptation effects. His analysis 
was completed in Abbott and Van Vreeswijk (1993), where the 
authors considered a unique population of nonlinear oscillators 
subject to a noisy input current. They proved, using a stationary 
Fokker–Planck formalism, the stability of an asynchronous state 
in the network. Later on, Gerstner (1995) built a new approach 

to characterize the mean-fi eld dynamics for the Spike Response 
Model, via the introduction of suitable kernels propagating the 
collective activity of a neural population in time.

Brunel and Hakim (1999) considered a network composed 
of integrate-and-fi re neurons connected with constant synaptic 
weights. In the case of sparse connectivity, stationarity, and con-
sidering a regime where individual neurons emit spikes at low rate, 
they were able to study analytically the dynamics of the network 
and to show that the network exhibited a sharp transition between a 
stationary regime and a regime of fast collective oscillations weakly 
synchronized. Their approach was based on a perturbative analysis 
of the Fokker–Planck equation. A similar formalism was used in 
Mattia and Del Giudice (2002) which, when complemented with 
self-consistency equations, resulted in the dynamical description 
of the mean-fi eld equations of the network, and was extended to 
a multi-population network.

Finally, Chizhov and Graham (2007) have recently proposed 
a new method based on a population density approach allowing 
to characterize the mesoscopic behavior of neuron populations 
in conductance-based models. We shortly discuss their approach 
and compare it to ours in Section “Discussion”.

In the present paper, we investigate the problem of deriving the 
equations of evolution of neural masses at mesoscopic scales from 
neurons dynamics, using a new and rigorous approach based on 
stochastic analysis.

The article is organized as follows. In Section “Mean-Field 
Equations for Multi-Populations Neural Network Models” we 
derive from fi rst principles the equations relating the membrane 
potential of each of a set of neurons as function of the external 
injected current and noise and of the shapes and intensities of the 
postsynaptic potentials in the case where these shapes depend only 
on the postsynaptic neuron (the so-called voltage-based model). 
Assuming that the shapes of the postsynaptic potentials can be 
described by linear (possibly time-dependent) differential equa-
tions we express the dynamics of the neurons as a set of stochastic 
differential equations. Assuming that the synaptic connectivities 
between neurons satisfy statistical relationship only depending on 
the population they belong to, we obtain the mean-fi eld equa-
tions summarizing the interactions of the P populations in the 
limit where the number of neurons tend to infi nity. These equa-
tions can be derived in several ways, either heuristically following 
the lines of Amari (Amari, 1972; Amari et al., 1977), Sompolinsky 
(Crisanti et al., 1990; Sompolinsky et al., 1998), and Cessac (Cessac, 
1995; Samuelides and Cessac, 2007), or rigorously as in the work of 
Ben-Arous and Guionnet (Ben-Arous and Guionnet, 1995, 1997; 
Guionnet, 1997). The purpose of this article is not the derivation 
of these mean-fi eld equations but to prove that they are well-posed 
and to provide an algorithm for computing their solution. Before 
we do this we provide the reader with two important examples of 
such mean-fi eld equations. The fi rst example is what we call the 
simple model, a straightforward generalization of the case studied 
by Amari and Sompolinsky. The second example is a neuronal 
assembly model, or neural mass model, as introduced by Freeman 
(1975) and exemplifi ed in Jansen and Rit’s (1995) cortical column 
model.

In Section “Existence and Uniqueness of Solutions in Finite 
Time” we consider the problem of solutions over a fi nite time 
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 interval [t
0
, T]. We prove, under some mild assumptions, the 

existence and uniqueness of a solution of the dynamic mean-fi eld 
equations given an initial condition at time t

0
. The proof consists 

in showing that a nonlinear equation defi ned on the set of multidi-
mensional Gaussian random processes defi ned on [t

0
, T] has a fi xed 

point. We extend this proof in Section “Existence and Uniqueness 
of Stationary Solutions” to the case of stationary solutions over 
the time interval [−∞, T] for the simple model. Both proofs are 
constructive and provide an algorithm for computing numerically 
the solutions of the mean-fi eld equations.

We then study in Section “Numerical Experiments” the com-
plexity and the convergence rate of this algorithm and put it to good 
use: We fi rst compare our numerical results to the theoretical results 
of Sompolinsky and colleagues (Crisanti et al., 1990; Sompolinsky 
et al., 1998). We then provide an example of numerical experiments 
in the case of two populations of neurons where the role of the 
mean-fi eld fl uctuations is emphasized.

Along the paper we introduce several constants. To help the 
reader we have collected in Table 1 of Appendix D, the most impor-
tant ones and the place where they are defi ned in the text.

MEAN-FIELD EQUATIONS FOR MULTI-POPULATIONS 
NEURAL NETWORK MODELS
In this section we introduce the classical neural mass models and 
compute the related mean-fi eld equations they satisfy in the limit 
of an infi nite number of neurons.

THE GENERAL MODEL
General framework
We consider a network composed of N neurons indexed by 
i ∈ {1,…,N} belonging to P populations indexed by α ∈ {1,…,P} 
such as those shown in Figure 1. Let Nα be the number of neurons 
in population α. We have N NP= ∑α= α1 . We defi ne the population 
which the neuron i, i = 1,…,N belongs to.

Defi nition 1. The function p: {1,…,N} → {1,…,P} associates to 
each neuron i ∈ {1,…,N}, the population α = p(i) ∈ {1,…,P}, it 
belongs to.

We consider that each neuron i is described by its membrane 
potential V

i
(t), and the related instantaneous fi ring rate is deduced 

from it through a relation of the form ν
i
(t) = S

i
(V

i
(t)) (Dayan and 

Abbott, 2001; Gerstner and Kistler, 2002), where S
i
 is a sigmoidal 

function.
A single action potential from neuron j generates a postsynaptic 

potential PSP
ij
(u) on the postsynaptic neuron i, where u is the time 

elapsed after the spike is received. We neglect the delays due to the 
distance traveled down the axon by the spikes.

Assuming that the postsynaptic potentials sum linearly, the aver-
age membrane potential of neuron i is

V t t t V ti ij
j k t t

k i

k

( ) ,
, ,

= ( ) ( )∑ PSP
>

− +
0

0

where the sum is taken over the arrival times of the spikes produced 
by the neurons j after some reference time t

0
. The number of spikes 

arriving between t and t + dt is ν
j
(t)dt. Therefore we have

V t t s v s ds V t

t s S V s

i ij j i

t

t

j

ij j j

( ) ( ) ( )

( ) ( )

= − ( )

= − ( )

∫∑ PSP

PSP

 +

 

0

0

dds V ti

t

t

j

+ 0

0

( )∫∑ ,

 

(1)

or, equivalently

v t S t s v s ds V ti i ij j i

t

t

j

( ) ( ) ( ) .= − ( )
⎛

⎝
⎜

⎞

⎠
⎟∫∑ PSP + 0

0  

(2)

The PSP
ij
s can depend on several variables in order to account 

for instance for adaptation or learning.
We now make the simplifying assumption that the shape of 

the postsynaptic potential PSP
ij
 only depends on the postsynap-

tic population, which corresponds to the voltage-based models in 
Ermentrout’s (1998) classifi cation.

The voltage-based model. The assumption, made in Hopfi eld 
(1984), is that the postsynaptic potential has the same shape no 
matter which presynaptic population caused it, the sign and ampli-
tude may vary though. This leads to the relation

PSPij ij it J g t( ) ( ).=

g
i
 represents the unweighted shape (called a g-shape) of the postsy-

naptic potentials and Jij is the strength of the postsynaptic potentials 
elicited by neuron j on neuron i. At this stage of the discussion, 
these weights are supposed to be deterministic. This is refl ected 
in the notation Jij which indicates an average value1. From Eq. 1 
we have

V t g t s J v s ds V ti i

t

t

ij j
j

i( ) ( ) ( ) .= −
⎛

⎝⎜
⎞

⎠⎟
+ ( )∫ ∑

0

0
FIGURE 1 | General network considered: N neurons belonging to 

P populations are interconnected with random synaptic weights whose 

probability distributions only depend upon the population indexes, 

see text.
1When we come to the mean-fi eld equations they will be modeled as random 
 variables.
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So far we have only considered the synaptic inputs to the neu-
rons. We enrich our model by assuming that the neuron i receives 
also an external current density composed of a deterministic part, 
noted I

i
(t), and a stochastic part, noted n

i
(t), so that

V t g t s J v s I s n s ds V ti i

t

t

ij j
j

i i i( ) ( ) ( ) ( ) ( ) .= − + +
⎛

⎝⎜
⎞

⎠⎟
+ ( )∫ ∑

0

0

 

(3)

We assume, and this is essential for deriving the mean-fi eld 
equations below, that all indexed quantities depend only upon the 
P populations of neurons (see Defi nition 1), i.e.,

g t g t J J I t I t

n t

i p i ij p i p j i p i

i

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )= = =def def def

de∼ff n t S Sp i j p j( ) ( )( ) ( ) ( ),⋅ = ⋅
 

(4)

where x ∼ y indicates that the two random variables x and y have 
the same probability distribution. In other words, all neurons in the 
same population are described by identical equations (in law).

The g-shapes describe the shape of the postsynaptic potentials 
and can reasonably well be approximated by smooth functions.

In detail we assume that gα, α = 1,…,P is the Green function of 
a linear differential equation of order k, i.e., satisfi es

b t
d g

dt
t tl

l

k l

lα
α δ

=
∑ =

0

( ) ( ) ( ),
 

(5)

where δ(t) is the Dirac delta function.
The functions b

lα(t), l = 0,…,k, α = 1,…,P, are assumed to be 
continuous. We also assume for simplicity that

b
kα(t) ≡ cα ≠ 0, (6)

for all t ∈ �, α = 1,…,P. We note Dk
α the corresponding differential 

operator:

D g t b t
d g

dt
t tk

l
l

k l

lα α α δ( ) ( ) ( ) ( )= =
=
∑def

0

α

 
(7)

Applying Dk
α to both sides of Eq. 3, using Eq. 7 and the fact that 

ν
j
(s) = S

j
(V

j
(s)), we obtain a kth-order differential equation for V

i

D V t J S V t I t n ti
k

i ij j j i i
j

N

( ) ( ) ( ) ( ).= ( ) + +
=

∑
1  

(8)

With a slight abuse of notation, we split the sum with respect 
to j into P sums:

D V t J S V t I t n ti
k

i ij j j i i
j

NP

( ) ( ) ( ) ( )= ( ) + +
==

∑∑
11

β

β

We classically turn the kth-order differential Eq. 8 into a k-
dimensional system of coupled fi rst-order differential equations 
(we divided both sides of the last equation by c

i
, see Eq. 6):

dV t V t dt l k

dV t b t V t J S

li l i

k i lp i li ij

( ) ( ) ,

( ) ( ) ( )( )

= =

= +

+1

1

0 2…, −

−− pp j j
j

p i i
l

k

V t I t n t dt( ) ( )( ) ( ) ( )( ) + +
⎛

⎝⎜
⎞

⎠⎟
∑∑

=0

−1

 
(9)

A well-known example of g-shapes, see Section “Example II: The 
model of Jansen and Rit” below or Gerstner and Kistler (2002), is

g t Ke Y tt( ) ( ),/= − τ

 (10)

where Y(t) is the Heaviside function. This is an exponentially decay-
ing postsynaptic potential corresponding to

k b t
K

b t
K

= = =1
1 1

1 0( ) ( ) and
τ

in Eq. 5.
Another well-known example is

g t Kte Y tt( ) ( )./= − τ

 (11)

This is a somewhat smoother function corresponding to

k b t
K

b t b t= = = =2
1 2 1

2 1 0( ) ( ) ( )
τ

 and
τ2

in Eq. 5.

The dynamics. We modify the Eq. 9 by perturbing the fi rst k − 1 
equations with Brownian noise and assuming that n

i
(t) is white 

noise. This has the effect that the quantities that appear in Eq. 9 are 
not anymore the derivatives up to order k − 1 of V

i
. This becomes 

true again only in the limit where the added Brownian noise is 
null. This may seem artifi cial at fi rst glance but (1) it is a technical 
assumption that is necessary in the proofs of the well-posedness 
of the mean-fi eld equations, see Assumption 1 below, and (2) it 
generates a rich class of external stochastic input, as shown below. 
With this in mind, the Eq. 9 now read

dV t V t dt f t dW t l k

dV t b

li l i li li

k i lp i

( ) ( ) ( ) ( ) ,

( ) ( )

= + =

=

+1

1

0 2…, −

−− (( ) ( ) ( ) ( )( ) ( )t V t J S V t I t dt

f

li ij p j j
j

p i
l

k

k i

+ ( ) +
⎛

⎝⎜
⎞

⎠⎟

+

∑∑
=0

−1

−1 (( ) ( )t dW tk i−1  (12)

W
li
(t), l = 0,…,k − 1, i = 1,…,N, are kN independent standard 

Brownian processes. Because we want the neurons in the same 
class to be essentially identical we also assume that the functions 
f

li
(t) that control the amount of noise on each derivative satisfy

f
li
(t) = f

lp(i)
(t), l = 0,…,k − 1, i = 1,…,N

Note that in the limit f
lα(t) = 0 for l = 0,…,k − 1 and α = 1,…,P, 

the components V
li
(t) of the vector Vi t( ) are the derivatives of the 

membrane potential V
i
, for l = 0,…,k − 1 and the Eq. 12 turn 

into Eq. 9. The system of differential Eq. 12 implies that the class 
of admissible external stochastic input n

i
(t) to the neuron i are 

Brownian noise integrated through the fi lter of the synapse, i.e., 
involving the lth primitives of the Brownian motion for l ≤ k.

We now introduce the k − 1 N-dimensional vectors V
l
(t) = 

[V
l1
,…,V

lN
]T, l = 1,…,k − 1 of the lth-order derivative (in the limit 

of f
lp(i)

(t) = 0) of V(t), and concatenate them with V(t) into the 
Nk-dimensional vector

V

V

V

V

( )

( )

( )

( )

.t

t

t

tk

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1

−1  

(13)
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The N-neurons network is described by the Nk-dimensional 
vector V( )t . By defi nition the lth N-dimensional component Vl  of 
V is equal to V

l
. In the limit f

lα(t) = 0 we have

V V
V

V Vl l

l

l

d

dt
l k= = = =0 0,…, −1, with

We next write the equations governing the time variation of the 
k N-dimensional sub-vectors of V( )t , i.e., the derivatives of order 
0,…,k − 1 of V(t). These are vector versions of Eq. 12. We write

d t t dt t d t l kl l l lV V W( ) ( ) ( ) ( ) , .= + ⋅ =+1 0 2F …, −  (14)

F
l
(t) is the N × N diagonal matrix

diag ( ( ), , ( ), , ( ), , ( )),f t f t f t f tl l

N

lP lP

NP

1 1

1

… … …

where f
lα(t), α = 1,…,P is repeated Nα times, and the W

l
(t), 

l = 0,…,k − 2, are k − 1 N-dimensional independent standard 
Brownian processes.

The equation governing the (k − 1)th differential of the mem-
brane potential has a linear part determined by the differential 
operators Dk

α, α = 1,…,P and accounts for the external inputs 
(deterministic and stochastic) and the activity of the neighbors. 
We note L(t) the N × Nk matrix describing the relation between 
the neurons membrane potentials and their derivatives up to the 
order k − 1 and the (k − 1)th derivative of V. This matrix is defi ned 
as the concatenation of the k N × N diagonal matrixes

B
l
(t) = diag ( ( ), , ( ), , ( ), , ( ))b t b t b t b tl l

N

lP lP

NP

1 1

1

for l = 0,…,k − 1:

L( ) ( ) ( )t t tk= [ ]B B0 1,…, −

We have:

d t t t S t t dt t dk k kV V J V I W−1 −1 −1−( ) ( ) ( ) ( ) ( ) ( )= ⋅ + ⋅ ( )( ) +( ) + ⋅L 0 F (( ),t

(15)

where W
k−1

(t) is an N-dimensional standard Brownian  process 
independent of W

l
(t), l = 0,…,k − 2. The coordinates of the 

N-dimensional vector I(t) are the external deterministic input 
currents,

I(t) = I1[ ( ), , ( ), , ( ), , ( )] ,t I t I t I t
N

P P
T

NP

1

1

 

J  the N × N matrix of the weights Jij which are equal to J p i p j( ) ( ) (see 
Eq. 4), and S is a mapping from �N to �N such that

S(V)
i
 = S

p(i)
(V

i
) for i = 1,…,N. (16)

We defi ne

L

B B B

( )

( ) ( ) ( )

t

t t t

N N N N

N N N N N N

k

=

⎡

⎣

⎢
⎢
⎢

×

× × ×

0 0

0 0 0

1

×

−

Id

Id

N

N

0 1

⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥

,

where Id
N
 is the N × N identity matrix and 0

N × N
 the N × N null 

matrix. We also defi ne the two kN-dimensional vectors:

U

J V J V

t

N

N

N

N

S t S t

=

⋅ ( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⋅

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
0

0

0

0

0( ) ( ( ))

⎥⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

and I

I

t

N

N

t

0

0

( )

,

where 0
N
 is the N-dimensional null vector.

Combining Eqs. 14 and 15 the full equation satisfi ed by V can 
be written:

d t t t dt t dt t tV L V U I W( ) ( ) ( ) ( )= + +( ) + ⋅− ,F
 

(17)

where the kN × kN matrix F(t) is equal to diag(F
0
,…,F

k−1
) and W

t
 

is an kN-dimensional standard Brownian process.

THE MEAN-FIELD EQUATIONS
One of the central goals of this paper is to analyze what happens 
when we let the total number N of neurons grow to infi nity. Can 
we “summarize” the kN equations (Eq. 17) with a smaller number 
of equations that would account for the populations activity? We 
show that the answer to this question is yes and that the populations 
activity can indeed be represented by P stochastic differential equa-
tions of order k. Despite the fact that their solutions are Gaussian 
processes, these equations turn out to be quite complicated because 
these processes are non-Markovian.

We assume that the proportions of neurons in each population 
are nontrivial, i.e.:

lim ( , ) { }, .
N

N

N
n P n

→∞
= ∈ ∀ =∑α

α α
α

α ∈0 1 11, , and

If it were not the case the corresponding population would not 
affect the global behavior of the system, would not contribute to 
the mean-fi eld equation, and could be neglected.

General derivation of the mean-fi eld equation
When investigating the structure of such mesoscopic neural assem-
blies as cortical columns, experimentalists are able to provide the 
average value Jij of the synaptic effi cacy J

ij
 of neural population j 

to population i. These values are obviously subject to some uncer-
tainty which can be modeled as Gaussian random variables. We also 
impose that the distribution of the J

ij
s depends only on the popula-

tion pair α = p(i), β = p(j), and on the total number of neurons 
Nβ of population β:

J
J

N N
ij ∼

σαβ

β

αβ

β

N , .
⎛

⎝
⎜

⎞

⎠
⎟

 

(18)

We also make the additional assumption that the J
ij
’s are inde-

pendent. This is a reasonable assumption as far as modeling cortical 
columns from experimental data is concerned. Indeed, it is already 
diffi cult for experimentalists to provide the average value of the 
synaptic strength Jαβ from population β to population α and to 
estimate the corresponding error bars (σαβ), but measuring syn-
aptic effi cacies correlations in a large assembly of neurons seems 
currently out of reach. Though, it is known that synaptic weights 
are indeed correlated (e.g., via synaptic plasticity mechanisms), 
these correlations are built by dynamics via a complex interwoven 
evolution between neurons and synapses dynamics and  postulating 
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the form of synaptic weights correlations requires, on theoretical 
grounds, a detailed investigation of the whole history of neurons–
synapses dynamics.

Let us now discuss the scaling form of the probability distribu-
tion (Eq. 18) of the J

ij
’s, namely the division by Nβ for the mean 

and variance of the Gaussian distribution. This scaling ensures 
that the “local interaction fi eld” ∑ =j

N

ij jJ S V t1
β ( ( )) summarizing the 

effects of the neurons in population β on neuron i, has a mean and 
variance which do not depend on Nβ and is only controlled by the 
phenomenological parameters Jαβ, σαβ.

We are interested in the limit law when N → ∞ of the 
N-dimensional vector V defi ned in Eq. 3 under the joint law of 
the connectivities and the Brownian motions, which we call the 
mean-fi eld limit. This law can be described by a set of P equations, 
the mean-fi eld equations. As mentioned in the introduction these 
equations can be derived in several ways, either heuristically as in 
the work of Amari (Amari, 1972; Amari et al., 1977), Sompolinsky 
(Crisanti et al., 1990; Sompolinsky et al., 1998), and Cessac (Cessac, 
1995; Samuelides and Cessac, 2007), or rigorously as in the work of 
Ben-Arous and Guionnet (Ben-Arous and Guionnet, 1995, 1997; 
Guionnet, 1997) . We derive them here in a pedestrian way, prove 
that they are well-posed, and provide an algorithm for computing 
their solution.

The effective description of the network population by popula-
tion is possible because the neurons in each population are inter-
changeable, i.e., have the same probability distribution under 
the joint law of the multidimensional Brownian motion and the 
connectivity weights. This is the case because of the relations 
(Eqs. 4 and 16) which imply the form of Eq. 17.

The mean ideas of dynamic mean-fi eld equations. Before diving 
into the mathematical developments let us comment briefl y what 
are the basic ideas and conclusions of the mean-fi eld approach. 
Following Eq. 8, the evolution of the membrane potential of some 
neuron i in population α is given by:

b t
d V

dt
t J S V t I t n t p il

l

k l
i

l ij j j
j

N

i iα α
= =
∑ ∑= ( ) + + =

0 1

( ) ( ) ( ) ( ) ( ), ( ) ..

 
(19)

Using the assumption that S
i
, I

i
, n

i
 depend only on neuron popu-

lation, this gives:

b t
d V

dt
t V t I t n t il

l

k l
i

l i

P

iα β
β

αη ∈α
= =
∑ ∑= ( ) + +

0 1

( ) ( ) ( ) ( ) ( ), ,

 

(20)

where we have introduced the local interaction fi eld η
iβ(V(t)) = 

∑ =j
N

ij jJ S V t1
β

β( ( )), summarizing the effects of neurons in population 
β on neuron i and whose probability distribution only depends on 
the pre- and postsynaptic populations α and β.

In the simplest situation where the J
ij
’s have no fl uctuations 

(σαβ = 0) this fi eld reads η Φβ αβ βi V t J V t( ( )) ( ( ))= . The term 
Φβ(V(t)) = 1

1N j

N

jS V t
β

β
β∑ = ( ( )) is the frequency rate of neurons in 

population β, averaged over this population. Introducing in 
the same way the average membrane potential in population β, 
V t V tN j

N

jβ β

β( ) ( )= ∑ =
1

1 , one obtains:

b t
d V

dt
t J V t I t n tl

l

k l

l

P

α
α

αβ β
β

α αΦ
= =
∑ ∑= + +

0 1

( ) ( ) ( ( )) ( ) ( ).

 

(21)

This equation resembles very much Eq. 19 if one makes the 
following reasoning: “Since Φβ(V (t) is the frequency rate of neu-
rons in population β, averaged over this population, and since, 
for one neuron, the frequency rate is ν

i
(t) = S

i
(V

i
(t)) let us write 

Φβ(V(t)) = Sβ(Vβ(t))”. This leads to:

b t
d V

dt
t J S V t I t n tl

l

k l

l

P

α
α

αβ β β
β

α α
= =
∑ ∑= ( ) + +

0 1

( ) ( ) ( ) ( ) ( ),

 

(22)

which has exactly the same form as Eq. 19 but at the level of a 
neuron population. Equations such as (22), which are obtained 
via a very strong assumption:

1 1

1 1N
S V t S

N
V tj

j

N

j
j

N

β
β β

β

β β

( ) ( ) ,( ) =
⎛

⎝
⎜

⎞

⎠
⎟

= =
∑ ∑

 

(23)

are typically those obtained by Jansen and Rit (1995). Surprisingly, 
they are correct and can be rigorously derived, as discussed below, 
provided σαβ = 0.

However, they cannot remain true, as soon as the synaptic weights 
fl uctuate. Indeed, the transition from Eqs. 19 to 22 corresponds to 
a projection from a NP-dimensional space to a P-dimensional one, 
which holds because the NP × NP dimensional synaptic weights 
matrix has in fact only P linearly independent rows. This does not 
hold anymore if the J

ij
’s are random and the synaptic weights matrix 

has generically full rank. Moreover, the effects of the nonlinear 
dynamics on the synaptic weights variations about their mean, is 
not small even if the σαβs are and the real trajectories of Eq. 19 can 
depart strongly from the trajectories of Eq. 22. This is the main 
message of this paper.

To fi nish this qualitative description, let us say in a few words 
what happens to the mean-fi eld equations when σαβ ≠ 0. We show 
below that the local interaction fi elds ηαβ(V (t)) becomes, in the limit 
Nβ → ∞, a time-dependent Gaussian fi eld Uαβ(t). One of the main 
results is that this fi eld is non-Markovian, i.e., it integrates the whole 
history, via the synaptic responses g which are convolution products. 
Despite the fact that the evolution equation for the membrane poten-
tial averaged over a population writes in a very simple form:

b t
d V

dt
t U t I t n tl

l

k l

l

P

α
α

αβ
β

α α
= =
∑ ∑= + +

0 1

( ) ( ) ( ) ( ) ( ),

 

(24)

it hides a real diffi culty, since Uαβ(t) depends on the whole past. 
Therefore, the introduction of synaptic weights variability leads to a 
drastic change in neural mass models, as we now develop.

The Mean-Field equations. We note C([t
0
, T], �P) (respectively 

C((−∞, T], �P)) the set of continuous functions from the real inter-
val [t

0
, T] (respectively (−∞, T]) to �P. By assigning a probability 

to subsets of such functions, a continuous stochastic process X 
defi nes a positive measure of unit mass on C([t

0
, T], �P) (respec-

tively C((−∞, T], �P)). This set of positive measures of unit mass is 
noted M1

+
0([ , ],( )C t T P�  (respectivelyM1

+ (( , ], ))(C T P− ∞ � .
We now defi ne a process of particular importance for describing 

the limit process: the effective interaction process.

Defi nition 2. (Effective interaction process). Let X ∈ 
M1

+
0([ , ],( ))C t T P�  (respectively M1

+ (( , ], ))(C T P− ∞ �  be a given 
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Gaussian stochastic process. The effective interaction term is 
the Gaussian process UX ∈ M1

+
0([ , ],( ))C t T P P� × , (respectively 

M1
+ (( , ], )(C T P P− ×∞ � ) defi ned by:

�[ ( )] ( )

( ), ( )
( , )

U t J m t

U t U s
t s

X X

X X
X

αβ αβ β

αβ γδ
αβ βα Δ α γ

=

( ) =
Cov =

if2 aand

otherwise

β δ=⎧
⎨
⎩

⎧

⎨
⎪

⎩
⎪

,

0
 

(25)

where

m t S X tX
β β β( ) ( ) ,= ( )⎡⎣ ⎤⎦

def
�

and

Δβ β β β β
X t s S X t S X s( , ) [ ( ( )) ( ( )) ]=def

�

In order to construct the solution of the mean-fi eld equations 
(see Section “Existence and Uniqueness of Solutions in Finite 
Time”) we will need more explicit expressions for m tX

β ( ) and Δβ
X t s( , )  

which we obtain in the next proposition.

Proposition 1. Let μ(t) = �[X
t
] be the mean of the process X and 

C(t, s) = �[(X
t
 − μ(t)) (X

s
 − μ(s))T] be its covariance matrix. 

The vectors mX(t) and ΔX(t, s) that appear in the defi nition of 
the effective interaction process UX are defi ned by the following 
expressions:

m t S x C t t t DxX
β β ββ βμ( ) ( , ) ( ) ,= +( )∫

�  
(26)

and

Δβ
X t s S

C t t C s s C t s

C t t
x

C

( , )
( , ) ( , ) ( , )

( , )

(

=
−⎛

⎝
⎜⎜

+

∫ β
ββ ββ ββ

ββ

ββ

2

2�

tt s

C t t
y s S y C t t t Dx Dy

, )

( , )
( ) ( , ) ( ) ,

ββ
β β ββ βμ μ+ ⎞

⎠⎟
+( )

 

(27)

where

Dx dx
x

=
−1

2

2

2

π
e .

is the probability density of a 0-mean, unit variance, Gaussian 
variable.

Proof. The results follow immediately by a change of variable 
from the fact that Xβ(t) is a univariate Gaussian random variable 
of mean μβ(t) and variance Cββ(t, t) and the pair (Xβ(t), Xβ(s)) is 
bivariate Gaussian random variable with mean (μβ(t), μβ(s)) and 
covariance matrix

C t t C t s

C t s C s s
ββ ββ

ββ ββ

( , ) ( , )

( , ) ( , )

⎡

⎣
⎢

⎤

⎦
⎥

 

Choose P neurons i
1
,…,i

P
, one in each population (neuron iα 

belongs to the population α). We defi ne the kP-dimensional vector 
V ( )N t( ) by choosing, in each of the k N-dimensional components 

…Vl t l k( ), , ,= −0 1, of the vector V( )t  defi ned in Eq. 13 the coor-
dinates of indexes i

1
,…,i

P
. Then it can be shown, using either a 

heuristic argument or large deviations techniques (see Appendix A), 
that the sequence of kP-dimensional processes ( )Vt t

N
N≥ ≥0 1

( )  converges 

in law to the process V V V V( ) [ ( ) , ( ) , , ( ) ]t t t tT T
k

T T= … −1 1  solution of 
the following mean-fi eld equation:

d dt tV V( ) = ( ) ( )+ ( ) ( ) dt t t t tt− +( ) + ⋅L I WUV F .
 

(28)

L is the P
k
 × P

k
 matrix

L

B B B

( )

( ) ( ) ( )

t

t t t

P P P P

P P P P

k

=

⎡

⎣

⎢
⎢
⎢

0 0

0 0 0

1

× ×

× × ×

−

Id

Id

P

P P

P

0 1

⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

The P × P matrixes B
l
(t), l = 0,…,k − 1 are, with a slight abuse of 

notations, equal to diag(b
l1
(t),…,b

lP
(t)). ( )Wt t t≥ 0

 is a kP- dimensional 
standard Brownian process. UV has the law of the P-dimensional 
effective interaction vector associated to the vector V (fi rst P-
dimensional component of V) and is statistically independent of 
the external noise ( )Wt t t≥ 0

 and of the initial condition V( )t0  (when 
t

0
 > −∞):

U

U

I

I

t

t

V

V

=

⋅

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0

0

1

0

0

P

P

P

P

t

t

t( )

( )

( )F == ( )diag F F0( ), , ( ) .t tk−1

We have used for the matrixes F
l
(t), l = 0,…,k − 1 the same abuse 

of notations as for the matrixes B
l
(t), i.e., F

l
(t) = diag(f

l1
(t),…,f

lP
(t)) 

for l = 0,…,k − 1. I(t) is the P-dimensional external current 
[I

1
(t),…,I

P
(t)]T.

The process (Ut t t
V ) ≥ 0

 is a P × P-dimensional process and is applied, 
as a matrix, to the P-dimensional vector 1 with all coordinates equal 
to 1, resulting in the P-dimensional vector Ut

V ⋅1 whose mean and 
covariance function can be readily obtained from Defi nition 2:

� �[ ] ( ), ( ) ( )Ut
V V V V⋅ = = ( )⎡⎣ ⎤⎦

=
∑1 J m t m t S t

P

αβ β
β

β β β
1  

(29)

and

Cov
if =

0 otherwise
Ut s

V V
V

⋅( ) ⋅( )( ) =
⎧
⎨
⎪

⎩
=∑1 U

α

αβ ββ
σ α γ

1
2

1

γ

Δ ( , )t s
P

⎪⎪
 

(30)

We have of course

Δβ β β β β
V V V( , ) ( ) ( )t s S t S s= ( ) ( )⎡⎣ ⎤⎦�

Equations (28) are formally very similar to Eq. 17 but there are 
some very important differences. The fi rst ones are of dimension 
kP whereas the second are of dimension kN which grows arbitrarily 
large when N → ∞. The interaction term of the second, J V⋅S t( ( )), 
is simply the synaptic weight matrix applied to the activities of 
the N neurons at time t. The interaction term of the fi rst equa-
tion, Ut

V, though innocuous looking, is in fact quite complex (see 
Eqs. 29 and 30). In fact the stochastic process Ut

V, putative solution 
of Eq. 28, is in general non-Markovian.
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To proceed further we formally integrate the equation using the 
fl ow, or resolvent, of the Eq. 28, noted Φ

L
(t, t

0
) (see Appendix B), 

and we obtain, since we assumed L continuous, an implicit repre-
sentation of V( )t :

V V V( ) , ( ) , ( )

,

t t t t t s s ds

t s

L L

t

t

L

t

= ( ) + ( )⋅ +( )

+ ( )⋅

∫Φ Φ

Φ

0 0

0

0

U Is

tt

s d∫ ⋅F( ) Ws

 

(31)

We now introduce for future reference a simpler model which is 
quite frequently used in the description on neural networks and has 
been formally analyzed by Sompolinsky and colleagues (Crisanti 
et al., 1990; Sompolinsky et al., 1998) in the case of one popula-
tion (P = 1).

Example I: The Simple Model
In the Simple Model, each neuron membrane potential decreases 
exponentially to its rest value if it receives no input, with a time 
constant τα depending only on the population. In other words, we 
assume that the g-shape describing the shape of the PSPs is Eq. 10, 
with K = 1 for simplicity. The noise is modeled by an independent 
Brownian process per neuron whose standard deviation is the same 
for all neurons belonging to a given population.

Hence the dynamics of a given neuron i from population α of 
the network reads:

dV t
V t

J S V t I ti
i

p i
ij p j

j

NP

j p i( )
( )

( ) ( )
( )

( ) ( )= − + ( ) +
⎡

⎣
⎢
⎢ ==

∑∑τ

β

β 11

⎤⎤

⎦
⎥
⎥

+

dt

f dW tp i i( ) ( ).
 

(32)

This is a special case of Eq. 12 where k = 1, b
0α(t) = 1/τα, b

1α(t) = 1 
for α = 1,…,P. The corresponding mean-fi eld equation reads:

d t
t

t t dt f dW t
P

V V V
α αβ α

β
α α( )

( )
( ) ( ) ( ),

{ ,

= − + +
⎛

⎝⎜
⎞

⎠⎟
+

∀ ∈
=

∑α

ατ

α

U I
1

1 ……, },P  (33)

where the processes (Wα(t))
t ≥ t0

 are independent standard Brownian 
motions, UV V( ) ( ( ); { , , })t U t P t= αβ α β ∈, 1 …  is the effective interaction 
term, see Defi nition 2. This is a special case of Eq. 28 with L = 
diag( 1 1

1τ τ, ,…
P
), and F = diag(f

1
,…,f

P
).

Taking the expected value of both sides of Eq. 33 and using we 
obtain Eq. 26 that the mean μα(t) of Vα(t) satisfi es the differential 
equation

d t

dt

t
J S x C t t t Dx I t

Pμ μ
τ

μα

α
αβ β β

β
α

α
ββ

( ) ( )
( , ) ( ) ( ),= − + +( ) +∫∑

= �1

If Cββ(t, t) vanishes for all t ≥ t
0
 this equation reduces to:

d t

dt

t
J S t I t

Pμ μ
τ

μα α

α
αβ β β

β
α

( ) ( )
( ) ( ),= − + ( ) +

=
∑

1

which is precisely the “naive” mean-fi eld equation (Eq. 22) obtained 
with the assumption (Eq. 23). We see that Eq. 22 are indeed correct, 
provided that Cββ(t, t) = 0, ∀t ≥ t

0
.

Equation 33 can be formally integrated implicitly and we obtain 
the following integral representation of the process Vα(t):

V V V
α α αβ

β
α

α α( ) = ( )+t te e U s I s
t t t s

t

t P− − − −

=
∫ ∑ +

⎛

⎝⎜
⎞( ) ( )

( ) ( )
0

0
1

τ τ
0 ⎠⎠⎟

+
− −

∫

ds

f e dW s
t s

t

t

α α
α

( )

( )τ

0  

(34)

where t
0
 is the initial time. It is an implicit equation on the 

probability distribution of V(t), a special case of (Eq. 31), with 
ΦL

t t t tt t e e P( , ) , ,( )/ ( )/
0

0 1 0= − − − −diag( ).τ τ…
The variance Cαα(t, t) of Vα(t) can easily be obtained from Eq. 34. 

It reads

C t t e C t t
f

e

e

t t
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α

σ

( , ) ( , )

(

=

+

−

+

+ −
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⎞
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⎣
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2
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2 2

2

2
1τ
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α τα α

τ
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t

t

t

tP

u v dudv
)

( , ) ,τα
β

β
00

1
∫∫∑

=

⎤

⎦
⎥
⎥

Δ

where Δβ(u, v) is given by Eq. 27.
If σαβ = 0 and if sα = 0 then Cαα(t, t) = 0, ∀t ≥ t

0
 is a solution of this 

equation. Thus, mean-fi eld equations for the simple model reduce 
to the naive mean-fi eld Eq. 22 in this case. This conclusion extends 
as well to all models of synaptic responses, ruled by Eq. 5.

However, the equation of Cαα(t, t) shows that, in the general 
case, in order to solve the differential equation for μα(t), we need 
to know the whole past of the process V. This exemplifi es a previ-
ous statement on the non-Markovian nature of the solution of the 
mean-fi eld equations.

Example II: The model of Jansen and Rit
One of the motivations of this study is to characterize the global 
behavior of an assembly of neurons in particular to get a better 
understanding of recordings of cortical signals like EEG or MEG. 
One of the classical models of neural masses is Jansen and Rit’s 
mass model (Jansen and Rit, 1995), in short the JR model (see 
Figure 2).

The model features a population of pyramidal neurons that 
receives inhibitory inputs from local inter-neurons, excitatory feed-
backs, and excitatory inputs from neighboring cortical units and 
sub-cortical structures such as the thalamus. The excitatory input 
is represented by an external fi ring rate that has a deterministic 
part I

1
(t) accounting for specifi c activity of other cortical units and 

a stochastic part n
1
(t) accounting for a non specifi c background 

activity. We formally consider that the excitatory feedback of the 
pyramidal neurons is a new neural population, making the number 
P of populations equal to 3. We also represent the external inputs 
to the other two populations by the sum of a deterministic part 
I

j
(t) and a stochastic part n

j
(t), j = 2, 3, see Figure 2.

In the model introduced originally by Jansen and Rit, the con-
nectivity weights were assumed to be constant, i.e., equal to their 
mean value. Nevertheless, there exists a variability of these coef-
fi cients, and as we show in the sequel, the effect of the connectivity 
variability impacts the solution at the level of the neural mass. 
Statistical properties of the connectivities have been studied in 
details for instance in (Braitenberg and Schüz, 1998).
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We consider a network of N neurons, Nα, α = 1, 2, 3 belonging to 
population α. We index by 1 (respectively 2, and 3) the pyramidal 
(respectively excitatory feedback, inhibitory interneuron) popula-
tions. We choose in each population a particular neuron indexed 
by iα, α = 1, 2, 3. The evolution equations of the network can be 
written for instance in terms of the potentials V

i1
, V

i2
 and V

i3
 labeled 

in Figure 2 and these equations read:

V g J S V J S V I n

V g J

i i j j
j

N

i j j
j

N

i

1 1

2

1

3

2

1
1 1

1 1

1

= ∗ ( ) + ( ) + +
⎛

⎝⎜
⎞

⎠⎟

= ∗

= =
∑ ∑

ii j j
j

N

i i j j
j

N

S V I n

V g J S V I n

2

1

3 3

1

1
2 2

3
1

3 3

( ) + +
⎛

⎝⎜
⎞

⎠⎟

= ∗ ( ) + +
⎛

⎝⎜

=

=

∑

∑
⎞⎞

⎠⎟

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

In the mean-fi eld limit, denoting by Vα, α = 1, 2, 3 the aver-
age membrance potential of each class, we obtain the following 
equations:

V
V
V

V V

V

V

1 1 1 1

2 1 2 2

3 3 3 3

= ∗ + + +( )
= ∗ + +( )
= ∗ + +(

g I n

g I n

g I n

U U

U

U

12 13

21

31 ))

⎧

⎨
⎪⎪

⎩
⎪
⎪

 
(35)

where UV V= =( ) , , ,Uαβ α β 1 2 3 is the effective interaction process associ-
ated with this problem, i.e., a Gaussian process of mean:

� �

� �

�

U S

U S

U

12

13

21

V

V

V

V
V

⎡⎣ ⎤⎦ = ( )⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ = ( )⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ =

J

J

J

12 2

13 3

211 1

31 1

�

� �

S

U S

V
VV

( )⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ = ( )⎡⎣ ⎤⎦

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪ 31 J ,

All other mean values correspond to the non-interacting popu-
lations and are equal to 0. The covariance matrix can be deduced 
from Eq. 25:

Cov
if and

0 otherwise
U t U s

t s
αβ

σV V
V

( ), ( )
( , )

γδ
αβ β α β γ δ( ) =

= =⎧
⎨
⎩

2 Δ

where

Δβ α β
V V V( , ) ( ) ( )t s t s= ( ) ( )⎡⎣ ⎤⎦� S S

This model is a voltage-based model in the sense of Ermentrout 
(1998). Let us now instantiate the synaptic dynamics and com-
pare the mean-fi eld equations with Jansen’s population equations2 
(sometimes improperly called also mean-fi eld equations).

The simplest model of synaptic integration is a fi rst-order 
integration, which yields exponentially decaying postsynaptic 
potentials:

g t K t

t

t

( ) =
⎧
⎨
⎪

⎩⎪

−
e τ ≥ 0

<0 0

Note that this is exactly Eq. 10. The corresponding g-shape satis-
fi es the following fi rst-order differential equation

g t g t K t( ) ( ) ( ),= − +1

τ
δ

In this equation τ is the time constant of the synaptic integration 
and K the synaptic effi ciency. The coeffi cients K and τ are the same 
for the pyramidal and the excitatory feedback population (charac-
teristic of the pyramidal neurons and defi ning the g-shape g

1
), and 

different for the inhibitory population (defi ning the g-shape g
3
). In 

the pyramidal or excitatory (respectively the inhibitory) case we 
have K = K

1
, τ = τ

1
 (respectively K = K

3
, τ = τ

3
). Finally, the sigmoid 

functions S is given by

S v
er v v

( ) ,max
( )

=
+ −

ν
1 0

where ν
max

 is the maximum fi ring rate, and v
0
 is a voltage reference.

A B

FIGURE 2 | (A) Neural mass model: a population of pyramidal cells interacts 
with itself in an excitatory mode and with an inhibitory population of inter-
neurons. (B) Block representation of the model. The g boxes account for the 
synaptic integration between neuronal populations. S boxes simulate cell bodies 

of neurons by transforming the membrane potential of a population into an 
output fi ring rate. The coeffi cients Jαβ are the random synaptic effi ciency of 
population β on population α (1 represents the pyramidal population, 2 the 
excitatory feedback, and 3 the inhibitory inter-neurons).

2We have modifi ed the original model which is not voltage-based.
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With this synaptic dynamics we obtain the fi rst-order Jansen 
and Rit’s equation:

d

dt
K U U I n

d

dt
K U I n

V V

V V

V V

V

1

1

1 1 12 13 1 1

2

1

2 1 21 2 2

1

1

= − + + + +( )

= − + + +(
τ

τ
))

= − + + +( )

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

d

dt
K U I n

V V V3

3

3 3 31 3 3

1

τ
 

(36)

The “original” Jansen and Rit’s equation (Grimbert and 
Faugeras, 2006; Jansen and Rit, 1995) amount considering only 
the mean of the process V and assuming that �[S

i
(V

j
)] = S

i
(�[V

j
]) 

for i, j ∈ {1, 2, 3}, i.e., that the expectation commutes with the sig-
moidal function S. This is a very strong assumption, and that the 
fl uctuations of the solutions of the mean-fi eld equation around 
the mean imply that the sigmoid cannot be considered as linear 
in the general case.

A higher order model was introduced by van Rotterdam et al. 
(1982) to better account for the synaptic integration and to bet-
ter reproduce the characteristics of real postsynaptic potentials. 
In this model the g-shapes satisfy a second-order differential 
equation:

g t Kt t

t

t

( ) ,=
⎧
⎨
⎪

⎩⎪

−
e τ ≥ 0

<0 0

We recognize the g-shape defi ned by Eq. 11 solution of the sec-
ond-order differential equation y t y t y t K t( ) ( ) ( ) ( ).+ + =2 1

2τ τ
δ  With 

this type of synaptic integration, we obtain the following mean-
fi eld equations:

d

dt

d

dt
K U U I n

d

dt

d

2
1

2
1

1

1
2 1 1 12 13 1 1

2
2

2
1

2 1

2

V V V

V V

= − − + + + +( )

= −

τ τ

τ

V V

22

1
2 2 1 21 2 2

2
3

2
3

3

3
2 3 3 31

1

2 1

dt
K U I n

d

dt

d

dt
K U

− + + +( )

= − − + +

τ

τ τ

V

V V V

V

V II n3 3+( )

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪  

(37)

Here again, going from the mean-fi eld Eq. 37 to the original 
Jansen and Rit’s neural mass model consists in studying the equa-
tion of the mean of the process given by Eq. 37 and commuting 
the sigmoidal function with the expectation.

Note that the introduction of higher order synaptic integrations 
results in richer behaviors. For instance, Grimbert and Faugeras 
(2006) showed that some bifurcations can appear in the second-
order JR model giving rise to epileptic like oscillations and alpha 
activity, that do not appear in the fi rst-order model.

EXISTENCE AND UNIQUENESS OF SOLUTIONS IN FINITE TIME
The mean-fi eld equation (Eq. 31) is an implicit equation of the 
stochastic process (V(t))

t ≥ t0
. We prove in this section that under 

some mild assumptions this implicit equation has a unique solu-
tion. These assumptions are the following.

Assumption 1.
(a) The matrix L(t) is C 0 and satisfi es L(t)  ≤ k

L
 for all t in 

[t
0
, T], for some matrix norm   and some strictly positive 

constant k
L
.

(b) The matrix F(t) has all its singular values lowerbounded (res-
pectively upperbounded) by the strictly positive constant3 
λΓ

min (respectively λmax
Γ ) for all t in [t

0
, T].

(c) The deterministic external input vector I(t) is bounded and 
we have I(t) ∞ ≤ I

max
 for all t in [t

0
, T] and some strictly posi-

tive constant I
max

.

This solution is the fi xed point in the set M1
+

0([ , ],( ))C t T kP�  of 
kP-dimensional processes of an equation that we will defi ne from 
the mean-fi eld equations. We will construct a sequence of Gaussian 
processes and prove that it converges in distribution toward this 
fi xed point.

We fi rst recall some results on the convergence of random vari-
ables and stochastic processes.

CONVERGENCE OF GAUSSIAN PROCESSES
We recall the following result from Bogachev (1998) which formal-
izes the intuition that a sequence of Gaussian processes converges 
toward a Gaussian process if and only if the means and covariance 
functions converge. In fact in order for this to be true, it is only 
necessary to add one more condition, namely that the correspond-
ing sequence of measures (elements of M1

+
0([ , ],( ))C t T kP� ) do not 

have “any mass at infi nity”. This property is called uniform tightness 
(Billingsley, 1999). More precisely we have

Defi nition 3. (Uniform tightness). Let { }Xn n=1
∞  be a sequence of kP-

dimensional processes defi ned on [t
0
, T] and P

n
 be the associated 

elements of M1
+

0([ , ],( ))C t T kP� . The sequence M1
+

0([ , ],( ))C t T kP�  
is called uniformly tight if and only if for all ε > 0 there exists a 
compact set K of C([t

0
, T], �kP ) such that P

n
(K) > 1 − ε, n ≥ 1.

Theorem 1. Let { }Xn n=
∞

1 be a sequence of kP-dimensional Gaussian 
processes defi ned on [t

0
, T] or on an unbounded interval4 of �. The 

sequence converges to a Gaussian process X if and only if the following 
three conditions are satisfi ed:

• The sequence { }Xn n=1
∞  is uniformly tight.

• The sequence μn(t) of the mean functions converges for the uni-
form norm.

• The sequence Cn of the covariance operators converges for the 
uniform norm.

We now, as advertised, defi ne such a sequence of Gaussian 
processes.

Let us fi x Z
0
, a kP-dimensional Gaussian random variable, inde-

pendent of the Brownian and of the process ((X)
t
)t ∈ [t

0
,T].

Defi nition 4. Let X be an element of M1
+

0([ , ],( ))C t T kP�  and F
k
 

be the function M M1
+

0 1
+

0([ , ], ([ , ],( )) ( ))C t T C t TkP kP� �→  such 
that

3We note Γ(t) the matrix F(t)F(t)T.
4In Bogachev (1998; Chapter 3.8), the property is stated whenever the mean and 
covariance are defi ned on a separable Hilbert space.
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Fk t L L s
X

t

t

L

X t t Z t s s ds

t s

( ) , ,

, ( )

= ( )⋅ + ( )⋅ +( )

+ ( )⋅

∫Φ Φ

Φ

0 0

0

U I( )

F s dd
t

t

Ws

0

∫

where US
X and I( )s  are defi ned5 in Section “Mean-Field Equations 

for Multi-Populations Neural Network Models”.
Note that, by Defi nition 2 the random process (F

k
(X))

t ∈ [t0, T]
, 

k ≥ 1 is the sum of a deterministic function (defi ned by the external 
current) and three independent random processes defi ned by Z

0
, 

the interaction between neurons, and the external noise. These 
three processes being Gaussian processes, so is (F

k
(X))

t ∈ [t0, T]
. Also 

note that (F
k
(X))

t0
 = Z

0
. It should be clear that a solution V of the 

mean-fi eld equation (Eq. 31) satisfi es V(t
0
) = Z

0
 and is a fi xed point 

of F
k
, i.e., F

k
(V)t = V(t).

Let X be a given stochastic process of M1
+

0([ , ],( ))C t T kP�  such that 
X Zt0 0=  (hence Xt0

 is independent of the Brownian). We defi ne the 
sequence of Gaussian processes { } ( ))X C t Tn n

kP
=0

∞ ∈M1
+

0([ , ],�  by:

X X

X X X nn k n k
n

k

0

1 0
0

=
= = =

⎧
⎨
⎩ + F F F( ) ( ).( ) ( )≥ 0, Id

 
(38)

In the remaining of this section we show that the sequence of 
processes { ( )}( )Fk

n
nX =0
∞  converges in distribution toward the unique 

fi xed-point Y of F
k
 which is also the unique solution of the mean-

fi eld equation (Eq. 31).

EXISTENCE AND UNIQUENESS OF A SOLUTION FOR THE MEAN-FIELD 
EQUATIONS
The following upper and lower bounds are used in the sequel.

Lemma 1. Consider the Gaussian process (( ) ) .[ , ]U 1t
X

t t t T⋅ ∈ 0
 UX is 

defi ned in Sections “The Mean-Field Equations” and “Introduction” 
is the P-dimensional vector with all coordinates equal to 1. We have

� Ut
X J S⋅⎡⎣ ⎤⎦ ≤ =

∞ ∑1 μ
α αβ

β
β ∞

def max

 

(39)

for all t
0
 ≤ t ≤ T. The maximum eigenvalue of its covariance 

matrix is upperbounded by σ σα β αβ β ∞max

def 22 2= ∑max || ||S  where 
Sβ ∞ is the supremum of the absolute value of Sβ. We also 

note σ σα,β αβmin

def 22 = min .
Proof. The proof is straightforward from Defi nition 4. 

The proof of existence and uniqueness of solution, and of the 
convergence of the sequence (Eq. 38) is in two main steps. We fi rst 
prove that the sequence of Gaussian processes { ( )}( )Fk

n
nX =0
∞ , k ≥ 1 is 

uniformly tight by proving that it satisfi es Kolmogorov’s criterion 
for tightness. This takes care of condition 1 in Theorem 1. We then 
prove that the sequences of the mean functions and covariance 
operators are Cauchy sequences for the uniform norms, taking 
care of conditions 2 and 3.

Uniform tightness
We fi rst recall the following theorem due to Kolmogorov (Kushner, 
1984, Chapter 4.1).

Theorem 2. (Kolmogorov’s criterion for tightness). Let { }Xn n=1
∞  be a 

sequence of kP-dimensional processes defi ned on [t
0
, T]. If there exist 

α, β, C > 0 such that

� X t X s C t s s t t T nn n( ) ( ) | | , , ,−⎡
⎣

⎤
⎦ ≤ − ∀ ∈[ ] ≥+β α1

0 1

then the sequence is uniformly tight.
Using this theorem we prove that the sequence { ( )}( )Fk

n
nX =0
∞ , k ≥ 1 

satisfi es Kolmogorov’s criterion for β = 4 and α ≥ 1. The reason 
for choosing β = 4 is that, heuristically, dW � (dt)1/2. Therefore in 
order to upperbound �[ ( ) ( ) ]X t X sn n− β  by a power of | t − s | ≥ 2 
(hence strictly larger than 1) we need to raise X t X sn n( ) ( )−  to 
a power at least equal to 4. The proof itself is technical and uses 
standard inequalities (Cauchy–Schwarz’s and Jensen’s), properties 
of Gaussian integrals, elementary properties of the stochastic inte-
gral, and Lemma 1. It also uses the fact that the input current is 
bounded, i.e., that max , , sup | ( )|[ , ] mα α= … ≤ <1 0

P I t It t T∈ ∞, ax  this is 
Assumption (c) in 1.

Theorem 3. The sequence of processes { ( )}( )Fk
n

nX =0
∞ , k ≥ 1 is uniformly 

tight.
Proof. We do the proof for k = 1, the case k > 1 is similar. If 

we assume that n ≥ 1 and s < t we can rewrite the difference 
F F1 1

( ) ( )( ) ( )n
t

n
sX X−  as follows, using property (i) in Proposition B.1 

in Appendix B.

F F1 1 0 0 0

( ) ( )( ) ( ) , ,

,

n
t

n
s L L t

L L

X X t t s t X

t s Id s
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+ ( ) −( )

Φ Φ
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∫
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Φ

The righthand side is the sum of seven terms and therefore 
(Cauchy–Schwarz inequality):

1

7 1 1
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2 2
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0
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2 2 2 2

0

Φ Φ, sup ,max
,

max
22 2
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( )Φ
5For simplicity we abuse notations and identify X  and X.
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Because Φ
L
(t, t

0
) − Φ

L
(s, t

0
)  ≤ |t − s| L  we see that all terms in 

the righthand side of the inequality but the second one involving 
the Brownian motion are of the order of (t − s)2. We raise again both 
sides to the second power, use the Cauchy–Schwarz inequality, and 
take the expected value:

1

73 1 1

4

0 0

4 4

0
� �F F( ) ( )( ) ( ) , ,n

t
n

s L L tX X t t s t X−⎡
⎣

⎤
⎦ ≤ ( ) − ( ) ⎡

⎣⎢
⎤
⎦⎥

Φ Φ

++ −( ) ( ) − ( ) ⋅⎡
⎣⎢

⎤
⎦⎥

+

−

∫s t t s Id s u du

t

L L u
X

t

s
n

0

3 4 4 4
1

1

0

Φ Φ, ,
( )( )� U 1F

−−( ) ( ) ⋅⎡
⎣⎢

⎤
⎦⎥

+ ( ) −

−

∫s t u du

t s Id s

L u
X

s

t

L L

n3 4 4

4

1
1

Φ

Φ Φ

,

, ,

( )( )�

�

U 1F

uu u d

t u u d

s t

u

t

s

L u

s

t

( )
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

+ ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ −(

∫

∫

F

F

( )

, ( )

W

W

0

4

4

0

� Φ

)) ( ) − ( )

+ −( )
∈[ ]

∈

4 4 4 4

4 4

0

Φ ΦL
u t s

L

u s t

t s Id I s u

t s I

, sup ,

sup

max
,

max
,[[ ]

( )ΦL t u, . ( )
4

40
 

Remember that U 1u
XnF ( )( )−

⋅
1

 is a P-dimensional diagonal Gaussian 
process, noted Y

u
 in the sequel, therefore:
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The second-order moments are upperbounded by some regular 
function of μ and σ

max
 (defi ned in Lemma 1) and, because of the 

properties of Gaussian integrals, so are the fourth-order moments.
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This shows that the term �[ ∫ s
t

L ut u u dΦ ( , ) ( ) ]F W 4  in Eq. 40 is 
of the order of (t − s)1+a where a ≥ 1. Therefore we have
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for all s, t in [t
0
, T], where C is a constant independent of t, s. 

According to Kolmogorov criterion for tightness, the sequence of 
processes { ( )}( )F1 0

n
nX =
∞  is uniformly tight.

The proof for F
k
, k > 1 is similar. 

The mean and covariance sequences are Cauchy sequences
Let us note μn(t) [respectively Cn(t, s)] the mean (respectively the 
covariance matrix) function of X
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), n ≥ 1. We have:
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β ( ) is given by Eq. 26. Similarly we have
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(42)

Note that the kP × kP covariance matrix Cov( )U Uu
X

v
Xn n,  has only 

one nonzero P × P block:

Cov CovU U U 1 U 1u
X

v
X

u
X

v
Xn n n n, , ,( ) = ⋅ ⋅( )

kk  
(43)

According to Defi nition 2 we have

Cov diag 2U 1 U 1u
X

v
X Xn n n⋅ ⋅( ) =

⎛

⎝⎜
⎞

⎠⎟∑, ( , ) ,σ Δαβ β
β

u v

where Δβ
Xn u v( , ) is given by Eq. 27 and Dx is defi ned in 

Proposition 1.
In order to prove our main result, that the two sequences of func-

tions (μn) and (Cn) are uniformly convergent, we require the following 
four lemmas that we state without proofs, the proofs being found in 
Appendixes E–H. The fi rst lemma gives a uniform (i.e., independent 
of n ≥ 2 and α = 1,…,kP) strictly positive lowerbound for C t tn

αα( , ). 
In what follows we use the following notation: Let C be a symmetric 
positive defi nite matrix, we note λmin

C  its smallest eigenvalue.

Lemma 2. The following uppperbounds are valid for all n ≥ 1 and 
all s, t ∈ [t

0
, T].
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where μ and σ
max

 are defi ned in Lemma 1, λmax
Γ  is defi ned in 

Assumption 1.

Lemma 3. For all t ∈ [t
0
, T] all α = 1,…,kP, and n ≥ 1, we have

C t t kn Z

αα λ λ( , ) ,min min≥ =Σ 0

0 0
def >

where λ
min

 is the smallest singular value of the positive symmet-
ric defi nite matrix Φ

L
(t, t

0
)Φ

L
(t, t

0
)T for t ∈ [t

0
, T] and λmin

∑Z0

 is the 
smallest eigenvalue of the positive symmetric defi nite covariance 
matrix ∑Z0.

The second lemma also gives a uniform lowerbound for the 
expression C s s C t t C t sn n n

αα αα αα( , ) ( , ) ( , )− 2 which appears in the defi ni-
tion of Cn+1 through Eqs. 43 and 27. The crucial point is that this 
function is O(|t − s|) which is central in the proof of Lemma 5.

Lemma 4. For all α = 1,…,kP and n ≥ 1 the quantity 
C s s C t t C t sn n n

αα αα αα( , ) ( , ) ( , )− 2 is lowerbounded by the positive sym-
metric function:

θ λ λ λΣ( , ) | | ,min min mins t t s
Z

= −def 2 0 Γ

where λmin
Γ  is the strictly positive lower bound, introduced in 

Assumption 1, on the singular values of the matrix F(u) for u ∈ 
[t

0
, T].
The third lemma shows that an integral that appears in the proof 

of the uniform convergence of the sequences of functions (μn) and 
(Cn) is upperbounded by the nth term of a convergent series.

Lemma 5. The 2n-dimensional integral
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where the functions ρ
i
(u

i
, v

i
), i = 1,…,n are either equal to 1 or 

to 1/ ( , )θ u vi i  (the function θ is defi ned in Lemma 4), is upper-
bounded by kn/(n − 1)! for some positive constant k.

With these lemmas in hand we prove Proposition 3. The proof 
is technical but its idea is very simple. We fi nd upperbounds for the 
matrix infi nite norm of Cn+1(t, s) − Cn(t, s) and the infi nite norm of 
μn+1(t) − μn(t) by applying the mean value Theorem and Lemmas 3 
and 4 to the these norms. These upperbounds involve integrals of 
the infi nite norms of Cn(t, s) − Cn−1(t, s) and μn(t) − μn−1(t) and, 
through Lemma 4, one over the square root of the function θ. 
Proceeding recursively and using Lemma 5, one easily shows that the 
infi nite norms of Cn+1 − Cn and μn+1 − μn are upperbounded by the 
nth term of a convergent series from which it follows that the two 
sequences of functions are Cauchy sequences, hence convergent.

Proposition 3. The sequences of covariance matrix functions 
Cn(t, s) and of mean functions μn(t), s, t in [t

0
, T] are Cauchy 

sequences for the uniform norms.
Proof. We have
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We take the infi nite matrix norm of both sides of this equal-
ity and use the upperbounds Φ ∞

∞
L

T t
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ΦL
T T t
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−≤ =∞L 0  (see Appendix B) to obtain6

6The notation  V is introduced in Appendix C.
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According to Eq. 27 we are led to consider the difference 
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where the constants k
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A similar process applied to the mean values yields:
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where μ is defi ned in Lemma 1. We now use the mean value 
Theorem and Lemmas 3 and 4 to fi nd upperbounds for Pn u v( , ) −
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using the fact that all integrated functions are positive, we write:

C t s C t s k
u v

C u v C u v dudn n

t t s

n n+
∞

∨

−
∞

− ≤ −∫1 11

0
2

( , ) ( , )
( , )

( , ) ( , )
[ , ]

θ
vv

u v
C u u C u u dudv

C u v C

n n

t t s

n n

⎛
⎝⎜

+ −

+ −

−
∞

∨

−

∫ 1 1

1

0
2 θ( , )

( , ) ( , )

( , )

[ , ]

(( , )

( , ) ( , )

(

[ , ]

[ , ]

u v dudv

C u u C u u dudv

t t s

n n

t t s

n

∞
∨

−
∞

∨

∫

∫+ −

+

0
2

0
2

1

μ uu u dudvn

t t s

) ( ) . ( )
[ , ]

− ⎞
⎠⎟

−
∞

∨
∫ μ 1

0
2

46

Note that, because of Lemma 3, all integrals are well-defi ned. 
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Proceeding recursively until we reach C 0 and μ0 we obtain 
an upperbound for Cn+1(t, s) − Cn(t, s) ∞ (respectively for 
μn+1(t) − μn(t) ∞) which is the sum of <5n terms each one being 

the product of k raised to a power ≤n, times 2μ
max

 or 2Σ
max

 (upper-
bounds for the norms of the mean vector and the covariance 
matrix defi ned in Lemma 2), times a 2n-dimensional integral I

n
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where the functions ρ
i
(u

i
, v

i
), i = 1,…,n are either equal to 1 or to 

1/ ( , )θ u vi i . According to Lemma 5, this integral is of the order of 
some positive constant raised to the power n divided by (n − 1)!. 
Hence the sum is less than some positive constant k raised to the 
power n divided by (n − 1)!. By taking the supremum with respect to 
t and s in [t

0
, T] we obtain the same result for Cn+1 − Cn

∞ (respec-
tively for μn+1 − μn

∞). Since the series ∑ ≥n
k
n

n

1 !
 is convergent, this 

implies that Cn+p − Cn
∞ (respectively μn+p − μn

∞) can be made 
arbitrarily small for large n and p and the sequence Cn (respectively 
μn) is a Cauchy sequence. 

Existence and uniqueness of a solution of the mean-fi eld equations
It is now easy to prove our main result, that the mean-fi eld equa-
tions (Eq. 31) or equivalently (Eq. 28) are well-posed, i.e., have a 
unique solution.

Theorem 4. For any nondegenerate kP-dimensional Gaussian 
random variable Z

0
, independent of the Brownian, and any initial 

process X such that X(t
0
) = Z

0
, the map F

k
 has a unique fi xed point 

in M1 0
+( ([ , ], ))C t T kP  toward which the sequence { ( )}( )Fk

n
nX =
∞

1 of 
Gaussian processes converges in law.

Proof. Since C([t
0
, T], �kP ) (respectively C([t

0,
 T]2, �kP × kP )) is 

a Banach space for the uniform norm, the Cauchy sequence μn 
(respectively C n) of Proposition 3 converges to an element μ of 
C([t

0
, T], �kP ) (respectively an element C of C([t

0,
 T]2, �kP × kP)). 

Therefore, according to Theorem 1, the sequence { ( )}( )Fk
n

nX =
∞

0 of 
Gaussian processes converges in law toward the Gaussian process 
Y with mean function μ and covariance function C. This process 
is clearly a fi xed point of F

k
.

Hence we know that there exists at least one fi xed point for the 
map F

k
. Assume there exist two distinct fi xed points Y

1
 and Y

2
 of F

k
 

with mean functions μ
i
 and covariance functions C

i
, i = 1, 2, with the 

same initial condition. Since for all n ≥ 1 we have Fk
n

i iY Y i( )( ) , , ,= = 1 2  
the proof of Proposition 3 shows that μ μ1 2

n n− ∞ (respectively 
C Cn

n1
2− ∞) is upperbounded by the product of a positive number 

a
n
 (respectively b

n
) with μ

1
 − μ

2 ∞) (respectively with ( C
1
 − C

2 ∞). 
Since lim

n→∞ a
n
 = lim

n→∞ b
n
 = 0 and μ μi

n
i= , i = 1, 2 (respectively 

C Ci
n

i= , i = 1, 2), this shows that μ
1
 = μ

2
 and C

1
 = C

2
, hence the two 

Gaussian processes Y
1
 and Y

2
 are indistinguishable. 

CONCLUSION
We have proved that for any nondegenerate Gaussian initial con-
dition Z

0
 there exists a unique solution of the mean-fi eld equa-

tions. The proof of Theorem 4 is constructive, and hence provides 
a way for computing the solution of the mean-fi eld equations by 

 iterating the map F
k
 defi ned in 3.2, starting from any initial process 

X satisfying X(t
0
) = Z

0
, for instance a Gaussian process such as an 

Ornstein–Uhlenbeck process. We build upon these facts in Section 
“Numerical Experiments”.

Note that the existence and uniqueness is true whatever the 
initial time t

0
 and the fi nal time T.

EXISTENCE AND UNIQUENESS OF STATIONARY SOLUTIONS
So far, we have investigated the existence and uniqueness of solu-
tions of the mean-fi eld equation for a given initial condition. We 
are now interested in investigating stationary solutions, which allow 
for some simplifi cations of the formalism.

A stationary solution is a solution whose probability distribution 
does not change under the fl ow of the equation. These solutions 
have been already investigated by several authors (see Brunel and 
Hakim, 1999; Sompolinsky et al., 1998). We propose a new fra-
mework to study and simulate these processes. Indeed we show in 
this section that under a certain contraction condition there exists 
a unique solution to the stationary problem. As in the previous 
section our proof is constructive and provides a way to simulate 
the solutions.

Remark. The long-time mean-fi eld description of a network is 
still a great endeavor in mathematics and statistical physics. In this 
section we formally take the mean-fi eld equation we obtained and 
let t

0
 → −∞. This way we obtain an equation which is the limit of 

the mean-fi eld equation when t
0
 → −∞. It means that we consider 

fi rst the limit N → ∞ and then t
0
 → −∞. These two limits do not 

necessarily commute and there are known examples, for instance 
in spin-glasses, where they do not.

It is clear that in order to get stationary solutions, the stocha-
stic system has to be autonomous. More precisely, we modify 
Assumption 1 as follows

Assumption 2.
(a) The matrixes L(t) and F(t), the input currents I(t) do not 

depend upon t.
(b) The real parts of the eigenvalues of L are negative:

Re(λ) < −λ
L
 λ

L
 > 0 (48)

 for all eigenvalues λ of L.
(c) The matrix F has full rank.

Under Assumption (a) of 2, the resolvent Φ
L
(t, s) is equal to 

eL(t−s). Under Assumption (b) we only consider fi rst-order system 
since otherwise the matrix L has eigenvalues equal to 0. We now 
prove the following proposition.

Proposition 4. Under the previous assumptions we have:

1. lim ,

,

( )

( )

( )

t

t s

t s u
L

t

t s

ds e du M

T

0

0

0

→−∞

−

−
∞

∞

−∞

−

=

= = < ∞∫∫

e

e

e

def

L

L L

L

∞∞ ∞

∞

−∞

= = < ∞

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪ ∫∫ ds e du M

T

T

u

L

t
L def ,

0

2. the process Y e dt
t

t
t t s

s
0

0
= ∫ ⋅−L( )F W  is well-defi ned, Gaussian and 

stationary when t
0
 → −∞

.
.
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Proof. The fi rst point property follows from the fact that 
Re(λ) < −λ

L
 for all eigenvalues λ of L. This assumption also implies 

that there exists a norm on �P such that

e e tt tLL ≤ ∀ ≥−λ 0,

and hence

e ke tt tLL

∞
−≤ ∀ ≥λ 0,

 
(49)

for some positive constant k. This implies the remaining two 
properties.

We now address the second point of the property. The stochastic 
integral Y e dt

t
t
t t s

s
0

0
= ∫ ⋅−L( )F W  is well-defi ned ∀t ≤ T and is Gaussian 

with 0-mean. Its covariance matrix reads:

Y Y t s T

t

t t

t
t

t
t T

e e t s ds
0 0

0

′∑ ∫= ′ −−
∧ ′

L L ( ) ( ) .FF

Let us assume for instance that t' < t and perform the change of 
variable u = t − s to obtain

Y Y u T u

t t

t t

t tt
t

t
t T T

e e du e
0 0

0

′∑ ∫=
⎛

⎝
⎜

⎞

⎠
⎟

− ′

−
′−L L LFF ( ).

Under the previous assumptions this matrix integral is defi ned 
when t

0
 → −∞ (dominated convergence theorem) and we have

lim
t

Y Y Y Y
u T u

t t

t
t

t
t

t t
T

e e du
0

0 0

→−∞
−

+∞

= =
⎛
⎝⎜

⎞
⎠⎟∑ ∑ ∫

−∞ −∞

def
′ ′

′

L LFF ee t t
TL ( ),′ −

 

(50)

which is a well-defi ned function of t' − t. 

The second point of Proposition 4 guarantees the existence of 
process

X W0( ) .( )t e dt s
s

t

= ⋅−

−∞
∫ L F

as the limit of the processes Yt
t0 when t

0
 → −∞. This process is a 

stationary distribution of the equation:

d t t dt d tX L X W0 0( ) ( ) ,= ⋅ + ⋅F  (51)

it is Gaussian, of mean �[X
0
(t)] = 0 and of covariance matrix Σ0 is 

equal to ΣY Yt t
−∞ −∞

 defi ned by Eq. 50 and which is independent of t.
We call long term mean-fi eld equation (LTMFE) the implicit 

equation:

V U I XL V( ) ( )( )t e ds tt s
s

t

= ⋅ +( ) +−

−∞
∫ 1 0

 

(52)

where X
0
 is the stationary process defi ned by Eq. 51 and where UV(t) 

is the effective interaction process introduced previously.
We next defi ne the long term function F Mstat 1

+: ( (( , ],C T−∞
P PC T) ( (( , ], ) :→ −∞M1

+

Fstat( ) ( ( ).( )X U 1 I XL
t

t s
t

e ds t= ⋅ + +−

−∞
∫ s

X ) 0

Proposition 5. The function F
stat

 is well-defi ned on 
M1

+( (( , ], )C T P−∞ .

Proof. We have already seen that the process X
0
 is well-defi ned. 

The term ∫ = ∫−∞ −∞
−t t t se ds e dsL LI I( ) ( )( )t-s  is also well-defi ned because 

of the assumptions on L.
Let X be a given process in M1

+ −∞( (( , ], )C T P . To prove the 
proposition we just have to ensure that the Gaussian process 
∫ ⋅−∞

−t t s
s
Xe dsL U 1( )  is well-defi ned. This results from the contraction 

assumption on L and the fact that the functions Sβ are bounded. We 
decompose this process into a “long memory” term ∫ ⋅−∞

−0 e dst s
s
XL U 1( )  

and the interaction term from time t = 0, namely ∫ ⋅−
0
t t s

s
Xe dsL U 1( ) . 

This latter term is clearly well-defi ned. We show that the memory 
term is also well-defi ned as a Gaussian random variable.

We write this term e e dst
s
XL L U 1∫ ⋅−∞

−0 s  and consider the second 
factor. This random variable is Gaussian, its mean reads ∫∞ −

0 e s s
XL Uμ  

where

μU− = −⎡⎣ ⎤⎦ +
⎛
⎝⎜

⎞
⎠⎟= =

∑s
X

J X s I
P

P

αβ β β α
β

� S ( ( ))
1 1α …

The integral defi ning the mean is well-defi ned because of Eq. 49 
and the fact that the functions Sβ are bounded. A similar reasoning 
shows that the corresponding covariance matrix is well-defi ned. 
Hence the Gaussian process ∫ ⋅−∞

−0 e dss
XL U 1s  is well-defi ned, and 

hence for any process X C T P∈ −∞+M1 ( (( , ], ), the process F
stat

(X) 
is well-defi ned. 

We can now prove the following proposition.

Proposition 6. The mean vectors and the covariance matrices of 
the processes in the image of F

stat
 are bounded.

Proof. Indeed, since �[X
0
(t)) = 0, we have:

� Fstat( ) ( ) .X L U
t

t s
t

L LTe ds M Is[ ] = ≤ + =
∞

−

−∞ ∞

∞∫ ( ) X

μ μ μdef

In a similar fashion the covariance matrices of the processes in 
the image of F

stat
 are bounded. Indeed we have:

�

�

F Fstat stat

(t-s )1 diag S

( ) ( )

(

X X

L

t t
T

tt

e X

⎡⎣ ⎤⎦ = ∑

+
−∞−∞
∫∫

0

2σαβ β β(( )) ( ( )) ,( )s S X s e ds dst s
1 2 1 2

2
β β

β
⎡⎣ ⎤⎦( )∑ −LT

resulting in

� F Fstat stat

def
( ) ( )

max
.X Xt t

T

L

LTk⎡⎣ ⎤⎦ ≤ ∑ + ⎛
⎝⎜

⎞
⎠⎟

= ∑
∞ ∞

0 2

2σ
λ

 

Lemma 6. The set of stationary processes is invariant by F
stat

.
Proof. Since the processes in the image of F

stat
 are Gaussian 

processes, one just needs to check that the mean of the process is 
constant in time and that its covariance matrix C(s, t) only depends 
on t − s.

Let Z be a stationary process and Y = F
stat

(Z). We denote by 
μα

Z the mean of the process Zα(t) and by C t sZ
α ( )−  its covariance 

function. The mean of the process U Z
αβ reads:

m t Z t
C

x e dxZ

Z

x

C

Z

Z

α β β β

β

β

μ

π

β

β
,

( )
( ) ( ( ))

( )
( )= ⎡⎣ ⎤⎦ =

−( )

∫�
�

S S
1

2 0

2

2 0

and hence does not depends on time. We note μZ the mean vector 
of the stationary process UZ·1.
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Similarly, its covariance function reads:

Δαβ β β β β

β β
βμ

Z

Z

t s Z t Z s

x y
x

( , ) ( ( )) ( ( ))

( ) ( )exp

= ⎡⎣ ⎤⎦

= −
−

∫

�

�

S S

S S
2

1

2 yy

C

C t s

C t s

C

x

Z

T Z

Z

Z

Z

Z

−
⎛

⎝⎜
⎞

⎠⎟ −
⎛

⎝⎜
− ⎞

⎠⎟
⎛

⎝
⎜

×
−

−

μ

μ

β

β

β

β

β

β

( )

( )

( )

( )

0

0

1

yy
dxdyZ−

⎛

⎝⎜
⎞

⎠⎟
⎞

⎠
⎟μβ

which is clearly a function, noted Δ −αβ
Z t s( ), of t − s. Hence UZ · 1 is 

stationary and we denote by C t suZ

( )−  its covariance function.
It follows that the mean of Y

t
 reads:

μY
tt Z

t e ds

( ) ( )

( )

= [ ]

= [ ]+ ⋅( )⎡

⎣
⎢

⎤

⎦
⎥

=

∞
∫

�

� �

Fstat

X0
t-s

-

t

s
ZL I U 1( ) +

ee ds

e du Z

L

L

I U 1

I

( )

+

t-s

-

t

s
Z

u

-

0

∞

∞

∫

∫

⋅⎡⎣ ⎤⎦( )

=
⎛
⎝⎜

⎞
⎠⎟

+�

( )μ

since we proved that �[U 1s
Z ⋅ =] μZ  was not a function of s.

Similarly, we compute the covariance function and check that it 
can be written as a function of (t − s). Indeed, it reads:

C t s e du dvY t u s v
st

T

( , ) ( )= ⋅ ⋅

+

− −

−∞−∞
∫∫ L LU 1 U 1( )Cov( , )

Cov( 0

u
Z

v
Z e

X (( ), ( ))

= ( +( )) Cov( ( ), ( ))

0t X s

C t s X X sU Z T

e u v e du dv tu vL L− − +
−∞
∫ 0 0

0

−−∞
∫
0

since the process X
0
 is stationary. CY (t, s) is clearly a function of t − s. 

Hence Y is a stationary process, and the proposition is proved.
 

Theorem 5. The sequence of processes { ( )}Fstat
( )n

nX =
∞

0 is uniformly tight.
Proof. The proof is essentially the same as the proof of Theorem 3, 

since we can write

F Fstat stat
( ) ( )( ) ( ) ( )X e X e ds et

t t s
t

t u
t

= + ⋅ + +∫L L LU 1 I0

0 0

− −
s
X

sdF W∫∫

F
stat

(X)
t
 appears as the sum of the random variable F

stat
(X)

0
 and 

the Gaussian process defi ned by ∫ ⋅ + + ∫− −
0 0
t t s

s
X t t u

se ds e dL LU 1 I( ) ( )( ) F W  
which is equal to F

k
(X)

t
 defi ned in Section “Existence and 

Uniqueness of Solutions in Finite Time” for t
0
 = 0. Therefore 

F Fstat
( ) ( )n

t k
n

tX X( ) ( )=  for t > 0. We have proved the uniform tight-
ness of the sequence of processes { ( )}Fk

n
nX( )

=
∞

0 in Theorem 3. Hence, 
according to Kolmogorov’s criterion for tightness, we just have to 
prove that the sequence of Gaussian random variables:

F F
stat
( ) ( )( ) ( )( ) ( )

( )n
L

XX u du
n

0

0

0= − ⋅ + +
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

−∞
∫ Φ U I Xu

stat 1 0

⎭⎭⎪ ≥n 0

is uniformly tight. Since it is a sequence of Gaussian random vari-
ables, it is suffi cient to prove that their means are bounded and 

their covariance matrices upperbounded to obtain that for any 
ε > 0 there exists a compact Kε such that for any n ∈ �, we have 
�( stat

( )F n X K( ) )0 1∈ ≥ −ε ε . This is a consequence of Proposition 6 for 
the fi rst random variable and of the defi nition of X

0
 for the second. 

By Kolmogorov’s criterion the sequence of processes { stat
( )F n

nX( )} =
∞

0 
is uniformly tight. 

In order to apply Theorem 1 we need to prove that the sequences 
of covariance and mean functions are convergent. Unlike the case 
of t

0
 fi nite, this is not always true. Indeed, to ensure existence and 

uniqueness of solutions in the stationary case, the parameters of the 
system have to satisfy a contraction condition, and Proposition 3 
extends as follows.

Proposition 7. If λ
L
 defi ned in Eq. 48 satisfi es the conditions (Eq. 53) 

defi ned in the proof, depending upon k
C
 (defi ned in Eq. 45), k

0
, μ

LT
 

and Σ
LT

 (defi ned in Proposition 6)then the sequences of covariance 
matrix functions Cn(t, s) and of mean functions μn(t), s, t in [t

0
, T] 

are Cauchy sequences for the uniform norms.
Proof. The proof follows that of Proposition 3 with a few modifi -

cations that we indicate. In establishing the equation corresponding 
to Eq. 44 we use the fact that Φ

L
(t, u) ∞ ≤ ke−λL(t−u) for some positive 

constant k and all u, t, u ≤ t. We therefore have:

C t s C t s kn n t s u v
st

L L+

∞

− + − +

−∞−∞

− ≤ ∫∫1 2( , ) ( , ) ,( ) ( )e e u
X

v
Xnλ λ Cov U U nn

n n

u
X

v
X

( )

− ( )
∞

Cov U U-1 -1,
v

du dv

The rest of the proof proceeds the same way as in Proposition 3. 
Equations 46 and 47 become:

C t s C t s

K
f u v

C

n n

t s
u v

t s

nL

L

+

∞

− +
+

−∞ ∨

−

≤
⎛

⎝
⎜ ∫

1

2

( , ) ( , )

( , )
( )

( )

[ , ]

e λ
λe

(( , ) ( , )

( , )
( , )

( )

[ , ]

u v C u v dudv

f u v
C u u C

n

u v

t s

n n
L

−

+ −

−

∞

+

−∞ ∨

−∫

1

1

2

eλ

(( , )

( , ) ( , )( )

[ , ]

(

u u dudv

C u v C u v dudvL

L

u v

t s

n n

u

∞

+

−∞ ∨

−

∞
+ −

+

∫ e

e

λ

λ

2

1

++

−∞ ∨

−

∞

+

−∞ ∨

∫

∫

−

+

v

t s

n n

u v

t s

n

C u u C u u dudv

L

)

[ , ]

( )

[ , ]

( , ) ( , )

(

2

2

1

eλ μ uu u dudvn) ( ) ,−
⎞

⎠
⎟

−

∞
μ 1

and

μ λ λn n t s u v

t s

n

n

t t K C u u

C

L L+

∞

− + +

−∞ ∨

−

− ≤ ⎛
⎝⎜

−

∫1

1

2

( ) ( ) ( , )( ) ( )

[ , ]

μ e e

(( , ) ( ) ( ) ,( )

[ , ]

u u dudv u u dudvL u v n n

t s

∞
+ −

∞
−∞ ∨

+ − ⎞
⎠⎟

∫ eλ μ μ 1

2

for some positive constant K, function of k, k
C
 (defi ned in Eq. 45), 

and k
0
.

Proceeding recursively until we reach C 0 and μ0 we obtain 
an upperbound for Cn+1(t, s) − Cn(t, s) ∞ (respectively for 
μn+1(t) − μn(t) ∞) which is the sum of <5n terms each one being 
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the product of Kn, times 2 μ
LT

 or 2Σ
LT

, times a 2n-dimensional inte-
gral I

n
 given by:

ρ ρ1 1 1 1 1 1
2

1 1
2

2

u v u v
t s u v

n n n

un

, ,
, , ,

( ) ⎛
⎝⎜

( )
−∞ ∨[ ] −∞ ∨[ ]

− − −
−∞ ∨

∫ ∫
−

…
vv

u v
n n n n n

u v

n

L n n

n n

u v du dv

−

− −

[ ]

+

−∞ ∨[ ]

∫

∫

⎛
⎝⎜

× ( )⎛
⎝⎜

⎞

2
2

1 1
2

eλ ρ( )

,

,
⎠⎠⎟

⎞
⎠⎟

⎞

⎠⎟
− −du dv du dvn n1 1 1 1… ,

where the functions ρ
i
(u

i, 
v

i
), i = 1,…,n are either equal to 1 or to 

1/ ( , )θ u vi i .
It can be shown by straightforward calculation that each sub-

integral contributes at most either

K K

L L

0
2

01 3
2λ

ρ π
λ

if or
2i = ,

in the other case. Hence we obtain factors of the type

K
Kn

L

P

L

n p n p

L

n p

0 2
0

3 2

1 1
3

λ
π

λ
π

λ
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

− − +

2 2/

( ))

,
2

0K n

where 0 ≤ p ≤ n. If λ
L
 < 1, (λ

L
)(3n + P)/2 ≥ λL

n2  and else ( )( )/λL
n p3 2+ ≥ 

λL
n3 2/ . Since ( / ) ( / )π π2 2n p n− ≤  we obtain the two conditions

1 5 12
0 0

3
2> > 5 πλ π λ λL L LKK KK≥ ≥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪2
or

2
and  (53)

Putting all these results together we obtain the following theo-
rem of existence and uniqueness of solutions for the LTMFE:

Theorem 6. Under the contraction conditions (Eq. 53), the function 
F

stat
 has a unique solution in M1

+( (( , ], )C T P−∞  which is stationary, 
and for any process X, the sequence { ( )}Fstat

(n) X n=
∞

0 of Gaussian processes 
converges in law toward the unique fi xed point of the function F

stat
.

Proof. The proof is essentially similar to the one of Theorem 4. 
Indeed, the mean and the covariance matrixes converge since they 
are Cauchy sequences in the complete space of continuous functions 
equipped with the uniform norm. Using Theorem 1, we obtain that 
the sequence converges to a process Y which is necessarily a fi xed 
point of F

stat
. Hence we have existence of a fi xed point for F

stat
. 

The uniqueness comes from the results obtained in the proof of 
Proposition 7. The limiting process is necessarily stationary. Indeed, 
let X be a stationary process. Then for any n ∈ �, the process Fstat

(n) ( )X  
will be stationary by the virtue of Lemma 6, and hence so will be 
the limiting process which is the only fi xed point of F

stat
. 

Hence in the stationary case, the existence and uniqueness of 
a solution is not always ensured. For instance if the leaks are too 
small (i.e., when the time constants of the decay of the membrane 
potentials are too long) then the sequence can diverge or have mul-
tiple fi xed points.

NUMERICAL EXPERIMENTS
SIMULATION ALGORITHM
Beyond the mathematical results, the framework that we introduced 
in the previous sections gives us a strategy to compute numerically 
the solutions of the dynamic mean-fi eld equations. Indeed, we pro-
ved in Section “Existence and Uniqueness of Solutions in Finite 

Time” that under very moderate assumptions on the covariance 
matrix of the noise, the iterations of the map F

k
 starting from 

any initial condition converge to the solution of the mean-fi eld 
equations.

This convergence result gives us a direct way to compute nume-
rically the solution of the mean-fi eld equations. Since we are dealing 
with Gaussian processes, determining the law of the iterates of the 
map F

k
 amounts to computing its mean and covariance functions. 

In this section we describe our numerical algorithm in the case of 
the Simple Model of Section “Example I: The Simple Model”.

Computing Fk

Let X be a P-dimensional Gaussian process of mean μX = 
( ( )) ...μ αα

X
Pt =1  and covariance C C s tX X

P= ∈( ( , )) ., { ... }αβ α β 1  We fi x a time 
interval [t

0
 = 0, T] and denote by Y the image of the process X under 

F
1
. In the case of the simple model, the covariance of Y is diagonal. 

Hence in this case the expressions we obtain in Section “Existence 
and Uniqueness of Solutions in Finite Time” simply read:

μ μα α αβ
β

β β α
τα ταY X

t P

t e e J S X s I s
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( ) ( ) .μ
1

where we denoted v sα
X ( ) the standard deviation of Xα at time s, 

instead of C s sX
αα( , ). Thus, knowing v sX

α ( ), s ∈ [0, t] we can compute 
μα

Y t( ) using a standard discretization scheme of the integral, with 
a small time step compared with τα and the characteristic time of 
variation of the input current Iα. Alternatively, we can use the fact 
that μα

Y  satisfi es the differential equation:

d

dt
J S x v t t Dx I t

Y Y P
X Xμ μ

τ
μα α

α
αβ

β
β β β α= − + +( ) +

= −∞

+∞

∑ ∫
1

( ) ( ) ( ),

and compute the solution using a Runge–Kutta algorithm (which is 
faster and more accurate). Note that, when all the standard devia-
tions of the process X are null for all time t ∈ [0, T], we obtain 
a standard dynamical system. Nevertheless, in the general case, 
v tβ

X ( ) > 0 for some β’s, and the dynamical evolution of μα
Y  depends 

on the Gaussian fl uctuations of the fi eld X. These fl uctuations must 
be computed via the complete equation of the covariance diagonal 
coeffi cient C t sY

αα( , ), which reads:
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Unless if we assume the stationarity of the process (see e.g., 
Section “The Importance of the Covariance: Simple Model, One 
Population”), this equation cannot be written as an ordinary diffe-
rential equation. We clearly observe here the non-Markovian nature 
of the problem: C t sX

αα( , ) depends on the whole past of the process 
until time t ∨ s.

This covariance can be split into the sum of two terms: the 
external noise contribution C t s v eOU t s X s s

αα ( , ) [ ( ) ( )( )/ /= +− + −e τ
α

τ τα α α α0
2

1

2
2  

and the interaction between the neurons. The external noise con-
tribution is a simple function and can be computed directly. To 
compute the interactions contribution to the standard deviation 
we have to compute the symmetric two-variables function:

H t s e e u v dudvX t s u v X
st

αβ
τ τ

αβ
α α( , ) ( , ) ,( )/ ( )/= − + +∫∫ Δ

00

from which one obtains the standard deviation using the formula

C t s C t s H t sY OU X
P

α αα αβ αβα
β

σ( , ) ( , ) ( , ).= +
=

∑ 2

1

To compute the function H t sX
αβ( , ), we start from t = 0 and s = 0, 

where H X
αβ( , ) .0 0 0=  We only compute Hαβ

X t s( , ) for t > s because of 
the symmetry. It is straightforward to see that:

H t dt s H t s
dt

D t s dt o dtX X X
αβ αβ

α
αβτ

( , ) ( , ) ( , ) ( ),+ = −
⎡

⎣
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⎤

⎦
⎥ + +1

with

D t s e e t v dvX s v X
s

αβ
τ τ

αβ
α α( , ) ( , ) ./ /= − ∫ Δ

0

Hence computing H t dt sX
αβ( , )+  knowing H t sX

αβ( , ) amounts to 
computing D t sαβ( , ). Fix t ≥ 0. We have D tαβ( , )0 0=  and

D t s ds D t s
ds

t s ds dsX X X
αβ αβ

α
αβτ

( , ) ( , ) ( , ) ( ).+ =
⎛
⎝⎜

⎞
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+ +1− Δ o

This algorithm enables us to compute H t sX
αβ( , ) for t > s. We 

deduce H t sX
αβ( , ) for t < s using the symmetry of this function. 

Finally, to get the values of H t sX
αβ( , ) for t = s, we use the symmetry 

property of this function and get:

H t dt t dt H t t
dt

D t t dt o dtX X X
αβ αβ

ατ
+ αβ, ( , ) ( , ) ( ).+( ) = −

⎡

⎣
⎢

⎤

⎦
⎥ + +1

2
2

These numerical schemes provide an effi cient way for computing 
the mean and the covariance functions of the Gaussian process 
F

1
(X) (hence its probability distribution) knowing the law of the 

Gaussian process X. The algorithm used to compute the solution 
of the mean-fi eld equations for the general models GM1 and GMk 
is a straightforward generalization.

Analysis of the algorithm
Convergence rate. As proved in Theorem 4, given Z

0
 a nondegene-

rate kP-dimensional Gaussian random variable and X a Gaussian 
process such that X(0) = Z

0
, the sequences of mean values and cova-

riance functions computed theoretically converge uniformly toward 
those of the unique fi xed point of the map F

k
. It is clear that our 

algorithm converges uniformly toward the real function it  emulates. 

Hence for a fi nite N, the algorithm will converge uniformly toward 
the mean and covariance matrix of the process Fk

N X( ).
Denote by X

f
 the fi xed point of F

k
 in M1 0

+( ([ , ], )),C t T kP�  of 

mean μX f t( ) and covariance matrix C t s
X f ( , ) and by Fk

N ( )X  the 
numerical approximation of Fk

N X( ) computed using the algorithm 

previously described, whose mean is noted μFk
N X t( )( ) and whose 

covariance matrix is noted C t sk
N XF ( )( , ). The uniform error between 

the simulated mean after N iterations with a time step dt and the 
fi xed point’s mean and covariance is the sum of the numerical error 
of the algorithm and the distance between the simulated process 
and the fi xed point, is controlled by:

μ μF Fk
N

f k
N

fX X X X

NC C O N T dt R k( ) ( )
max(( ) ( ))− + − = + +

∞ ∞  
(54)

where k
max

 = max(k, k) and k and k) are the constants that 
appear in the proof of Proposition 3 for the mean and cova-
riance functions, and R

N
(x) is the exponential remainder, i.e., 

R x xN n N
n n( ) ./ != ∑ =

∞

Indeed, we have:

μ μ μ μ μF F F Fk
N

f k
N

k
N

k
N

fX X X X X X( ) ( ) ( ) ( )− ≤ − + −
∞ ∞ ∞

μ  (55)

The discretization algorithm used converges in O(dt). Let us 
denote by C

1
 the convergence constant, which depends on the shar-

pness of the function we approximate, which can be uniformly 
controlled over the iterations. Iterating the numerical algorithm 
has the effect of propagating the errors. Using these simple remarks 
we can bound the fi rst term of the righthand side of Eq. 55, i.e., the 
approximation error at the Nth iteration:

μ μFk
N X X C N dt( ) ( )− ≤

∞

FN
k

1

Because the sequence of mean values is a Cauchy sequence, we 
can also bound the second term of the righthand side of Eq. 55:

μ μ μ μF F FN
k k k( ) ( ) ( )

!
: ( )X X X X

n N

n

N
n N

f
n n k

n
R k− ≤ − ≤ =

∞ ∞=

∞

=

∞
+∑ ∑1

for some positive constant k introduced in the proof of Proposition 3. 
The remainders sequence (R

n
(k))

n ≥ 0
 converges fast toward 0 (an 

estimation of its convergence can be obtained using the fact that 
limsup ( )!

/
k k

k
→∞ =1 1 0 by Stirling’s formula).

Hence we have:

μ μFk
N

fX X

NC N dt R k( ) ( )− ≤ +
∞

1  (56)

For the covariance, the principle of the approximation is exactly 
the same:

C C C C C Ck
N

f k fX X X X X XF F F F( ) ( ) ( ) ( )− ≤ − + −
∞ ∞ ∞

N
k
N

k
N

The second term of the righthand side can be controlled using 
the same evaluation by R kN ( ) where k  is the constant introduced in 
the proof of Proposition 3, and the fi rst term is controlled by the rate 
of convergence of the approximation of the double integral, which 
is bounded by C

2
(N + T) dt where C

2
 depends on the parameters 

of the system and the discretization algorithm used.
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Hence we have:

C C C N T t dt R kk
N

fX X

N
F ( ) ( ) ( )− ≤ + − +

∞
2 0  (57)

The expressions (Eqs. 56 and 57) are the sum of two terms, one 
of which is increasing with N and T and decreasing with dt and the 
other one decreasing in N. If we want to obtain an estimation with 
an error bounded by some ε > 0, we can for instance fi x N such 
that max( ( ), ( ))R k R kN N < ε

2  and then fi x the time step dt smaller 
than min( ),( ( ( )))

ε
2 21 2 0C N C N T t

ε
+ − .

Complexity. The complexity of the algorithm depends on the 
complexity of the computations of the integrals. The algorithm 
described hence has the complexity O N T

dt( ( ) )2 .

THE IMPORTANCE OF THE COVARIANCE: SIMPLE MODEL, 
ONE POPULATION
As a fi rst example and a benchmark for our numerical scheme we 
revisit the work of Sompolinsky et al. (1998). These authors studied 
the case of the simple model with one population (P = 1), with the 
centered sigmoidal function S(x) = tanh(gx), centered connectivity 
weights J = 0 of standard deviation σ = 1 and no input (I = 0; Λ = 0). 
Note therefore that there is no “noise” in the system, which therefore 
does not match the nondegeneracy conditions of Proposition 2 and 
of Theorem 4. This issue is discussed below. In this case, the mean 
equals 0 for all t. Nevertheless, the Gaussian process is nontrivial as 
revealed by the study of the covariance C(t, s).

Stationary solutions
Assuming that the solution of the mean-fi eld equation is a sta-
tionary solution with C t s C t s c( , ) ( ) ( )≡ − = τ , Sompolinsky and his 
collaborators found that the covariance obeyed a second-order 
differential equation:

d C

d

V

C
q

2

2τ
∂
∂

= − . (58)

This form corresponds to the motion of a particle in a potential 
well and it is easy to draw the phase portrait of the corresponding 
dynamical system. However, there is a diffi culty. The potential V

q
 

depends on a parameter q which is in fact precisely the covariance 
at τ = 0 (q = C(0)). In the stationary case, this covariance depends 
on the whole solution, and hence cannot be really considered as 
a parameter of the system. This is one of the main diffi culties in 
this approach: mean-fi eld equations in the stationary regime are 
self-consistent.

Nevertheless, the study of the shape of V
q
, considering q as a free 

parameter gives us some information. Indeed, V
q
 has the following 

Taylor expansion (V
q
 is even because S is odd):

V C C C O Cq( ) ( )= + +λ γ
2 4

2 4 6

where λ = − 〈 ′〉( )1 2 2 2g J S q  and γ = 〈 〉1
6

2 2 3 2J g S q
( ) ), 〈φ〉

q
 being the ave-

rage value of φ under the Gaussian distribution with mean 0 and 
variance q = C(0).

If λ > 0, i.e., when g J S q
2 2 2 1〈 ′〉 <) , then the dynamical system 

(Eq. 58) has a unique solution C(t) = 0, ∀t ≥ 0. This corresponds 
to a stable fi xed point (i.e., a deterministic trajectory, μ = 0 with 

no fl uctuations) for the neural network dynamics. On the other 
hand, if g J S q

2 2 2 1〈 ′〉 ≥) , there is a homoclinic trajectory in Eq. 58 con-
necting the point q = C* > 0 where V

q
 vanishes to the point C = 0. 

This solution is interpreted by the authors as a chaotic solution in 
the neural network. A stability analysis shows that this is the only 
stable7 stationary solution (Sompolinsky et al., 1998).

The equation for the homoclinic solution is easily found 
using energy conservation and the fact that V

q
(q) = 0 and 

dV

dC
q ( )q = 0. 

One fi nds:

u
dC

dx
V Cq= = − − ( ).

At the fourth-order in the Taylor expansion of V
q
 this gives

C( )

cosh

.τ

λ
γ

=

−

−
⎛
⎝⎜

⎞
⎠⎟

2

2

λ τ

Though λ depends on q it can be used as a free parameter for 
interpolating the curve of C(τ) obtained from numerical data.

Numerical experiments
This case is a good benchmark for our numerical procedure since 
we know analytically the solutions we are searching for. We expect 
to fi nd two regimes. In one case the correlation function is iden-
tically 0 in the stationary regime, for suffi ciently small g values or 
for a suffi ciently small q (trivial case). The other case corresponds 
to a regime where C(τ) > 0 and C(τ) → 0 has τ → + ∞ (“chaotic” 
case). This regime requires that g be suffi ciently large and that q be 
large too. We took τα = 0:25, σαα = 1. For these values, the change in 
dynamics predicted by Sompolinsky and collaborators is g

c
 = 4.

In Sections “Existence and Uniqueness of Solutions in Finite 
Time” and “Existence and Uniqueness of Stationary Solutions” we 
have introduced the assumption of nondegeneracy of the noise, 
in order to ensure that the mean-fi eld process was nondegenerate. 
However, in the present example, there is no external noise in the 
evolution, so we can observe the effects of relaxing this hypothesis 
in a situation where the results of Proposition 2 and of Theorem 4 
cannot be applied. First, we observed numerically that, without 
external noise, the process could become degenerate [namely some 
eigenvalues of the covariance matrix Cα(t, s) become very small 
and even vanish.]. This has also an incidence on the convergence 
of the method which presents numerical instabilities, though the 
iterations leads to a curve which is well fi tted by the theoretical 
results of Sompolinsky et al. (see Figure 3). The instability essen-
tially disappears if one adds a small noise. But, note that in this case, 
the solution does not match with Sompolinsky et al. theoretical 
calculation (see Figure 3).

Modulo this remark, we have fi rst considered the trivial case 
corresponding to small g values. We took g = 0.5 and T = 5. We 
choose as initial process the stationary Ornstein–Uhlenbeck process 
corresponding to the uncoupled system with Λ = 0.1. We drew 
μα(0) randomly from the uniform distribution in [−1, 1] and vα(0) 
randomly from the uniform distribution in [0, 1].

7More precisely, this is the only minimum for the large deviation functional.



Faugeras et al. Multi-population mean-fi eld analysis

Frontiers in Computational Neuroscience www.frontiersin.org February 2009 | Volume 3 | Article 1 | 21

Starting from this initial stationary process, we iterated the 
function F

1
. Then, during the iterations, we set sα = 0 in order to 

match the conditions imposed by Sompolinsky and colleagues. We 
observe that the method converges toward the expected solution: 
the mean function converges to 0, while the variance v(t) decreases 
exponentially fast in time toward a constant value corresponding 
to the stationary regime. This asymptotic value decreases between 
two consecutive iterations, which is consistent with the theoreti-
cal expectation that v(t) = 0 in the stationary regime of the trivial 
case. Finally, we observe that the covariance C(t − s, s) stabilizes to 
a curve that does not depend on s and the stationary value (large 
t − s) converges to 0.

We applied the same procedure for g = 5 corresponding to the 
“chaotic” regime. The behavior was the same for μ(t) but was quite 
different for the covariance function C(t, s). Indeed, while in the fi rst 
case the stationary value of v(t) tends to 0 with the number of ite-
rations, in the chaotic case it stabilizes to a fi nite value. In the same 
way, the covariance C(t − s, s) stabilizes to a curve that does not 
depend on s. The shape of this curve can be extrapolated thanks to 
Sompolinsky et al. results. We observe a very good agreement with 
the theoretical predictions with a fi t f x a

b x4( ) ,cosh( ( ))= − δ  correspon-
ding to the fourth expansion of V

q
. Using a sixth-order expansion 

of V x x x xq
a b c( ) = + +2

2
4

4
6

2 gives a fi t

f x
x K

x

6 2 1

1

1
( )

cosh( ( ))
,

cosh ( ( ))2

=
− + − −

ρ
δ

λ δ
λ

where ρ, K, λ are explicit functions of a, b, c, we obtain a slightly 
better approximation.

MEAN-FIELD EQUATIONS FOR TWO POPULATIONS WITH A NEGATIVE 
FEEDBACK LOOP
Let us now present a case where the fl uctuations of the Gaussian 
fi eld act on the dynamics of μα(t) in a nontrivial way, with a beha-
vior strongly departing from the naive mean-fi eld picture. We con-
sider two interacting populations where the connectivity weights 
are Gaussian random variables J Jαβ ≡ = ( , )N αβ αβσ 1  for (α, β) ∈ 
{1, 2}2. We set Sβ(x) = tanh(gx) and Iα = 0, sα = 0, α = 1, 2.

Theoretical framework
The dynamic mean-fi eld equation for μα(t) is given, in differential 
form, by:

d

dt
J S v t x t Dx

μα α

α
αβ

β
β β

μ
τ

μ α= − + +( ) =
= −∞

∞

∑ ∫
1

2

1 2( ) ( ) , , .

Let us denote by Gα(μ, v(t)) the function in the righthand side 
of the equality. Since S is odd, ∫ =−∞

∞ S v t x Dx( ( ) )β 0. Therefore, 
we have Gα(0, v(t)) = 0 whatever v(t), and hence the point μ

1
 = 0, 

μ
2
 = 0 is always a fi xed point of this equation.
Let us study the stability of this fi xed point. To this purpose, we 

compute the partial derivatives of Gα(μ, v(t)) with respect to μβ for 
(α, β) ∈ {1, 2}2. We have:

∂G
v t gJ v t x t Dxα

β

αβ

α
αβ β βμ

μ
δ
τ

μ
∂

( ) = − + − +( )( )
−∞

∞

∫, ( ) tanh ( ) ( ) ,1 2

and hence at the point μ
1
 = 0, μ

2
 = 0, these derivatives read:

∂G
v t gJ h v tα

β

αβ

α
αβ βμ

δ
τ∂

( ) = − + ( )0, ( ) ( ) ,

where h v t v t x Dx( ( )) tanh ( ( ) ) .β β = 1− ∫−∞
∞ 2

In the case vα(0) = 0, J = 0, sα = 0, implying vα(t) = 0, t ≥ 0, the 
equation for μα reduces to:

d

dt
J S t

μ μ
τ

μα α

α
αβ β

β

= − +
=

∑ ( ( ))
1

2

which is the standard Amari–Cohen–Grossberg–Hopfi eld system. 
This corresponds to the naive mean-fi eld approach where Gaussian 
fl uctuations are neglected. In this case the stability of the fi xed point 
μ = 0 is given by the sign of the largest eigenvalue of the Jacobian 
matrix of the system that reads:

−
−

⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

1

1

11 12

21 22

1

2

0

0
τ

τ
g

J J

J J
.

For the sake of simplicity we assume that the two time con-
stants τα are equal and we denote this value τ. The eigenvalues are 
in this case − +1

τ gλ, where λ are the eigenvalues of J  and have 
the form:

λ1 2

11 22 11 22

2

12 214

2, .=
+ ± −( ) +J J J J J J

Hence, they are complex whenever J J J J12 11 22 421
2(  ) ,< − − /  cor-

responding to a negative feedback loop between population 1 and 
2. Moreover, they have a real part only if J J11 22+   is nonzero (self 
interaction).

This opens up the possibility to have an instability of the fi xed 
point (μ = 0) leading to a regime where the average value of the 
membrane potential oscillates. This occurs if J J11 22 0+  >  and if g 
is larger than:

g
J Jc =

+
2

11 22τ( )
.

The corresponding bifurcation is a Hopf bifurcation.

FIGURE 3 | Numerical solution of the mean-fi eld equation after 

14 iterations in the chaotic case (g = 5). We clearly see the numerical 
instabilities in the no-noise case, which do not exist in the low-noise case.
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The situation is different if one takes into account the fl uc-
tuations of the Gaussian fi eld. Indeed, in this case the stability of 
the fi xed point μ = 0 depends on v(t). More precisely, the real and 
imaginary part of the eigenvalues of DG(0, v(t)) depend on v(t). 
Therefore, the variations of v(t) act on the stability and oscillations 
period of v(t). Though the evolution of μ(t), v(t) are coupled we 
cannot consider this evolution as a coupled dynamical system, since 
v(t) = C(t, t) is determined by the mean-fi eld equation for C(t, s) 
which cannot be written as an ordinary differential equation. Note 
that we cannot assume stationarity here, as in the previous case, 
since μ(t) depends on time for suffi ciently large g. This opens up the 
possibility of having complex dynamical regimes when g is large.

Numerical experiments
We have considered the case J J11 22 5 0 1= = =,τ .  giving a Hopf 
 bifurcation for g

c
 = 2 when J = 0 (Figure 4). The trajectory of 

μ
1
(t) and v

1
(t) is represented in Figure 4 in the case g = 3. When 

J = 0, μ
1
(t) presents regular oscillations (with non-linear effects 

since g = 3 is larger than the critical value for the Hopf bifurcation, 
g

c
 = 2). In this case, the solution v

1
(t) = 0 is stable as seen on the 

fi gure. When J ≠ 0 the Gaussian fi eld has (small) fl uctuations which 
nevertheless strongly interact with the dynamics of μ

1
(t), leading 

to a regime where μ
1
(t) and v

1
(t) oscillate periodically.

DISCUSSION
The problem of bridging scales is overwhelming in general when 
studying complex systems and in particular in neuroscience. After 
many others we looked at this diffi cult problem from the theore-
tical and numerical viewpoints, hoping to get closer to its solution 
from relatively simple and physically/biologically plausible fi rst 
principles and assumptions. One of our motivations is to better 
understand such phenomenological neural mass models as that of 
Jansen and Rit (1995).

We consider several populations of neurons and start from a 
microscopic, i.e., individual, description of the dynamics of the 
membrane potential of each neuron that contains four terms.

The fi rst one controls the intrinsic dynamics of the neuron. It is 
linear in this article but this assumption is not essential and could 
probably be safely removed if needed.

The second term is a stochastic input current, correlated or 
uncorrelated. The corresponding noise model is very rich, depen-
ding on the degree k of smoothness of the g-shapes. It features 
integrated Brownian noise up to order k − 1.

The third term is a deterministic input current, and the fourth 
one describes the interaction between the neurons through random 
connectivity coeffi cients that weigh the contributions of other neu-
rons through a set of functions that are applied to their membranes 
potentials. The only hypothesis on these functions is that they are 
smooth and bounded, as well as their fi rst-order derivative. The 
obvious choice of sigmoids is motivated by standard rate models 
ideas. Another appealing choice is a smooth approximation to 
a Dirac delta function thereby opening a window on the world 
of spiking neurons. Thus, the model presented in this paper is 
more general than the instantaneous rate model that is underlying 
Ermentrout’s voltage-based model (Ermentrout, 1998) even though 
we have not explored this avenue.

We then derive the mean-fi eld equations and provide a construc-
tive and new proof, under some mild assumptions, of the existence 
and uniqueness of a solution of these equations over fi nite and infi nite 
time intervals. The key idea is to look at this mean-fi eld description 
as a global problem on the probability distribution of the membranes 
potentials, unlike previous studies. Our proof provides an effi cient 
way of computing this solution and our numerical experiments show 
a good agreement with previous studies. It is interesting to note that 
a suffi cient condition for the convergence of our algorithm is related 
to the previously mentioned noise model. We prove that if the noise 
matrix F is full rank, with bounded eigenvalues, then the algorithm is 
in general convergent. An important fact to note is that the solutions 
of the mean-fi eld equations that we construct are fundamentally 
non-Markovian eliminating the need for such approximations as the 
introduction of the q parameter summarizing the whole history of 
the non-Markovian process, see below.

In the case where the nonlinearities are chosen to be sigmoi-
dal our results shed a new light on existing neural mass models. 
Indeed, as shown in Section “General Derivation of the Mean-
Field Equation”, these appear as approximations of the mean-fi eld 
 equations where the intricate but fundamental coupling between 
the time variations of the mean membrane potentials and their fl uc-
tuations, as represented by the covariance functions, is neglected.

An alternative approach has been recently proposed by Chizhov 
and collaborators8 (Chizhov and Graham, 2007; Chizhov et al., 
2007). The approach of these authors consists in reducing the large 
number, N, of degrees of freedom of the neural assembly by con-
structing a probability density ρ on the phase space of neurons 
states in the limit N → ∞. This is a non-rigorous approach where 
the evolution equations for ρ are heuristically derived. Especially, 
it is assumed that ρ depends on two parameters only: the current 
time t and the time elapsed since the last spike t*. Under these 
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t

mu(t), J=0
mu(t), J=2, n=100

v(t), J=0
v(t) x 100, J=2, n=100

FIGURE 4 | Evolution of the mean µ
1
(t) and variance V

1
(t) for the mean-

fi eld of population 1, for J = 0 and 2, over a time window [0, 20]. n is the 
number of iterations of F1 defi ned in Section “Existence and Uniqueness of 
Solutions in Finite Time”. This corresponds to a number of iterations for which 
the method has essentially converged (up to some precision). Note that V1(t) 
has been magnifi ed by a factor of 100. Though Gaussian fl uctuations are small, 
they have a strong infl uence on μ1(t).

8We thank one of the referees for pointing out these references to us.
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 assumptions the initial phase space of neurons states is mapped to a 
two dimensional space t, t*, while ρ(t, t*)dt characterizes the fraction 
of neurons which have fi red in the time interval [t − t*, t − t* + dt]. 
Therefore, this approach intrinsically holds for integrate and fi re 
neurons models where the neuron’s membrane potential history 
is summarized by the last spike time, when it is reset to a constant 
value. As noticed by these authors, this allows to circumvent the 
main problem in mean-fi eld approaches for fi ring rate models, 
that we also discuss in the present paper: When using mean-fi eld 
theory to characterize stationary regimes, one needs to introduce 
ad hoc parameters (see e.g., the parameter q  introduced in Section 
“Stationary Solutions”) summarizing the whole history of the non-
Markovian process. Introducing a “history cut-off” while resetting 
the membrane potential to a constant value indeed removes this dif-
fi culty. Therefore, it might be interesting to compare our approach 
in the case of integrate-and-fi re models (see above remark on the 
choice of the nonlinearity), to the approach of Chizhov and colla-
borators. This could provide some rigorous basis for their analysis 
and allow to elucidate the role of fi eld fl uctuations which does not 
appear explicitly in the probability density approach.

CONCLUSION AND FURTHER WORK
On more general grounds, our goal is now to extend the present 
work in several directions.

BIFURCATIONS ANALYSIS OF THE DYNAMIC MEAN-FIELD EQUATIONS
From the present analysis, and as shown in the simple examples 
of Section “Numerical Experiments”, the mesoscopic dynamics of 
the average membrane potential of a neurons population can be 
really different from the classical phenomenological equations la 
Jansen–Rit if one includes the non-Markovian fl uctuations of the 
interaction fi elds, which summarize the cumulative effects of the 
nonlinear interactions of a given neuron with the bulk of other neu-
rons. Jansen–Rit equations are commonly used in the neuroscience 
community either to anticipate the dynamics of local fi eld potential 
in relation with imaging (Optical Imaging, MEGEEG), or to under-
stand neurophysiological disorders such as epilepsy. Bifurcations 
analysis of these equations reveal dynamical regimes that can be 
related to experiments (Grimbert and Faugeras, 2006). They can 
be generalized using more accurate neural models (Wendling et al., 
2005). Is there any need to generalize these equations, that we claim 
to be incomplete, while people commonly use them with some 
satisfaction? Are there new phenomena, experimentally accessible, 
that can be exhibited by the generalized mean-fi eld equations and 
that do not appear in the naive ones? These are obviously important 
questions that we intend to address in the near future. On math-
ematical grounds, the goal is to make a bifurcation analysis of the 
map F on the space of trajectories, introduced in the present paper. 
Do any new salient dynamical regimes appear? If such regimes 
exist, the goal will be, on experimental grounds, to interact with 
experimentalists in order to see in which conditions such a regime 
can be exhibited, and what are its implications on cortical columns 
dynamics or function.

INVESTIGATIONS OF NONSTATIONARY REGIMES
As discussed in this paper, and as is well-known in the physicists’ 
community (especially spin-glasses community), the dynamic 

mean-fi eld approach raises serious diffi culties as far as one is trying 
to describe stationary dynamics. On technical grounds, this relies on 
the non-commutativity of the two limits N → ∞ and t → ∞ already 
discussed in Sompolinsky and Zippelius (1982). As a result, one is 
led to introduce ad hoc phenomenological parameters, depending 
on initial conditions, that can be determined in statistical phys-
ics models where the distribution of equilibria is known (Gibbs 
distribution), using sophisticated techniques such as the replica 
“trick” (Houghton et al., 1983). For spin-glasses it is only in the 
high temperature regime that a simple solution to this problem is 
known. This restriction also appears in the present paper, where 
the existence and uniqueness of a stationary solution is proved only 
for low values of the gain parameter g (which plays a role similar 
to the inverse temperature). However, we are not so much inter-
ested in stationary dynamics, since brain processes are ultimately 
nonstationary. Our approach, valid for any fi nite time T, opens 
up the possibility to characterize mean-fi eld equations in tran-
sient regimes, with an analysis strategy that can moreover be easily 
implemented. To the best of our knowledge, this type of techniques 
has never been used in the statistical physics community, where 
iterations on space trajectories are not in the standard toolbox. 
Therefore, our work could allow the (numerical) investigation of 
cortical columns submitted to nonstationary inputs, with strong 
implications on neuroscience.

EXTENSION TO A LARGER CLASS OF MODELS
A very challenging question is the application of this theory to 
spiking neurons models. We have briefl y mentioned in Section 
“Discussion” that this may be possible through the use of non-
sigmoidal functions in the interaction terms. This idea could be 
applied to the analysis of Integrate and Fire models with conduct-
ance based synapses, which constitute good models of spiking neu-
rons. As discussed at the end of Section “Discussion”, the analysis 
of the mean-fi eld equations could be simplifi ed by the fact that 
memory is reset after a neuron fi res. There is however a need to 
characterize parameter space regions where neurons can take an 
arbitrary large time to fi re for the fi rst time (Cessac, 2008; Cessac 
and Viéville, 2008). This is the main obstruction in the application 
of our theory to this type of models.

APPENDIX
A. IDENTIFICATION OF THE MEAN-FIELD EQUATIONS
Ben-Arous and Guionnet studied from a mathematical point of 
view the problem of fi nding a mean-fi eld description of large net-
works of spin-glasses. They obtained using different methods of 
stochastic analysis a weak limit of the law of a given spin and proved 
their independence.

Our equations do not directly fi t in their study: indeed, the spin 
intrinsic dynamics is nonlinear while the interaction is linear, and 
everything in done in dimension one. Nevertheless, their proof 
extends to our case which is somehow more simple. For instance in 
the case of the Simple Model with one population, we can readily 
adapt their proof in our case. More precisely, let P = 1, the equation 
of the network reads:

τ σdV V J S V dt dWt
j

t
j

ij t
i

i

N

t
j= − +

⎛
⎝⎜

⎞
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+
=
∑ ( )

1
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In this case, we defi ne for X C t T∈ +M1 ( ([ , ], ))0 �  the effec-
tive interaction term ( )Ut

X  which is the effective interaction 
process defi ned in Section “The Mean-Field Equations”, i.e., 
the Gaussian process of mean J S Xtαβ�[ ( )] and of covariance: 
Cov( , ) =: [ ( ) ( )].2U U S X S Xt

X
s
X

t sσαβ�

Let us note P the law of the membrane potential when there 
is no interaction (it is an Ornstein–Uhlenbeck process), and 
the empirical measure ˆ .V N

N i
N

V i= ∑ =
1

1 δ  We can prove that under 
the probability distribution averaged over the connectivities, see 
below, the empirical measure satisfi es a large deviation principle 
with good rate function H defi ned as in Guionnet (1997). Using 
this large deviation result, we can prove annealed and quenched 
tightness of the empirical measure, and fi nally its convergence 
toward the unique process where the good rate function H achieves 
its unique minimum, which is defi ned by the property of having a 
density with respect to P and whose density satisfi es the implicit 
equation:

Q
d

U dW U dtt
Q

t t

TT

P P
dQ Q= − ( )⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫∫ε exp
1

2

2

00  

(59)

where ε denotes the expectation over the effective interaction proc-
ess UQ.

We can also prove following the steps of Ben-Arous and Guionnet 
(1997) that there exists a unique solution to this equation, and that 
this solution satisfi es the nonlinear non-Markovian stochastic dif-
ferential equation:

τ

ε
ε

dV V dt dB

dB dW dB U U

t t t

t t s s
Q

t
Q

U duu
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t
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⎪

 (60)

which can also be written as our mean-fi eld equation, averaged 
on the connectivities (see Ben-Arous and Guionnet, 1995). More 
precisely, let LV be the law of the solution of the equation:

τdV V dt dW U dt

V Z
t t t t

V= − + +
=

⎧
⎨
⎩Law of 0 0

,

which is exactly Eq. 33. They prove that V satisfi es the nonlinear 
equation:

V LV=L ε( )

This result is probably extendable to the multi-population case 
using the multidimensional Girsanov’s theorem, but the corre-
sponding mathematical developments are out of the scope of this 
paper.

B. THE RESOLVENT
In this appendix we introduce and give some useful properties of 
the resolvent Φ

L
 of a homogeneous differential equation:

dx

dt
t x t x t x= = ∈L( ) ( ) ( )0 0 ,�p

 
(61)

where L: [t
0
, T] → M

P × P
 (or (−∞, T] → M

P × P
) is C0.

Defi nition B.1. The resolvent of Eq. 61 is defi ned as the unique 
solution of the linear equation:

d t t

dt
t t t

t t

L
L

L P

Φ ( , )
( ) ( , )

( , )

0
0

0 0

=

=

⎧
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L Φ

Φ Id
 

(62)

where Id
P
 is the P × P identity matrix.

Proposition B.1. The resolvent satisfi es the following properties:
  (i) Φ

L
(t + s, t

0
) = Φ

L
(t + s, t) · Φ

L
(t, t

0
)

 (ii) Φ
L
(t, t

0
) is invertible of inverse Φ

L
(t

0
, t) which satisfi es:

d t t
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t t t

t t
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(63)

(iii) Let   be a norm on M
P × P

 and assume that L( )t kL≤  on 
[t

0
, T]. Then we have:

ΦL
k t tt t e t t TL, [ , ]0 0

0( ) ≤ ∀ ∈−

 
(64)

Similarly, if LT ( )t k
LT≤  on [t

0
, T] we have:

Φ
L

LTT k t t
t t e t t T( , ) [ , ]0 0

0≤ ∀ ∈−

 
(65)

 (iv) We have

det ( , ) exp ( )ΦL

t

t

t t s ds0

0

= ∫ TrL

Proof. The properties (i) and (ii) are directly linked with the 
property of group of the fl ow of a reversible ODE. (iii) is an applica-
tion of Grunwald’s lemma. (iv) is obtained by a fi rst-order Taylor 
series expansion. 

Theorem B.2 (Solution of an inhomogeneous linear SDE). The solu-
tion of the inhomogeneous linear stochastic differential equation:

dX t X t t dt s d

X X
t s

t

= + +
=

⎧
⎨
⎩

( ) ( ) ( )) ( )L( I WF

0 0  
(66)

can be written using the resolvent:

X t t X t s s ds s t s dt L L

t

t

L s

t
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(67)

Proof. Pathwise (strong) uniqueness of solution directly comes 
from the results on the SDE with Lipschitz coeffi cients (see e.g., 
Karatzas and Shreve, 1991, Theorem 2.5 of Chapter 5). It is clear 
that X

t0
 = X

0
. We use Itô’s formula for the product of two stochastic 

processes to prove that the process Eq. 67 is solution of Eq. 66:
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+
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Hence the theorem is proved. 

C. MATRIX NORMS
In this section we recall some defi nitions on matrix and vector 
norms. Let M

n × n
 be the set of n × n real matrices. It is a vector 

space of dimension n2 and the usual Lp norms 1 ≤ p ≤ ∞ can be 
defi ned. Given L ∈ M

n × n
, we note L p

v the corresponding norm. 
Given a vector norm, noted  , on �n the induced norm, noted 
 , on M

n × n
 is defi ned as

L
L= sup

,x x

x

x∈ ≤Rn 1

Since M
n×n

 is fi nite dimensional all norms are equivalent. In 
this article we use the following norms

  (i) L ∞ == ∑max | | .i j
n

ijL1

 (ii) L ∞ | |v
i j ijL= max ,

(iii) L
L

2 12

2

2
=

≤
sup

,x x

x

xn∈�
. This so-called spectral norm is equal 

to the square root of the largest singular value of L which 
is the largest eigenvalue of the positive matrix LTL. If L is 
positive defi nite this is its largest eigenvalue which is also cal-
led its spectral radius, noted ρ(L).

D. IMPORTANT CONSTANTS
Table 1 summarizes some notations which are introduced in the 
article and used in several places.

E. PROOF OF LEMMA 2
Lemma E.1. The following upperbounds are valid for all n ≥ 1 and 
all s, t ∈ [t

0
, T].
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where μ and σ
max

 are defi ned in Lemma 1, λΓ
max is defi ned in 

Assumption 1.
Proof. The fi rst inequality follows from taking the infi nite norm 

of both sides of Eq. 41 and using Assumption (a) in 1 and Eq. 64, 
Lemma 1, and Assumption (c) in 1.

The second inequality follows from taking the infi nite norm 
of both sides of Eq. 42 and using Assumption (a) in 1 and Eqs. 64 
and 65, Lemma 1, and Assumption (b) in 1. 

F. PROOF OF LEMMA 3
Lemma F.1. For all t ∈ [t

0
, T] all α = 1,…,kP, and n ≥ 1, we have
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In the last expression the fi rst term is larger than the smallest 
eigenvalue λmin

∑Z0

 of the matrix ∑Z0  which is positive defi nite since 
we have assumed the Gaussian random variable Z

0
 nondegenerate. 

The second term is equal to the smallest singular value λmin of the 
matrix ΦL t t( , )0  which is also strictly positive since ΦL t t( , )0  is 
invertible for all t ∈ [t

0
, T], see Appendix B. 

G. PROOF OF LEMMA 4
Lemma G.1. For all α = 1,…,kP and n ≥ 1 the quantity 
C s s C t t C t sn n n

αα αα αα( , ) ( , ) ( , )− 2 is lowerbounded by the positive sym-
metric function:

θ λ( , ) ,min min mins t t s
Z

=def − 2 0λ λΣ Γ

where λmin
Γ  is the strictly positive lower bound, introduced in 3.1, 

on the singular values of the matrix F(u) for u ∈ [t
0
, T].

Proof. We use Eq. 42 which we rewrite as follows, using the group 
property of the resolvent Φ

L
:
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We now assume s < t and introduce the following notations:
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Table 1 | Some important quantities defi ned in the article.

Constant Expression Defi ned in

μ maxα β αβ β∑ ∞| |J S  Lemma 1, Eq. 39

σmax
2  maxα β αβ βσ∑ ∞

2 2S  Lemma 1

σmin min ,α β αβσ2  Lemma 1

μmax e Z I T tk T tL ( )
maxE[ ]−

∞+ + −0

0 0[ ( )( ]μ  Lemma 2

Σmax e T t

T t

k k T t ZL LT( ( )
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+ − + − +
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0 0

0

0
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Σ Γ  Lemma 2

k0 λ λmin min
ΣZ0

 Lemma 3

K λ λ λmin min min
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T t
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0−( ) Proof of Lemma 5

kC maxα β αβ β βσ∑ ′∞
2 S S  Proposition 3, Eq. 45

λL  Eq. 48
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Let eα, α = 1,…,kP, be the unit vector of the canonical basis 
whose coordinates are all equal to 0 except the αth one which is 
equal to 1. We note Eα(t) the vector ΦL t t e( , )0

T
α . We have, dropping 

the index n for simplicity:

C t s E t A s a t s E s
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α

αα α α= + +

Note that the last expression does not depend on s, since 
A(s) + B(s, t) = A(t), which is consistent with the fi rst equality. 
The reason why we introduce s in this expression is to simplify the 
following calculations.

The expression C s s C t t C t sαα αα α( , ) ( , ) ( , )2− α  is the sum of four 
sub-expressions:
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Because a(t, s) is a covariance matrix function, we have
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and, as it can be readily verifi ed, this implies ε3 0( , ) .s t ≥
Therefore, we can lowerbound C s s C t t C t sαα αα αα( , ) ( , ) ( , )2−  by 

the fourth subexpression:
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since B(s, t) and a(s, s) are covariance matrixes. We next have
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Combining these results, we have

C s s C t t C t s t s
Z

αα αα αα λ λ λ( , ) ( , ) ( , ) min min min− ≥ −2 2 0Σ Γ
 

H. PROOF OF LEMMA 5
Lemma H.1. The 2n-dimensional integral
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where the functions ρ
i
(u

i
, v

i
), i = 1,…,n are either equal to 1 or 

to 1/ θ( , )u vi i  (the function θ is defi ned in Lemma 4), is upper-
bounded by kn/(n − 1)! for some positive constant k.

Proof. First note that the integral is well-defi ned because of 
Lemma 4. Second, note that there exists a constant K such that

K
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when ρi i i i iu v u v( , ) = −1/  for all i = 1,…,n. Let us then consider 
this situation. Without loss of generality we assume t

0
 = 0. The cases 

n = 1, 2, 3 allow one to understand the process.
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Let us rotate the axes by − π
4
 by performing the change of 

variables
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.

Using the symmetry of the integrand in s and t and the change 
of variable, the integral in the righthand side of Eq. 68 is equal to 
(see Figure 5):
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It can be verifi ed by using a system for symbolic computation 
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and this fi nishes the proof.
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FIGURE 5 | The change of coordinates.
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Neural continuum networks are an important aspect of the modeling of
macroscopic parts of the cortex. Two classes of such networks are consid-
ered: voltage and activity based. In both cases, our networks contain an
arbitrary number, n, of interacting neuron populations. Spatial nonsym-
metric connectivity functions represent cortico-cortical, local connections,
and external inputs represent nonlocal connections. Sigmoidal nonlinear-
ities model the relationship between (average) membrane potential and
activity. Departing from most of the previous work in this area, we do not
assume the nonlinearity to be singular, that is, represented by the discon-
tinuous Heaviside function. Another important difference from previous
work is that we relax the assumption that the domain of definition where
we study these networks is infinite, that is, equal to R or R2. We explicitly
consider the biologically more relevant case of a bounded subset � of
Rq, q = 1, 2, 3, a better model of a piece of cortex. The time behavior of
these networks is described by systems of integro-differential equations.
Using methods of functional analysis, we study the existence and unique-
ness of a stationary (i.e., time-independent) solution of these equations in
the case of a stationary input. These solutions can be seen as ‘persistent’;
they are also sometimes called bumps. We show that under very mild as-
sumptions on the connectivity functions and because we do not use the
Heaviside function for the nonlinearities, such solutions always exist. We
also give sufficient conditions on the connectivity functions for the solu-
tion to be absolutely stable, that is, independent of the initial state of the
network. We then study the sensitivity of the solutions to variations of
such parameters as the connectivity functions, the sigmoids, the external
inputs, and, last but not least, the shape of the domain of existence � of
the neural continuum networks. These theoretical results are illustrated
and corroborated by a large number of numerical experiments in most of
the cases 2 ≤ n ≤ 3, 2 ≤ q ≤ 3.

Neural Computation 21, 147–187 (2009) C© 2008 Massachusetts Institute of Technology
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1 Introduction

We analyze the ability of neuronal continuum networks to display localized
persistent activity, or bumps. This type of activity is related, for example, to
working memory, which involves holding and processing information on
the timescale of seconds. Experiments in primates have shown that there
exist neurons in the prefrontal cortex that have high firing rates during
the period the animal is “remembering” the spatial location of an event
before using the information being remembered (Colby, Duhamel, & Gold-
berg, 1995; Funahashi, Bruce, & Goldman-Rakic, 1989; Miller, Erickson, &
Desimone, 1996). Realistic models for this type of activity have involved
spatially extended networks of coupled neural elements or neural masses
and the study of spatially localized areas of high activity in these systems.
A neuronal continuum network is first built from a “local” description of
the dynamics of a number of interacting neuron populations where the
spatial structure of the connections is neglected. This local description can
be thought of as representing such a structure as a cortical column (Mount-
castle, 1957, 1997; Buxhoeveden & Casanova, 2002). We call it a neural mass
(Freeman, 1975). Probably the best-known neural mass model is that of
Jansen and Rit (Jansen, Zouridakis, & Brandt, 1993), based on the original
work of Lopes da Silva and colleagues (Lopes da Silva, Hoeks, & Zetterberg,
1974; Lopes da Silva, van Rotterdam, Barts, van Heusden, & Burr, 1976) and
of Van Rotterdam and colleagues (van Rotterdam, Lopes da Silva, van den
Ende, Viergever, & Hermans, 1982). A complete analysis of the bifurca-
tion diagram of this model can be found in Grimbert and Faugeras (2006).
The model has been used to simulate evoked potentials: EEG activities in
normal (Jansen & Rit, 1995) and epileptic patients (Wendling, Bartolomei,
Bellanger, & Chauvel, 2001; Wendling, Bellanger, Bartolomei, & Chauvel,
2000). In a similar vein, David and Friston (2003) have used an extension of
this model to simulate a large variety of cerebral rhythms (α, β, γ , δ, and γ )
in MEG/EEG simulations. Another important class of such models is the
one introduced by Wilson and Cowan (1973); Hoppenstaedt & Izhikevich
(1997).

These local descriptions are then assembled spatially to form the
neuronal continuum network. This continuum network is meant to
represent a macroscopic part of the neocortex, for example, a visual
area such as V1. The spatial connections are models of cortico-cortical
connections. Other, nonlocal connections with, for example, such visual
areas as the lateral geniculate nucleus, or V2, are also considered. Other
researchers have used several interconnected neural masses to simu-
late epileptogenic zones (Wendling et al., 2000, 2001; Lopes da Silva
et al., 2003) or to study the connectivity between cortical areas (David,
Cosmelli, & Friston, 2004). In this letter we consider a continuum of neural
masses.
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Figure 1: A model with six interacting neural populations.

2 The Models

We briefly discuss local and spatial models.

2.1 The Local Models. We consider n interacting populations of neu-
rons such as those shown in Figure 1. The figure is inspired by the work of
Alex Thomson (Thomson & Bannister, 2003) and Wolfgang Maass (Haeusler
& Maass, 2007). It shows six interacting populations of neurons. Black in-
dicates excitation and gray inhibition. The thickness of the arrows pertains
to the strength of the interaction. In this example, the six populations are
located in layers 2/3, 4, and 5 of the neocortex. Each population being
described by its state (defined below), we derive from first principles the
equations that describe the variations over time of the states of the different
interacting populations.

Our derivation follows closely that of Ermentrout (1998). We consider
that each neural population i is described by its average membrane
potential Vi (t) or its average instantaneous firing rate νi (t), the relation
between the two quantities being of the form νi (t) = Si (Vi (t)) (Gerstner and
Kistler, 2002; Dayan & Abbott, 2001), where Si is sigmoidal and smooth.
The functions Si , i = 1, . . . , n, satisfy the following properties introduced
in the following definition:

Definition 1. For all i = 1, . . . , n, |Si | ≤ Sim (boundedness). We note Sm =
maxi Sim. For all i = 1, . . . , n, the derivative S′

i of Si is positive and bounded by
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s = .5
s = 1
s = 10
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S(v)=1/(1+exp(-s*v))

–10 –8 –6 –4 –2 2 4 6 8 10
v

Figure 2: Three examples of sigmoid functions for different values of the pa-
rameter s. See the text.

S′
im > 0 (boundedness of the derivatives). We note DSm = maxi S′

im and DSm the
diagonal matrix diag(S′

im).

A typical example of a function Si is given in equation 2.1:

Si (v) = 1
1 + e−si (v−θi )

. (2.1)

This function is symmetric with respect to the “threshold” potential θi and
varies between 0 and 1. The positive parameter si controls the slope of the
ith sigmoid at v = θi .

This function is shown in Figure 2 for the values of the parameters θ = 0
and s = 0.5, 1, 10. We have Sim = 1 and S′

im = s. When s → ∞, S converges
to the Heaviside function Y defined by

Y(v) =
{

0 if v < 0

1 otherwise
.

Neurons in population j are connected to neurons in population i . A
single action potential from neurons in population j is seen as a postsynaptic
potential P SPi j (t − s) by neurons in population i , where s is the time of the
spike hitting the terminal and t the time after the spike. We neglect the
delays due to the distance traveled down the axon by the spikes.

Assuming that they sum linearly, the average membrane potential of
population i due to action potentials of population j is

Vi (t) =
∑

k

P SPi j (t − tk),
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where the sum is taken over the arrival times of the spikes produced by
the neurons in population j . The number of spikes arriving between t and
t + dt is ν j (t)dt. Therefore, we have

Vi (t) =
∑

j

∫ t

0
P SPi j (t − s)ν j (s) ds =

∑
j

∫ t

0
P SPi j (t − s)Sj (Vj (s)) ds,

or, equivalently,

νi (t) = Si


∑

j

∫ t

0
P SPi j (t − s)ν j (s) ds


 . (2.2)

The P SPi j can depend on several variables in order to account for adapta-
tion and learning, among other examples.

There are two main simplifying assumptions that appear in the literature
(Ermentrout, 1998) and produce two different models.

2.1.1 The Voltage-Based Model. The assumption (Hopfield, 1984) is that
the postsynaptic potential has the same shape no matter which presynaptic
population caused it; however, the sign and amplitude may vary. This leads
to the relation

P SPi j (t) = wi j P SPi (t).

If wi j > 0, the population j excites population i , whereas it inhibits it when
wi j < 0.

Finally, if we assume that P SPi (t) = Ai e−t/τi Y(t), or equivalently that

τi
d P SPi (t)

dt
+ P SPi (t) = Aiδ(t), (2.3)

we end up with the following system of ordinary differential equations,

τi
dVi (t)

dt
+ Vi (t) =

∑
j

wi j Sj (Vj (t)) + I i
ext(t), (2.4)

that describes the dynamic behavior of a cortical column. We have inco-
porated the constant Ai in the weights wi j and added an external current
Iext(t) to model the nonlocal connections of population i . We introduce the
n × n matrixes W such that Wi j = wi j/τi and the function S, Rn → Rn such
that S(x) is the vector of coordinates Si (xi ), if x = (x1, . . . , xn). We rewrite
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equation 2.4 in vector form and obtain the following system of n ordinary
differential equations,

V̇ = −LV + W S(V) + Iext, (2.5)

where L is the diagonal matrix L = diag(1/τi).
In terms of units, the left- and right-hand sides of this equations are in

units of, say, mV × ms−1. Therefore, Iext, despite its name, is not a current.
Note that since S(V) is an activity, its unit is ms−1, and hence W is in mV.

2.1.2 The Activity-Based Model. The assumption is that the shape of a
postsynaptic potential (PSP) depends on only the nature of the presynaptic
cell, that is,

P SPi j (t) = wi j P SPj (t).

As above, we suppose that P SPi (t) satisfies the differential equation 2.3 and
define the time-averaged firing rate to be

Aj (t) =
∫ t

0
P SPj (t − s)ν j (s) ds.

A similar derivation yields the following set of n ordinary differential equa-
tions:

τi
d Ai (t)

dt
+ Ai (t) = Si


∑

j

wi j Aj (t) + I i
ext(t)


 i = 1, . . . , n.

We include the τi s in the sigmoids Si and rewrite this in vector form:

Ȧ = −LA + S(W A + Iext). (2.6)

The units are ms−2 for both sides of the equation. W is expressed in mV ×
ms, and Iext is in mV.

2.2 The Continuum Models. We now combine these local models to
form a continuum of neural masses, for example, in the case of a model of
a significant part � of the cortex. We consider a subset � of Rq , q = 1, 2, 3,
which we assume to be connected and compact (i.e., closed and bounded).
We note |�| its Lebesgue measure (length, area, volume). This encompasses
several cases of interest.

When q = 1, we deal with one-dimensional sets of neural masses.
Although this appears to be of limited biological interest, this is one of the
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most widely studied cases because of its relative mathematical simplicity
and because of the insights one can gain of the more realistic situations.

When q = 2, we discuss properties of two-dimensional sets of neural
masses. This is perhaps more interesting from a biological point of view
since � can be viewed as a piece of cortex where the third dimension, its
thickness, is neglected. This case has received by far less attention than the
previous one, probably because of the increased mathematical difficulty.
Note that we could also take into account the curvature of the cortical sheet
at the cost of an increase in mathematical difficulty. This is outside the scope
of this letter.

Finally q = 3 allows us to discuss properties of volumes of neural masses,
such as cortical sheets where their thickness is taken into account (Kandel,
Schwartz, & Jessel, 2000; Chalupa & Werner, 2004).

The theoretical results presented in this letter are independent of the
value of q .

We note V(r, t) (resp., A(r, t)) the n-dimensional state vector at the point
r of the continuum and at time t. We introduce the n × n matrix function
W(r, r′), which describes how the neural mass at point r′ influences that at
point r at time t. We call W the connectivity matrix function. In particular,
W(r, r) = W, the matrix that appears in equations 2.5 and 2.6. More precisely,
Wi j (r, r′) describes how population j at point r′ influences population i at
point r at time t. Equation 2.5 can now be extended to

Vt(r, t) = −LV(r, t) +
∫

�

W(r, r′)S(V(r′, t)) dr′ + Iext(r, t), (2.7)

and equation 2.6 to

At(r, t) = −LA(r, t) + S
(∫

�

W(r, r′)A(r′, t)) dr′ + Iext(r, t)
)

. (2.8)

It is important to discuss again the units of the quantities involved
in these equations. For equation 2.7, as for equation 2.4, the unit is
mV × ms−1 for both sides. Because of the spatial integration, W is in
mV × ms−1 × mm−q , and q is the dimension of the continuum. To obtain a
dimensionless equation, we normalize (i.e., divide both sides of the equa-
tion) by the Frobenius norm ‖W‖F of the connectivity matrix function W
(see section A.1 for a definition). Equivalently, we assume that ‖W‖F = 1.

We have given elsewhere (Faugeras, Grimbert, & Slotine, 2007)—but see
proposition 2 below for completeness—sufficient conditions on W and Iext

for equations 2.7 and 2.8 to be well defined and studied the existence and
stability of their solutions for general external currents. In this letter, we
analyze in detail the case of stationary external currents (independent of
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the time variable) and investigate the existence and stability of the corre-
sponding stationary solutions of 2.7 and 2.8.

A significant amount of work has been devoted to this or closely related
problems, starting perhaps with the pioneering work of Wilson and Cowan
(1973). A fairly recent review of this work, and much more, can be found in
Coombes (2005). Amari (1977) investigated the problem in the case n = q =
1 when the sigmoid function is approximated by a Heaviside function and
the connectivity function has a Mexican hat shape. He proved the existence
of stable bumps in this case. His work has been extended to different firing
rate and connectivity functions (Gutkin, Ermentrout, & O’Sullivan, 2000;
Laing, Troy, Gutkin, & Ermentrout, 2002; Laing & Troy, 2003; Rubin & Troy,
2004; Guo & Chow, 2005a, 2005b).

The case n = 1, q = 2 has been considered by several authors, including
Pinto and Ermentrout (2001a, 2001b) for general firing rate functions and
gaussian-like connectivity functions (Blomquist, Wyller, & Einevoll, 2005)
when the firing rate functions are approximated by Heaviside functions,
and more recently for translation-invariant kernels including some discus-
sion of sigmoids in Owen, Laing, and Coombes (2007).

Extending these analyses to a two- or three-dimensional continuum is
difficult because of the increase in the degrees of freedom in the choice
of the connectivity function. The case n = 2, q = 1 has been studied in
Werner and Richter (2001) and Bressloff (2005) when the firing rate functions
are approximated by Heaviside functions and the connectivity function is
circularly symmetric, while the case n = 2, q = 2 is mentioned as difficult
in Doubrovinski (2005).

In all of these contributions, the proof of the existence of a bump
solution is based on Amari’s original argument (1977), which works only
when q = 1 and the firing rate function is approximated by a Heaviside
function. Kubota and Aihara (2005); Kishimoto and Amari (1979) consider
sigmoids in the case q = 1 for translation-invariant symmetric connectivity
functions. Solutions are usually constructed using a variant of the method
of the singular perturbation construction (Pinto & Ermentrout, 2001b).
Sufficient conditions for their stability are obtained by a linear stability
analysis, which in general requires the use of Heaviside functions instead of
sigmoids.

The approach that we describe in this letter is a significant departure
from previous ones. By using simple ideas of functional analysis, we are
able to:� Prove the existence and uniqueness of a stationary solution to

equations 2.7 and 2.8 for any dimensions n and q , arbitrary connec-
tivity functions, and general firing rate functions.� Obtain very simple conditions for the absolute stability of the solution
in terms of the spectrum of the differential of the nonlinear operator
that appears on the right-hand side of equations 2.7 and 2.8.
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� Construct a numerical approximation as accurately as needed of the
solution, when it exists, for any stationary input.� Characterize the sensitivity of the solutions to variations of the pa-
rameters, including the shape of the domain �.

To be complete, let us point out that equations of the type 2.7 and 2.8 have
been studied in pure mathematics (see e.g., Hazewinkel, 2001). They are of
the Hammerstein type (Hammerstein, 1930; Tricomi, 1985). This type of
equation has received some recent attention (see Appell & Chen, 2006), and
progress has been made toward a better understanding of their solutions.
Our contributions are the articulation of the models of networks of neural
masses with this type of equation, the characterization of persistent activity
in these networks as fixed points of Hammerstein equations, the proof of
the existence of solutions, the characterization of their stability, and the
analysis of their sensitivity to variations of the parameters involved in the
equations.

The rest of the letter is organized as follows. In section 3, we prove
that under some mild hypotheses about the connectivity matrix, because
� is bounded, there always exist stationary solutions to the neural field
equations, 2.7 and 2.8, for stationary inputs. In section 4, we provide
sufficient conditions for these stationary solutions to be stable. Section 5
provides numerical support for the theorems of the previous two sections:
because we know that there exist stable solutions, we can derive a robust
and accurate numerical scheme to compute them for various values of
the parameters. In section 6, we probe the sensitivity of the solutions to
variations of these parameters. This is a first step in the direction of the
study of their bifurcations, which will be the topic of a forthcoming paper.
In section 7, we summarize our results and open some perspectives.

3 Existence of Stationary Solutions

In this section we deal with the problem of the existence of stationary
solutions to equations 2.7 and 2.8 for a given stationary external current
Iext.

As indicated in the previous section, we use functional analysis to solve
this problem. Let F be the set L2

n(�) of square integrable functions from �

to Rn. This is a Hilbert, hence a Banach, space for the usual inner product,

〈V1, V2〉 =
∫

�

V1(r)T V2(r) dr,

where V is the complex conjuguate of the vector V. This inner product
induces the norm ‖V‖2

F = ∑
i=1,...,n

∫
�

|Vi (r)|2 dr (see section A.1). F is the
state space. Another important space is L2

n×n(� × �), the space of square
integrable n × n matrices (see section A.1 for a precise definition). We
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assume that the connectivity matrix functions W(·, ·) are in this space (see
propositions 1 and 2 below).

We also identify L2
n×n(� × �) with L (F) (the space of continuous linear

operators on F) as follows. If W ∈ L2
n×n(� × �), it defines a linear mapping

W : F −→ F such that

X → W · X = ∫
�

W(., r′)X(r′)dr′ .

For example, this allows us to write equations 2.7 and 2.8:

Vt =−LV + W · S (V) + Iext

At =−LA + S(W · A + Iext).

We first recall some results on the existence of a solution to equations 2.7
and 2.8 that will be used in the sequel.

We denote by J a closed interval of the real line containing 0. A state vector
X(r, t) is a mapping X : J → F , and equations 2.7 and 2.8 are formally recast
as an initial value problem:

{
X′(t) = f (t, X(t))

X(0) = X0
, (3.1)

where X0 is an element ofF and the function f from J × F is defined by the
right-hand side of equation 2.7, in which case we call it fv , or equation 2.8,
in which case we call it fa . In other words, equations 2.7 and 2.8 become
differential equations defined on the Hilbert space F .

We need the following two propositions, which we quote without proof
(Faugeras et al., 2007):

Proposition 1. If the following two hypotheses are satisfied,

1. The connectivity function W is in L2
n×n(� × �) (see section A.1),

2. At each time instant t ∈ J the external current I is in C(J ;F), the set of
continuous functions from J to F ,

then the mappings fv and fa are from J × F to F , continuous, and Lipschitz
continuous with respect to their second argument, uniformly with respect to the
first.

Proposition 2. If the following two hypotheses are satisfied,

1. The connectivity function W is in L2
n×n(� × �),

2. The external current I ext is in C(J ;F), the set of continuous functions from
J to F ,
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then for any function X0 in F , there is a unique solution X, defined on R (and not
only on J ) and continuously differentiable, of the abstract initial value problem,
equation 3.1, for f = fv and f = fa .

This proposition says that given the two hypotheses and the initial con-
dition, there exists a unique solution to equation 2.7 or 2.8 and that this
solution is in C1(R;F), the set of continuously differentiable functions from
R to F .

We now turn our attention to a special type of solution of equations 2.7
and 2.8, corresponding to stationary external currents. We call these solu-
tions, when they exist, stationary solutions. The currents Iext are simply in
F .

A stationary solution of equation 2.7 or 2.8 is defined by

X = f L (X), (3.2)

where the function f L , F → F , is equal to f L
v defined by

f L
v (V)(r) =

∫
�

WL (r, r′)S(V(r′)) dr′ + IL
ext(r), (3.3)

or to f L
a defined by

f L
a (A)(r) = SL

(∫
�

W(r, r′)A(r′) dr′ + Iext(r)
)

, (3.4)

where WL = L−1W, SL = L−1S and IL
ext = L−1Iext.

We now recall:

Definition 2. A continuous mapping M : F → F (linear or nonlinear) is called
compact provided that for each bounded subset B of F , the set M(B) is relatively
compact; that is, its closure is compact.

We then consider the nonlinear mapping gL
v : F → F ,

gL
v (V)(r) =

∫
�

WL (r, r′)S(V(r′)) dr′, (3.5)

and the linear mappings ga and gL
a ,

ga (A)(r) =
∫

�

W(r, r′)A(r′) dr′, (3.6)

gL
a (A)(r) =

∫
�

WL (r, r′)A(r′) dr′. (3.7)
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We have the following:

Proposition 3. If W ∈ L2
n×n(� × �), gL

v and gL
a are compact operators of F .

Proof. We know from proposition 1 that gL
v is continuous and prove that for

each bounded sequence {Vn}∞n=1 of F , there exists a subsequence {Vnj }∞j=1

such that gL
v (Vnj ) is convergent in F .

Because of definition 1 of S, the sequence {An = S(Vn)}∞n=1 is bounded in
F by C = Sm

√
n|�| > 0. We prove that there exists a subsequence {Anj }∞j=1

such that {gL
a (Anj ) = gL

v (Vnj )}∞j=1 converges in F .
SinceF is separable, its unit ball is weakly compact, and because {An}∞n=1

is bounded, there exists a a subsequence {Anj }∞j=1 of {An}∞n=1 that converges
weakly in F toward A. Because of Fubini’s theorem, for almost all r ∈ �

(noted almost surely), the function r′ → W(r, r′) is in F . Therefore, almost
surely, Bnj = gL

a (Anj ) → B.
Since ‖A‖F ≤ lim inf j→∞ ‖Anj ‖F ≤ C , A is also bounded by C in F . It

is easy to show that ‖Bnj − B‖2
F ≤ 2C‖W‖F , and we can apply Lebesgue’s

dominated convergence theorem to the sequence Bnj (r) − B(r) and conclude
that ‖Bnj − B‖F → 0, that is, gL

v (Vnj ) is convergent in F .
A small variation of the proof shows that gL

a is compact.

From proposition 3 follows:

Proposition 4. Under the hypotheses of proposition 3, if I ext ∈ F , f L
v and f L

a ,
are compact operators of F .

Proof. The operators X → IL
ext and X → Iext are clearly compact under the

hypothesis Iext ∈ F ; therefore, f L
v is the sum of two compact operators,

hence compact. For the same reason, ga + Iext is also compact, and so is
f L
a = SL (ga + Iext) because SL is smooth and bounded.

We can now prove:

Theorem 1. If W ∈ L2
n×n(� × �) and Iext ∈ F , there exists a stationary solu-

tion of equations 2.7 and 2.8.

Proof. A stationary solution of equation 2.7 (resp. of equation 2.8) is a fixed
point of f L

v (resp. f L
a ).

Define the set Cv = {V ∈ F |V = λ f L
v (V) for some 0 ≤ λ ≤ 1}. Because

of lemma A.2 for all V ∈ Cv , we have

‖V‖F ≤ λ(‖gL
v (V)‖F + ‖IL

ext‖F ) ≤ λ(Sm

√
n|�|‖WL‖F + ‖IL

ext‖F ).

Hence, Cv is bounded.
Similarly, define the set Ca = {A ∈ F |A = λ f L

a (A) for some 0 ≤ λ ≤
1}. Because of lemma A.2 for all A ∈ Ca , we have ‖A‖F ≤ λSm

√
n|�|; hence,

Ca is bounded.
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The conclusion follows from Schaefer’s fixed-point theorem (Evans,
1998).

Note that in the proofs of proposition 4 and theorem 1, the assumption
that � is bounded (i.e., that |�| is finite) is essential.

4 Stability of the Stationary Solutions

In this section we give a sufficient condition on the connectivity matrix W to
guarantee the stability of the stationary solutions to equations 2.7 and 2.8.

4.1 The Voltage-Based Model. We define the “corrected maximal” con-
nectivity function Wcm(r, r′) by Wcm = WDSm, where DSm is defined in
definition 1. We also define the corresponding linear operator hm : F → F ,

hm(V)(r) =
∫

�

Wcm(r, r′)V(r′) dr′,

which is compact according to proposition 3. Its adjoint, noted h∗
m is defined1

by

h∗
m(V)(r) =

∫
�

WT
cm(r′, r)V(r′) dr′

and is also compact. Hence the symmetric part hs
m = 1

2 (hm + h∗
m), the sum of

two compact operators, is also compact. Furthermore, we have 〈V, hm(V)〉 =
〈V, hs

m(V)〉, as can be easily verified. It is also self-adjoint since, clearly,
hs

m = hs∗
m .

We recall the following property of the spectrum of a compact self-adjoint
operator in a Hilbert space (see, e.g., Dieudonné, 1960).

Proposition 5. The spectrum of a compact, self-adjoint operator of a Hilbert
space is countable and real. Each nonzero spectral value is an eigenvalue, and the
dimension of the corresponding eigenspace is finite.

We have the following:

Theorem 2. A sufficient condition for the stability of a stationary solution to
equation 2.7 is that all the eigenvalues of the linear compact, self-adjoint operator
hL , s

m be less than 1, where hL , s
m is defined by

hL , s
m (x)(r)= 1

2

∫
�

L−1/2(WT
cm(r ′, r) + Wcm(r, r ′))L−1/2 x(r ′) d r ′ ∀x ∈ F,

1By definition, 〈V1, hm(V2)〉 = 〈h∗
m(V1), V2〉, for all elements V1, V2 of F .
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where hL , s
m is the symmetric part of the linear compact operator hL

m : F → F :

hL
m(x)(r) =

∫
�

L−1/2Wcm(r, r ′)L−1/2 x(r ′) d r ′

Proof. The proof of this theorem is a generalization to the continuum case
of a result obtained by Matsuoka (1992).

Let us note S the function (DSm)−1S and rewrite equation 2.7 for a ho-
mogeneous input Iext as follows:

Vt(r, t) = −LV(r, t) +
∫

�

Wcm(r, r′)S(V(r′, t) dr′ + Iext(r).

Let U be a stationary solution of equation 2.7. Also let V be the unique
solution of the same equation with initially some condition V(0) = V0 ∈
F (see proposition 2). We introduce the new function X = V − U, which
satisfies

Xt(r, t) =−LX(r, t) +
∫

�

Wcm(r, r′)�(X(r′, t)) dr′

=−LX(r, t) + hm(�(X))(r, t),

where the vector �(X) is given by �(X(r, t)) = S(V(r, t)) − S(U(r)) =
S(X(r, t) + U(r)) − S(U(r)). Consider now the functional


(X) =
∫

�

(
n∑

i=1

∫ Xi (r,t)

0
�i (z) dz

)
dr.

We note that

z ≤ �i (z) < 0 for z < 0 and 0 < �i (z) ≤ z

for z > 0, �i (0) = 0, i = 1, . . . , n.

This is because (Taylor expansion with integral remainder)

�i (z) = Si (z + Ui ) − Si (Ui ) = z
∫ 1

0
S′

i (Ui + ζ z) dζ,

and 0 < S′
i ≤ 1 by construction of the vector S. This implies that the func-

tional 
(X) is strictly positive for all X ∈ F = 0 and 
(0) = 0. It also
implies—and this is used in the sequel—that z�i (z) ≥ �i (z)2.
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The time derivative of 
 is readily obtained:

d
(X)
dt

=
∫

�

�T (X(r, t))Xt(r, t)) dr = 〈
�(X), Xt

〉
.

We replace Xt(r, t)) by its value in this expression to obtain

d
(X)
dt

= − 〈
�(X), LX

〉+ 〈
�(X), hm(�(X))

〉
.

Because of a previous remark, we have

XT (r, t))L�(X(r, t)) ≥ �T (X(r, t))L�(X(r, t)),

and this provides an upper bound for d
(X)
dt :

d
(X)
dt

≤ 〈
�(X), (−L+hs

m).�(X)
〉= 〈

L1/2�(X), (−Id+hL , s
m ) L1/2�(X)

〉
,

and the conclusion follows.

Note that we have the following:

Corollary 1. If the condition of theorem 2 is satisfied, the homogeneous solution
of equation 2.7 is unique.

Proof. Indeed, the result of theorem 2 is independent of the particular
stationary solution U that is chosen in the proof.

4.2 The Activity-Based Model. We now give a sufficient condition for
the stability of a solution to equation 2.8. We define the “maximal corrected”
connectivity matrix function Wmc = DSmW and the linear compact operator
km from F to F :

km(x)(r) =
∫

�

Wmc(r, r′) x(r′) dr′.

Theorem 3. A sufficient condition for the stability of a solution to equation 2.8
is that all the eigenvalues of the linear compact operator kL

m be of a magnitude less
than 1, where kL

m is defined by

kL
m(x)(r) =

∫
�

L−1/2Wmc(r, r′)L−1/2x(r′) dr′ ∀x ∈ F .

Proof. Let U be a stationary solution of equation 2.8 for a stationary external
current Iext(r). As in the proof of theorem 2, we introduce the new function
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X = V − U, where V is the unique solution of the same equation with initial
conditions V(0) = V0 ∈ F , an element of C(J ,F). We have

Xt(r, t) =−LX(r, t) + S
(∫

�

W(r, r′)V(r′, t) dr′ + Iext(r)
)

−S
(∫

�

W(r, r′)U(r′) dr′ + Iext(r)
)

.

Using a first-order Taylor expansion with an integral remainder, this equa-
tion can be rewritten as

Xt(r, t) =−LX(r, t) +
(∫ 1

0
DS

( ∫
�

W(r, r′)U(r′) dr′ + Iext(r)

+ζ

∫
�

W(r, r′)X(r′, t) dr′
)

dζ

)(∫
�

W(r, r′)X(r′, t) dr′
)

.

Consider now the functional 
(X) = 1
2‖X‖2

F . Its time derivative is

d
(X)
dt

= 〈 X, Xt 〉 .

We replace Xt(r, t)) by its value in this expression to obtain

d
(X)
dt

= −〈 X, LX 〉 + 〈
X, σm(X)km(X)

〉
,

where the nonlinear operator σm is defined by

σm(X)(r, t) =
∫ 1

0
DS

( ∫
�

W(r, r′)U(r) dr′

+ζ

∫
�

W(r, r′)X(r′, t) dr′
)

DS−1
m dζ,

a diagonal matrix whose diagonal elements are between 0 and 1. We rewrite
d
(X)

dt in a slightly different manner, introducing the operator kL
m:

d
(X)
dt

= − 〈
L1/2X, L1/2X

〉+ 〈
σm(X)L1/2X, kL

m(L1/2X)
〉
.

From the Cauchy-Schwarz inequality and the property of σm(X), we obtain

∣∣〈 σm(X)Y, kL
m(Y)

〉∣∣ ≤ ‖σm(X)Y‖F ‖kL
m(Y)‖F ≤ ‖Y‖F ‖kL

m(Y)‖F
Y = L1/2X.
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A sufficient condition for d
(X)
dt to be negative is therefore that ‖kL

m(Y)‖F <

‖Y‖F for all Y.

5 Numerical Experiments

In this section and the next, we investigate the question of effectively
(i.e., numerically) computing stationary solutions of equation 2.7, which
is equivalent to computing solutions of equation 3.2. Similar results are
obtained for equation 2.8.

In all of our numerical experiments, we assume the sigmoidal functions
Si , i = 1, . . . , n introduced in definition 1 to be of the form 2.1.

5.1 Algorithm. We now explain how to compute a fixed point V f of
equation 3.3 in which we drop for simplicity the upper index L and the
lower index ext:

V f = W · S(V f ) + I (5.1)

The method is iterative and based on Banach’s fixed-point theorem (Evans,
1998):

Theorem 4. Let X be Banach space and M : X → X a nonlinear mapping such
that

∀x, y ∈ X,
∥∥M(x) − M(y)

∥∥ ≤ q ‖x − y‖ , 0 < q < 1.

Such a mapping is said to be contracting. M has a unique fixed point x f and for
all x0 ∈ X and xp+1 = M(xp) then (xp) converges geometrically to x f .

Note that this method allows to computing the solution of equation 3.2
only when it admits a unique solution and f is contracting. However, it
could admit more than one solution (recall it always has a solution; see
theorem 1) or f could be noncontracting. Another method has to be found
in these cases.

In our case, X = F = L2
n(�), where � is an open-bounded set of Rn and

M = fv . According to lemmas 2 and 1, if DSm ‖W‖F < 1, fv is contracting.
Each element of the sequence Vp, p ≥ 0 is approximated by a piecewise

constant function Vp, h , where h is the step of the approximation, defined by
a finite number of points rh, j ∈ �, 1 ≤ j ≤ � 1

h �. In order to avoid difficulties
because Vp, h ∈ L2

n(�), hence defined almost everywhere, we assume that W
and I are smooth. It is not a restriction because every function of L2

n(�) can
be approximated by a smooth function. As the bump solution is smooth,
as soon as W, I are smooth, we can use the multidimensional gaussian
quadrature formula (Press, Flannery, Teukolsky, & Vetterling, 1988; Stoer
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& Bulirsch, 1972) with N points (in the examples below, usually N = 20)
on each axis. In order to interpolate the values of the bump from a finite
(and small) number of its values Vn(rh, j,Gauss), we use Nyström’s method
(Hazewinkel, 2001), as follows:

Vp(r) =
∑

j

g j Wp(r, rp, j,Gauss)S(Vp(rp, j,Gauss)) + I(r),

where the g j s are the weights of the gaussian quadrature method and the
points rp, j,Gauss are chosen according to the gauss quadrature formula. It is
to be noted that the choice of a particular quadrature formula can make a
huge difference in accuracy and computing time (see section A.2).

Having chosen the type of quadrature we solve with Banach’s theorem,

V f
h = Wh · S(V f

h ) + Ih, (5.2)

that is, we compute the fixed point at the level of approximation defined by
h.

The following theorem ensures that limh→0 V f
h = V f :

Theorem 5. Assume that limh→0 Wh = W in L2
n×n(� × �) then max1≤ j≤� 1

h �
|V h(rh, j ) − V f (rh, j )| = O(ah) h→ 0 with ah = ‖W − Wh‖F .

Proof. The proof is an adaptation of (Krasnosel’skii, Vainikko, Zabreiko, &
Stetsenko, 1972, theorem 19.5).

5.2 Examples of Bumps. We show four examples of the application of
the previous numerical method to the computation of bumps for various
values of n and q .

There are n populations (V = [V1, . . . , Vn]T , W ∈ L2
n×n(� × �)), some ex-

citatory and some inhibitory. � = [−1, 1]q . We characterize in section 6.2
how the shape of � influences that of the bumps. The connectivity matrix
is of the form

Wi j (r, r′) = αi j exp
(

−1
2

〈
r − r′, Ti j

(
r − r′)〉) , (5.3)

with Ti j ∈ Mq×q a q × q symmetric positive definite matrix. The weights
αi j , i, j = 1, . . . , n form an element α of Mn×n, and T = [ T11 T12

T21 T22
] is an ele-

ment of Mnq×nq . The weights α are chosen so that DSm‖W‖F < 1. The sign
of αi j , i = j , indicates whether population j excites or inhibits population
i . The bumps are computed using the algorithm described in the previous
section.
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Figure 3: Example of a two-population, two-dimensional bump with constant
external currents (see text).

Figure 4: Example of a two-population, two-dimensional bump with gaussian-
shaped external current (see text).

5.2.1 First Example: n = 2, q = 2, Constant Current. Figure 3 shows an
example of a bump for the following values of the parameters:

α =
[

0.2 −0.1

0.1 −0.2

]
I = [−0.3, 0]T T =




40 0 12 0

0 40 0 12

8 0 20 0

0 8 0 20


 .

There is one excitatory and one inhibitory population of neural masses.

5.2.2 Second Example: n = 2, q = 2, Nonconstant Current. Figure 4 shows
a different example where the external current I is still equal to 0 for its
second coordinate and is not constant but equal to its previous value, −0.3,
to which we have added a circularly symmetric 2D gaussian centered at
the point of coordinates (0.5, 0, 5) of the square � with standard deviation
0.18 and maximum value 0.2. It is interesting to see how the shape of the
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Figure 5: Example of a three-population, two-dimensional bump (see text).

previous bump is perturbed. The matrix α is the same as in the first example.
The matrix T is equal to

T =




5 0 1 0

0 5 0 1

16 0 40 0

0 16 0 40


 ,

corresponding to a spatially broader interaction for the first population and
narrower for the second.

5.2.3 Third Example: n = 3, q = 2, Constant Current. Figure 5 shows an
example of a bump for three neural populations—two excitatory and one
inhibitory—in two dimensions. We use the following values of the param-
eters:

α =




.442 1.12 −0.875

0 0.1870 −0.0850

0.128 0.703 −0.7750




T

I = [0, 0]T

T =




40 0 12 0 12 0

0 40 0 12 0 12

8 0 20 0 9 0

0 8 0 20 0 9

40 0 12 0 12 0

0 40 0 12 0 12




.
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Figure 6: Example of a two-population, three-dimensional bump; isosurfaces
are shown. Transparencies increase linearly from blue to red.

5.2.4 Fourth Example: n = 2, q = 3, Constant Current. We show an exam-
ple of a three-dimensional bump for two populations of neural masses (see
Figure 6). The parameters are

α =
[

0.2 −0.1

0.1 −0.2

]
I = [0, 0]T T =

[
40 Id3 12 Id3

8 Id3 20 Id3

]
,

where Id3 is the 3 × 3 identity matrix.

6 Sensitivity of the Bump to Variations of the Parameters

In this section, we characterize how the solutions of equation 3.2 vary with
the parameters that appear in the equation. These parameters are of two
types: first, we have a finite number of real parameters such as the external
currents, the weights in the connectivity matrix W, or the parameters of the
sigmoids, and, second, the shape of the domain �, a potentially infinite-
dimensional parameter.

We focus on the voltage-based model; the analysis in the activity-based
case is very similar. We start with a set of general considerations in the
finite-dimensional case, which we then apply to the various cases. We then
tackle the more difficult case of the dependency with respect to the shape
of �.
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As fv is a smooth function of the parameters (I, α, S, . . .), one can show (by
extending Banach’s theorem) that the fixed-point V f inherits the smooth-
ness of fv .

6.1 The Finite-Dimensional Parameters. We introduce the linear oper-
ator2 W · DS(V f ) : F → F such that

W · DS(V f ) · V(r) =
∫

�

W(r, r′)DS(V f (r′))V(r′) dr′ ∀V ∈ F .

We have the following:

Proposition 6. The derivative ∂λV f of the fixed point V f with respect to the
generic parameter λ satisfies the equation

(Id − W · DS(V f )) · ∂λV f = b(λ, V f ), (6.1)

where b(λ, V f ) = (∂λW) · S(V f ) + W · (∂λS(V f )) + ∂λ I .

Proof. Taking the derivative of both sides of equation 5.1 with respect to λ,
we have

∂λV f = W · DS(V f ) · ∂λV f + (∂λW) · S(V f ) + W · (∂λS(V f )) + ∂λI.

Hence, we obtain equation 6.1.

Note that ∂λS(V f ) is the partial derivative of the vector S with respect to
the scalar parameter λ evaluated at V = V f .

Because of the assumption DSm‖W‖F < 1, the linear operator J = Id −
W · DS(V f ) is invertible with

J−1 =
∞∑

p=0

(W · DS(V f ))p,

and the series is convergent.
∂λV f is thus obtained from the following formula:

∂λV f = J−1b(λ, V f ),

2W · DS(V f ) is the Frechet derivative of the operator fv at the point V f of F .
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the right-hand side being computed by{
x0 = b(λ, V f )

xp+1 = x0 + W · DS(V f ) · xp p ≥ 0
.

We now apply proposition 6 to the study of the sensitivity of the bump to
the variations of the parameters.

6.1.1 Sensitivity of the Bump to the Exterior Current. When λ = I1, we find:

∂I1 V f = J−1

[
1

0

]
≥
[

0

0

]
.

This inequality is to be understood component by component. It predicts
the influence of I1 on V f . For example, with the parameters α and T used
in Figure 3 but with an external current equal to 0, we obtain the bump
shown in Figure 7 (top) with the derivatives shown at the bottom of the
same figure. We also show in Figure 8 of V1 and V2 along the diagonal and
the x-axis for different values of I1 close to 0. The reader can verify that the
values increase with I1, as predicted.

6.1.2 Sensitivity of the Bump to the Weights α. For λ = αi j , one finds

J · ∂αi j V
f = ∂αi j W · DS(V f ).

We then have:

λ = a : We find

∂a V f (r) = J−1 ·
[

exp
(− 1

2 〈r − ·, T11(r − ·)〉) 0

0 0

]
· DS(V f )

= J−1 ·
[

exp
(
− 1

2 〈r − ·, T11(r − ·)〉S′
1

(
V f

1 (·)))
0

]
≥
[

0

0

]
.

The fixed point is an increasing function of the excitatory parameter a .

λ = b : We find

∂bV f (r) = J−1 ·
[

0 − exp
(− 1

2 〈r − ·, T12(r − ·)〉)
0 0

]
· DS(V f )

= J−1 ·
[

− exp
(− 1

2 〈r − ·, T12(r − ·)〉) S′
2(V f

2 (·))
0

]
≤
[

0

0

]
.
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Figure 7: A bump corresponding to the following parameters: α and T are the
same as in Figure 3, I = [0 0]T (top). Derivative of the bump with respect to the
first coordinate, I1, of the exterior current (bottom). We verify that it is positive
(see text).

The fixed point is a decreasing function of the inhibitory parameter b (see
Figure 9).

The other cases are similar.

6.1.3 Sensitivity of the Bump to the Thresholds. When λ = θi , i = 1, 2 we
have from definition 1 of S and with the notations of proposition 6,

b(λ, V f ) = −W · DS(V f ) · ei , i = 1, 2,



Persistent Neural States 171

Figure 8: Cross sections of V1 (left) and V2 (right) for I1 = −0.001 (long-dashed
line), I1 = 0 (continuous line) and I1 = 0.001 (dashed line). I2 = 0 in all three
cases. To increase the readibility of the results, we have applied an offset of 0.001
and 0.002 to the continuous and dashed curves on the right-hand side of the
figure, respectively.

Figure 9: Cross sections of V1 (left) and V2 (right) for b = −0.101 (long-dashed
line), b = −0.1 (continuous line), and b = −0.099 (dashed line). To increase the
readibility of the results, we have applied an offset of 0.001 and 0.002 to all
continuous and dashed curves, respectively.

where e1 = [1, 0]T , e2 = [0, 1]T . We show in Figure 10 some cross sections of
the bump V f obtained for the same values of the parameters as in Figure 3
and three values of the threshold vector.

6.1.4 Sensitivity of the Bump to the Slope of the Sigmoid. When λ = si , i =
1, 2, we have from definition 1 of S and with the notations of proposition 6,

b(λ, V f ) = W · DS(V f ) · s
(
V f − θ

)
,



172 O. Faugeras, R. Veltz, and F. Grimbert

Figure 10: Cross sections of V1 (left) and V2 (right) for θ = −0.101[1, 1]T (long-
dashed line), θ = 0 (continuous line), and θ = 0.1[1, 1]T (dashed line). To in-
crease the readibility of the results, we have applied an offset of 0.001 and 0.002
to all continuous and dashed curves, respectively.

Figure 11: Plot of the derivative with respect to the slope of the sigmoids of the
the bump obtained with the same parameters α, I, and T as in Figure 3.

where the matrix s is given by

s =
[

1
s1

0

0 1
s2

]
.

Figure 11 shows the two coordinates ∂s V f
1 and ∂s V f

2 for s1 = s2 = s of the
derivative of the bump V f at s = 1 obtained for the same values of the other
parameters as in Figure 3, except the intensity which is equal to 0.

6.2 Sensitivity of the Bump to Variations of the Shape of the Domain �.
We expect the bump to be somewhat dependent on the shape of �. It would
nonetheless be desirable that this dependency would not be too strong for
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the modeling described in this letter to have some biological relevance.
Indeed, if the bumps are metaphors of persistent states, we expect them to
be relatively robust to the actual shape of the cortical part being modeled.
For example, if we take � to be a representation of the primary visual cortex
V1 whose shape varies from individual to individual, it would come as a
surprise if the shape of a bump induced by the same spatially constant
stimulus were drastically different.

Technically, in order to study the dependence of V f with respect to �,
we need to assume that � is smooth; its border ∂� is a smooth curve
(q = 2) or surface (q = 3) unlike the previous examples, where � was the
square [−1, 1]2. But a difficulty arises from the fact that the set of regular
domains is not a vector space—hence, the derivative of a function (the
bump) with respect to a domain has to be defined with some care. The
necessary background is found in section A.3.

We make explicit the fact that the connectivity function W has been
normalized to satisfy ‖W‖F = 1 by writing W(r, r′, �) where, with some
abuse of notation,

W(r, r′, �)=W(r, r′)/J (�) with J (�)=
√∫

�×�

‖W(r, r′)‖2
F dr dr′.

Theorem 6. Let us assume that � is a smooth, bounded domain of Rq . If W is
in W1,2

n×n(� × �), I ext is in W1,2
n (�) (see section A.1 for a definition) the material

derivative (see section A.3 for a definition) V f
m(r, �) of the bump V f satisfies the

following equation:

V f
m(r,�, X) =

∫
�

W(r, r ′, �)DS(V f (r ′,�))V f
m(r ′,�, X) d r ′ (6.2)

+
∫

�

W(r, r ′, �)S(V f (r ′,�))divX(r ′)d r ′ (6.3)

+
∫

�

D1W(r, r ′, �)X(r)S(V f (r ′,�))d r ′ (6.4)

+
∫

�

D2W(r, r ′, �)X(r ′)S(V f (r ′,�))d r ′ (6.5)

− 〈J ′(�), X〉
J (�)

(V f (r, �) − I ext(r))

+ DI ext(r) · X(r), (6.6)

where Di , i = 1, 2 indicates the derivative with respect to the ith variable and
〈J ′(�), X〉 is the Gâteaux derivative of J (�) with respect to the vector field X:

〈J ′(�), X〉 = lim
τ→0

J (�(τ )) − J (�)
τ

,
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where X is defined in the proof below. We have

〈J ′(�), X〉= 1
2J (�)

( ∫
�×∂�

‖W(r, r ′, �)‖2
F 〈X(r ′), N(r ′)〉 d r da(r ′)

+
∫

∂�×�

‖W(r, r ′, �)‖2
F 〈X(r ′), N(r ′)〉 da(r) d r ′

)
,

where da is the surface element on the smooth boundary ∂� of �, and N is its unit
inward normal vector.

Proof. The proof uses ideas that are developed in Delfour and Zolésio
(2001) and Sokolowski and Zolésio (1992; see also section A.3). We want to
compute

V f
m(r, �, X) = lim

τ→0

V f (r(τ ), �(τ )) − V f (r, �)
τ

from equation 3.2. As far as the computation of the derivative is concerned,
only small deformations are relevant, and we consider the first-order Taylor
expansion of the transformation T :

T(τ, r) = T(0, r) + τ
∂T
∂τ

(0, r) = r + τX(r).

We define


 ≡ 1
τ

(∫
�(τ )

W(r(τ ), r′, �(τ ))S(V f (r′,�(τ )))dr′

−
∫

�

W(r, r′, �)S(V f (r′,�)) dr′

+ Iext(r + τX(r )) − Iext(r)
)

.

In the first integral, we make the change of variable r′ → r′ + τX and obtain

1
τ

∫
�

W(r + τX(r), r′ + τX(r′), � + τX)

×S(V f (r′ + τX(r′),� + τX))|detJ τ (r′)|dr′.

We have

detJ τ (r′) = 1 + τdiv(X(r′)) + o(τ ).
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Hence, for τ sufficiently small detJ τ > 0. Moreover:

lim
τ→0

detJ τ = 1 lim
τ→0

detJ τ (r′) − 1
τ

= div(X(r′)),

and

W(r + τX(r), r′ + τX(r′), � + τX)

= W(r, r′) + τ D1W(r, r′)X(r) + τ D2W(r, r′)X(r′)

−τ
〈J ′(�), X〉

J (�)
W(r, r′, �) + o(τ ),

where Di , i = 1, 2 indicates the derivative with respect to the ith argument.
Thus, we have

τ
 =
∫

�

W(r, r′,�)(S(V f (r′ + τX(r′),� + τX))

− S(V f (r′,�)))detJ τ (r′)dr′

+
∫

�

W(r, r′,�)S(V f (r′,�))(detJτ (r′) − 1)dr′

+ τ

{∫
�

D1W(r, r′,�)X(r)S(V f (r′ + τX(r′),� + τX))detJτ (r′)dr′

+
∫

�

D2W(r, r′,�)X(r′)S(V f (r′ + τX(r′),� + τX))detJτ (r′)dr′

− 〈J ′(�), X〉
J (�)

∫
�

W(r, r′, �)S(V f (r′ + τX(r′),� + τX))detJτ (r′)dr′

+ DIext(r) · X(r)
}
.

Because

lim
τ→0

S(V f (r′ + τX(r′),� + τX)) − S(V f (r′,�))
τ

= DS(V f (r′,�))V f
m(r′,�, X),

and
∫
�

W(r, r′, �)S(V f (r′,�)) dr′ = V f (r, �) − Iext(r), we obtain equa-
tion 6.2. The value of 〈J ′(�), X〉 is obtained from corollary 2.
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Figure 12: The unit disk and its bump V f .

Equation 6.2 is of the same form as before:

(
J · V f

m

)
(r,�, X) =

∫
�

W(r, r′, �)S(V f (r′,�))divX(r′)dr′

+
∫

�

D1W(r, r′, �)X(r)S(V f (r′,�))dr′

+
∫

�

D2W(r, r′, �)X(r′)S(V f (r′,�))dr′

−〈J ′(�), X〉
J (�)

(V f (r, �) − Iext(r)).

This result tells us that the shape of the bump varies smoothly with respect
to the shape of the domain �.

6.2.1 Numerical Application for the Domain Derivatives. We show in
Figure 12 the bump V f for � equal to the unit disc D(0, 1) and in Figure 13
the one for � equal to the ellipse3 Ellipse(1.2, 1) of equation r2

1
a2 + r2

2 − 1 = 0.

3Ellipse(a , b) represents the ellipse lying along the first axis of coordinates with semi-
major axis a and semiminor axis b.
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Figure 13: Bump associated with the ellipse with major axis along the r1 coor-
dinate and the minor axis along the r2 coordinate. The ratio of the axes length
is a = 1.2 (see text).

The values of the weight parameters α are the same as in Figure 3 and
I = [0, 0]T . The matrix T is equal to

T =




40 0 10 0

0 10 0 12

12 0 40 0

0 40 0 40


 .

Note that because the diagonal elements are not equal for T11, T12, and T13,
W is not circularly symmetric, and so is the bump in Figure 12 despite the
fact that � is circularly symmetric.

Finally we show in Figure 14 the two coordinates of the shape (material)
derivative of the first bump in the direction of the field X corresponding to
the transformation

T(τ, r) = r + τ

[
(a − 1)r1

0

]
.

T(1) transforms the disc D(0, 1) into the ellipse Ellipse(a , 1), X(r) = [(a −
1)r1, 0]T .

Thus, divX = (a − 1) and, because of equation 5.3,

(
J · V f

m

)
(r,�, X) =

(
a − 1 − 〈J ′(�), X〉

J (�)

)
(V f − I)

+
∫

�

D1W(r, r′, �)(X(r) − X(r′))S(V f (r′,�))dr′,



178 O. Faugeras, R. Veltz, and F. Grimbert

Figure 14: The shape derivative V f
m for a = 1.2.

and

〈J ′(�), X〉 =
∫
�×∂�

‖W(r, r′, �)‖2
F 〈X(r′), N(r′)〉 dr da(r′)

J (�)
.

As the gaussian quadrature formula holds for a rectangular domain, we
use polar coordinates to map the disk (or the ellipse) to a square. For our
numerical study, we can simplify these expressions (the matrixes Ti j are
symmetric):

[ ∫
�

D1W(r, r′, �)(X(r) − X(r′))S(V f (r′,�))dr′
]

i

=
∑

j

∫
�

(r − r′)T Ti j (X(r) − X(r′))Wi j (r, r′, �)Sj
(
V f

j (r′,�)
)
dr′

i = 1, . . . , n.

Thus, we can use a simple modification of the algorithm that computes
W · S(V) to obtain the previous expression.

J (�) and 〈J ′(�), X〉 are computed with a gauss quadrature formula. For
a circle in polar coordinates, N(r′) = r′.
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Let us be a bit more precise. In the case shown in Figure 12, we choose
I = 0. Using Banach’s theorem, we compute V f

Gauss for N = 30 and use
Nyström’s interpolation to compute V f

Nys for n = 100 (for example) points
on each axis.

Then, using V f
Gauss , we compute V f

m,Gauss for N points. But the equation
for V f

m reads

V f
m = W.DS(V f ).V f

m + 〈J ′(�), X〉.

Having computed a Nyström interpolation of n points for V f
m =

W.DS(V f ).V f
m + 〈J ′(�), X〉, we again use a Nyström interpolation with

the last equation to compute V f
m,Nystrom for n points on each axis.

We used this numerical method in every previous example related to the
computation of derivatives.

7 Conclusion and Perspectives

We have studied two classes (voltage and activity based) of neural con-
tinuum networks in the context of modeling macroscopic parts of the
cortex. In both cases, we have assumed an arbitrary number of interact-
ing neuron populations, either excitatory or inhibitory. These populations
are spatially related by nonsymmetric connectivity functions representing
cortico-cortical, local connections. External inputs are also present in our
models to represent nonlocal connections, for example, with other cortical
areas. The relationship between (average) membrane potential and activ-
ity is described by nondegenerate sigmoidal nonlinearities, that is, not by
Heaviside functions, which have often been considered instead in the liter-
ature because of their (apparent) simplicity.

The resulting nonlinear integro-differential equations are of the Ham-
merstein type (Hammerstein, 1930) and generalize those proposed by
Wilson and Cowan (1973).

Departing from most of the previous work in this area, we relax the usual
assumption that the domain of definition where we study these networks is
infinite, that is, equal to R or R2, and we explicitly consider the biologically
much more relevant case of a bounded subset � of Rq , q = 1, 2, 3, obvi-
ously a better model of a piece of cortex. The importance of this has been
emphasized by Nunez (2005) for a number of years, and we fully agree with
him on this.

Using methods of functional analysis, we have studied the existence
and uniqueness of a stationary (i.e., time-independent) solution of these
equations in the case of a stationary input. These solutions are often referred
to as persistent states, or bumps, in the literature.

We have proved that under very mild assumptions on the connectivity
functions, such solutions always exist (this is due in part to the fact that we
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do not use Heaviside functions and mostly to the fact that we consider the
cortex as a bounded set).

We have provided sufficient conditions on the connectivity functions for
the solution to be absolutely stable, that is, independent of the initial state
of the network. These conditions can be expressed in terms of the spectra
of some functional operators, which we prove to be compact, that arise
naturally from the equations describing the network activity.

We have also studied the sensitivity of the solutions to variations of such
parameters as the connectivity functions, the sigmoids, the external inputs,
and the shape of the domain of definition of the neural continuum networks.
This last analysis is more involved than the others because of the infinite-
dimensional nature of the shape parameter. An analysis of the bifurcations
of the solutions when the parameters vary over large ranges requires the
use of techniques of bifurcation analysis for infinite-dimensional systems
and is out of the scope of this letter.

We believe, and we hope by now to have convinced the reader, that the
functional analysis framework that we have used in this letter is the right
one to try to answer some of the mathematical questions raised by models
of connected networks of nonlinear neurons. We also believe that some
of these also begin to answer biological questions since these networks
models, despite the admitedly immense simplifications they are built from,
are nonetheless metaphors of real neural assemblies.

Appendix A: Notations and Background Material

A.1 Matrix Norms and Spaces of Functions. We note Mn×n the set of
n × n real matrixes. We consider the Frobenius norm on Mn×n,

‖M‖F =
√√√√ n∑

i, j=1

M2
i j ,

and consider the space L2
n×n(� × �) of the functions from � × � to Mn×n

whose Frobenius norm is in L2(� × �). If W ∈ L2
n×n(� × �), we note

‖W‖2
F = ∫

�×�
‖W(r, r′)‖2

F dr dr′. Note that this implies that each element
Wi j , i, j = 1, . . . , n in in L2(� × �). We note F the set L2

n(�) of square-
integrable mappings from � to Rn and ‖x‖F the corresponding norm. We
have the following:

Lemma 1. Given x ∈ L2
n(�) and W ∈ L2

n×n(� × �), we define y(r) =∫
� W(r, r ′)x(r ′) d r ′. This integral is well defined for almost all r , y is in L2

n(�),
and we have

‖y‖F ≤ ‖W‖F ‖x‖F .
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Proof. Since each Wi j is in L2(� × �), Wi j (r, .) is in L2(�) for almost all r,
thanks to Fubini’s theorem. So Wi j (r, .)xj (.) is integrable for almost all r from
what we deduce that y is well defined for almost all r. Next, we have

|yi (r)| ≤
∑

j

∣∣∣∣
∫

�

Wi j (r, r′) xj (r′) dr′
∣∣∣∣

and (Cauchy-Schwarz)

|yi (r)| ≤
∑

j

(∫
�

W2
i j (r, r′) dr′

)1/2

‖xj‖2,

from which it follows that (Cauchy-Schwarz again, discrete version):

|yi (r)| ≤

∑

j

‖xj‖22




1/2 
∑

j

∫
�

W2
i j (r, r′) dr′




1/2

= ‖x‖F

∑

j

∫
�

W2
i j (r, r′) dr′




1/2

,

from which it follows that y is in L2
n(�) (thanks again to Fubini’s theorem)

and

‖y‖2
F ≤ ‖x‖2

F
∑
i, j

∫
�×�

W2
i j (r, r′) dr′ dr = ‖x‖2

F ‖W‖2
F .

We also use the following:

Lemma 2. For each V of F , S(V ) is in F ; and we have

‖S(V )‖F ≤ Sm
√

n|�|.

For all V 1 and V 2 in F we have

‖S(V 1) − S(V 2)‖F ≤ DSm‖V 1 − V 2‖F ,

where DSm is defined in definition 1.

Proof. We have ‖S(V)‖2
F = ∑n

i=1

∫
�

(Si (Vi (r)))2 dr ≤ S2
mn|�|, where |�| is

the Lebesgue measure of � (its area). Similarly, ‖S(V1) − S(V2)‖2
F = ∑n

i=1
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∫
�

(Si (V1
i (r)) − Si (V2

i (r)))2 dr ≤ (DSm)2 ∑n
i=1

∫
�

(V1
i (r) − V2

i (r))2 dr = (DSm)2

‖V1 − V2‖2
F .

In theorem 6, we use the Sobolev spaces W1,2
n (�) and W1,2

n×n(� × �).
W1,2

n (�) is the set of functions X : � → Rn such that each component
Xi , i = 1, . . . , n is in W1,2(�), the set of functions of L2(�) whose first-order
derivatives exist in the weak sense and are also in L2(�) (see Evans, 1998).
Similarly W1,2

n×n(� × �) is the set of functions X : � → Mn×n such that each
component Xi j , i, j = 1, . . . , n is in W1,2(�).

A.2 Choice of the Quadrature Method. We emphasize the importance
of the choice of a specific quadrature formula using the following example:∫ 1
−1 e−tdt = e − 1/e where we compare a 0th-order finite elements methods

with Gauss’s method (the parameters of the Gauss quadrature formula are
computed with a precision of 10−16 using Newton’s method):

Method Value

Exact 2.350 402 387 287 603 . . .

0th order (N = 1000) 2.351 945 . . .

Finite element
Gauss (N = 5) 2.350 402 386 46 . . .

The Gauss method is far more powerful and allows us to compute bumps
in 3D for an arbitrary number of populations.

A.3 Shape Derivatives. As it has already been pointed out, the compu-
tation of the variation of the bump with respect to the shape of the region �

is difficult since the set U of regular domains (regular open bounded sets)
of Rq does not have the structure of a vector space. Variations of a domain
must then be defined in some way. Let us consider a reference domain � ∈ U
and the set A of applications T : � → Rq , which are at least as regular as
homeomorphisms—one to one with T and T−1 one to one. In detail,

A = {
T one to one, T, T−1 ∈ W1,∞(�, Rq )

}
,

where the functional space W1,∞(�, Rq ) is the set of mappings such that
they and their first-order derivatives are in L∞(�, Rq ). In detail,

W1,∞(�, Rq ) = {
T : � → Rq such that T ∈ L∞(�, Rq ) and

∂i T ∈ L∞(�, Rq ), i = 1, · · · , q
}

Given a shape function F : U → Rq , for T ∈ A, let us define F̂ (T) =
F (T(�)). The key point is that since W1,∞(�, Rq ) is a Banach space, we can
define the notion of a derivative with respect to the domain � as:
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Definition 4. F is Gâteaux differentiable with respect to � if and only if F̂ is
Gâteaux differentiable with respect to T.

In order to compute Gâteaux derivatives with respect to T , we introduce
a family of deformations (T(τ ))τ≥0 such that T(τ ) ∈ A for τ ≥ 0, T(0) = I d ,
and T(·) ∈ C1([0, A]; W1,∞(�, Rq )), A > 0. From a practical point of view,
there are many ways to construct such a family, the most famous one being
the Hadamard deformation (Hadamard, 1968), which goes as follows.

For a point r ∈ �, we note

r(τ ) = T(τ, r) with T(0, r) = r

�(τ ) = T(τ, �) with T(0,�) = �).

Let us now define the velocity vector field X corresponding to T(τ ) as

X(r) = ∂T
∂τ

(0, r) ∀r ∈ �.

From definition 4 follows:

Definition 5. The Gâteaux derivative of a shape function F (�) in the direction
of X, denoted 〈F ′(�), X〉, is equal to

〈F ′(�), X〉 = lim
τ→0

F (�(τ )) − F (�)
τ

.

We also introduce:

Definition 6. The material derivative of a function f (r, �), noted fm(r, �, X)
is defined by

fm(r, �, X) = lim
τ→0

V (r(τ ), �(τ )) − V (r, �)
τ

,

and

Definition 7. The shape derivative of a function f (r, �), noted fs(r, �, X) is
defined by

fs(r, �, X) = lim
τ→0

f (r, �(τ )) − f r, �)
τ

.

The following theorem whose proof can be found, in Delfour and Zolésio
(2001) and Sokolowski and Zolésio (1992) relates the Gâteaux derivative
and the shape derivative:
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Theorem 7. The Gâteaux derivative of the functional F (�) = ∫
� f (r,�) d r in

the direction of X is given by

〈F ′(�), X〉 =
∫

�

fs(r, �, X) d r −
∫

∂�

f (r, �)
〈

X(r), N(r)
〉

da(r),

where N is the unit inward normal to ∂� and da its area element.

The following corollary is used in the proof of theorem 6:

Corollary 2. The Gâteaux derivative of the functional F (�) = ∫
� f (r) d r in the

direction of X is given by

〈F ′(�), X〉 = −
∫

∂�

f (r)
〈

X(r), N(r)
〉

da(r),

where N is the unit inward normal to ∂� and da its area element.
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Many efforts have been devoted to modeling asynchronous irregular (AI)
activity states, which resemble the complex activity states seen in the
cerebral cortex of awake animals. Most of models have considered bal-
anced networks of excitatory and inhibitory spiking neurons in which
AI states are sustained through recurrent sparse connectivity, with or
without external input. In this letter we propose a mesoscopic descrip-
tion of such AI states. Using master equation formalism, we derive a
second-order mean-field set of ordinary differential equations describ-
ing the temporal evolution of randomly connected balanced networks.
This formalism takes into account finite size effects and is applicable to
any neuron model as long as its transfer function can be characterized.
We compare the predictions of this approach with numerical simulations
for different network configurations and parameter spaces. Considering
the randomly connected network as a unit, this approach could be used
to build large-scale networks of such connected units, with an aim to
model activity states constrained by macroscopic measurements, such as
voltage-sensitive dye imaging.

1 Introduction

Cortical activity in awake animals manifests highly complex behavior, often
characterized by seemingly noisy activity. At the level of single neurons,
the activity in awake animals is associated with considerable subthreshold
fluctuations of the membrane potential and irregular firing (Matsumara,
Cope, & Fetz, 1988; Steriade, Timofeev, & Grenier, 2001; Destexhe, Rudolph,
& Paré, 2003). It is during this regime that the main computational tasks are
performed, and understanding those network dynamics is a crucial step
toward an analytical study of information processing in neural networks
(Destexhe & Contreras, 2006).

Much effort has been devoted to the study of how such activity emerges.
Balanced networks have been introduced as a possible model to generate
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dynamical states similar to the biological ones (see Figure 1). Two antag-
onistic states have been highlighted: synchronous regular states (SR) and
asynchronous irregular states (AI) (Brunel, 2000). AI states are of particular
interest because their dynamical characteristics are very similar to those
observed in awake animals. For conductance-based integrate-and-fire neu-
ron networks, they have even been observed without external stimulation
(Vogels & Abbott, 2005; El Boustani, Pospischil, Rudolph-Lilith, & Des-
texhe, 2007; Kumar, Schrader, Aertsen, & Rotter, 2008). Large networks
(over 10,000 neurons) are required to yield states consistent with experi-
mental data (El Boustani et al., 2007; Kumar et al., 2008).

In parallel to these studies, population measures of neural activity have
also been of great interest, in particular through the emergence of new
imaging techniques such as voltage-sensitive dye imaging or two-photon
imaging. Although the relation between these signals and single-cell prop-
erties is still not completely clear, these measurements reveal structures and
correlations over large distances (millimeters or centimeters). No model
currently is able to describe neuronal dynamics in large-scale networks at
such distance scales, and there is a need for theoretical models specifically
designed to handle the temporal and spatial scales of optical imaging.

The type of model that seems most appropriate for such scales are
mean-field approaches. Self-consistent mean-field approaches have been
proposed and gave predictions about the network stability in a stationary
regime (Amit & Brunel, 1997; Brunel, 2000; Latham, Richmond, Nelson, &
Nirenberg, 2000; Hertz, Lerchner, & Ahmadi, 2004). However, first-order
mean-field approximation fails to fully describe these networks because of
their inherent dynamics, which can rely dramatically on activity fluctua-
tions. Moreover, the large network limit is usually performed for randomly
connected networks despite the lack of biological relevance.

In this letter, our aim is to obtain a macroscopic description of distributed
neuronal activity during AI states, where the unit is not the neuron but a
small network of neurons. The difficulty, however, is to obtain a description
that captures the statistics of network activity while being consistent with
single-cell behavior. For this reason, we introduce a mesoscopic description
of neuronal activity, in which finite size effects are explicitly taken into
account. We consider networks of typical sizes of a few thousand neurons,
far away from the large network limit.

To obtain such a mesoscopic model, we use a master equation formalism
appropriate for a second-order mean-field description of network activity.
The AI states, characterized by low firing rates and exponential decrease
of the activity autocorrelation, can be incorporated in such a framework. A
complete description of the correlations and covariances can be extracted
for timescales governed by the network time constants. Correlations and
covariances in the neural dynamics convey crucial information and can be
responsible for radical changes in network state according to the parameter
regime. This question has already been addressed with a similar formalism
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Figure 1: Example of a self-sustained asynchronous irregular (AI) state in a
sparsely connected network of conductance-based neurons. The network con-
tains 5000 neurons with a ratio of 4:1 between excitatory and inhibitory neurons
and a connection probability pconn = 0.01. Otherwise the neuron model is iden-
tical to Vogels and Abbott (2005) with �gexc = 7 nS and �ginh = 100 nS. (a) Top:
Raster plot for a subset of excitatory (black dots) and inhibitory (gray dots) neu-
rons. Bottom: Population activity with a bin size of 1 ms (black) and 5 ms (gray).
The network has a mean activity of 23.68 Hz. (b) Autocorrelation of the total
network activity. The dashed gray curve indicates the exponential envelope fit
to the autocorrelation positive peaks. The dashed black curve indicates the slope
at the origin. The decay time is equal to 10 ms, and the activity has been com-
puted with a bin size of 1 ms. (c) Characterizing the asynchronous irregular state
using statistical measures. The population distribution of the interspike interval
coefficient of variation (CV) with a mean value of 1.7933, which is higher than
1 for the Poisson process. In the inset, the averaged pairwise cross-correlation
computed with a bin size of 5 ms. The value at origin (0.034) estimates the
network synchrony. This very low value indicates that there is no substantial
synchrony among the neurons. (d) Stationary activity distribution of the net-
work activity. The dashed gray curve indicates the gaussian fit made with the
same mean value (23.68 Hz) and standard deviation (3.43 Hz). The activity has
been computed with a time bin of 5 ms.
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for binary neural networks (Ginzburg & Sompolinsky, 1994; Ohira &
Cowan, 1993). Here we intend to develop a more general formalism, appli-
cable to spiking neural networks (El Boustani & Destexhe, 2007).

A similar theory has been studied in parallel (Soula & Chow, 2007) with
a discrete description of the network activity. Although a discrete descrip-
tion seems more natural for finite-size networks, several weaknesses appear
when considering many populations, which is necessary for networks dis-
playing spontaneously AI states. Indeed, the core of the theory is the transfer
function, which maps the output firing rate of the neuron as a function of
its synaptic input rates. Theoretical work has been done to obtain analytical
transfer functions for a range of neuron models (Tuckwell, 1988; Brunel
& Sergi, 1998; Brunel, 2000; Fourcaud & Brunel, 2002; Plesser & Gerstner,
2000). However, to take advantage of such results, we have to rely on a
continuous description of network activity to link the neuron statistics to
the network ones.

Those computations are not always possible, and a semianalytical ap-
proach has been used to tackle this problem (Kumar et al., 2008; Soula &
Chow, 2007). In these studies, the neuron transfer function was determined
numerically for every network state and used directly for a mean-field ap-
proach. This method becomes excessively time-consuming as soon as the
network is slightly heterogeneous, which is the case when excitatory and in-
hibitory neurons have different intrinsic properties, for instance. Indeed, it
is necessary to characterize numerically the transfer function for each popu-
lation and conditionally to every population state. A continuous description
is thus necessary to describe heterogeneous networks while benefiting from
the theoretical work that has been made at the single-neuron level.

We consider different neuron models ranging from those for which a
transfer function has been derived, to those for which an approximative
model is required. For the latter, we suggest empirical models that can
account for the network dynamics for a broad range of parameters. In par-
ticular, for conductance-based neurons, a transfer function can be found
that gives a good qualitative description of different network regimes.
Those transfer functions are detailed in the next sections and compared
with numerical simulations for different model configurations. Finally, to
gain some insight into the stability issues of self-sustained AI states and
their lifetime, we use second-order statistics to discuss stability in different
dynamical regimes, as well as discuss the limits of our approach. A prelimi-
nary version of this work has been published previously as a master’s thesis
(El Boustani, 2006) and a conference abstract (El Boustani & Destexhe, 2007).

2 Methods

All simulations were performed using the NEST simulator (http://www.
nest-initiative.org) through the PyNN interface (http://neuralensemble.
org/PyNN). We used different models of AI states in networks of spiking
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neurons, based on previous work (Brunel, 2000; Mehring, Hehl, Kubo,
Diesmann, & Aertsen, 2003; Vogels & Abbott, 2005). Network size will
be 5000 neurons with a ratio of 1:4 between excitatory and inhibitory
(γ = Ninh

Ntot
= 0.2), unless stated otherwise. For current-based models, an

event-based strategy (Brette et al., 2007) was used to solve the network
equations, and in the conductance-based model, a clock-based strategy was
used with a time step of 0.1 ms, which is well beyond every time constant
present in the system. In numerical and analytical models, we consider
networks without any time delay in synaptic interactions. Based on pre-
vious work (Brunel & Hakim, 1999; Brunel, 2000; Vogels & Abbott, 2005),
we expect this model to provide a broad range of AI states. In particular,
the absence of interaction delay should decrease synchronous regions, as
shown in Brunel (2000). Those states will be characterized using the usual
statistical measures. To estimate the firing regularity, we will compute the
mean interspike interval coefficient of variation. Neuron synchronization
will be estimated by computing the mean pairwise cross-correlation among
a set of 500 disjoint pairs and at time lag 0. This correlation coefficient is com-
puted with a time bin of 5 ms, which gives a good estimation of synchrony
among the neurons (Kumar et al., 2008). The measure is normalized so that
it takes values between 0 (no synchrony) and 1 (complete synchrony). Those
statistics quantities are illustrated in Figure 1c.

3 Results

We start by describing the general formalism in section 3.1, then consider
different neuron models in sections 3.2 and 3.3, and end by illustrating the
predictions of this formalism with numerical simulations in section 3.4. The
symbol definitions can be found in Table 1 and the simulation parameters
in Table 2.

3.1 The Master Equation Formalism. In this section, we develop the
mathematical framework in which network dynamics will be described.
The mean-field approach has been proven to be a powerful approach to de-
scribe networks of spiking neurons if pertinent approximations are done.
In previous work, spontaneous activity and networks under stimulation
have been studied with self-consistent equations for the neuron stationary
mean firing rate (Amit & Brunel, 1997; Brunel, 2000). In these contexts, the
individual neuron spike trains are considered as Poisson point processes,
which allows one to take into account current fluctuations due to irregular
firing. In particular, when a Fokker-Planck approach is used, the mem-
brane potential distribution can be obtained and state diagrams drawn for
the network activity. However, once the mean neuron firing rate has been
determined, the self-consistent equations are studied without considera-
tion to the population activity fluctuations and temporal dynamics. We
propose a framework where a second-order description can be done at the
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Table 1: Table of Symbols.

Symbol Definition Unit

Network
Nµ Number of neuron in population µ -
γ Inhibitory/excitatory neuron number ratio -
Cαµ Number of synaptic input from population α to µ -
pconn

αµ Proportion of synaptic connection from population α to µ -
mµ Network activity Hz
mext

µ External network activity Hz
T Network time constant ms

Neuron
νµ Transfer function of a neuron in population µ Hz
Vµ Membrane potential mV
Vrest

µ Resting membrane potential mV
Vreset

µ Firing reset membrane potential mV
Vthreshold

µ Firing threshold potential mV
Rµ Input resistance at rest M�

GL
µ Leak conductance nS

Cmem
µ Membrane capacitance pF

τmem
µ Resting membrane time constant ms

τ
re f
µ Firing refractory period ms

Synapse
Aαµ Current synaptic strength from population α to µ pA
Jαµ Voltage synaptic strength from population α to µ mV
�gαµ Conductance synaptic strength from population α to µ nS
Eα Reversal potential for the α-type synapse mV
τα Synaptic time constant for the α-type synapse ms

population level. In addition to using a stochastic process for the membrane
potential, we invoke the master equation to obtain a stochastic process for
the network activity using the corresponding neuron transfer function. In
AI states, the activity autocorrelation decreases exponentially with the time
lag (see Figure 1b), and our main hypothesis is that the network can be
modeled as a Markov process for time steps in the order of this decay
time.

3.1.1 Main Hypothesis of the Phenomenological Model. Cortical tissue is
made of a great variety of neurons, which can been classified according to
their biophysical properties. More precisely, electrophysiological measure-
ments can be used to categorize neurons in their contribution to network
dynamics. Although those properties exhibit a great diversity, for model-
ing, we can adopt a stereotypic description where only a few homogeneous
populations are considered. In this letter, we consider only two popula-
tions, excitatory and inhibitory neurons, but the formalism can accommo-
date more classes if needed. To keep the model general, we assume that
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Table 2: Network Configurations in Numerical Simulations.

Parameter Value Unit

γ 0.2 -
T 5 (except Figure 4) ms
Vrest

µ −60 mV
Vreset

µ −60 (except Figure 5) mV
Vthreshold

µ −50 mV
Rµ 100 M�

τmem
µ 20 ms

τ
re f
µ 5 ms

Eexc 0 mV
Einh −80 mV
Figure N pconn (τexc , τinh )
2 and 4 5000 0.01 (1,3) ms
3a 15,000 0.01 (1,3) ms
3b and 3c 5000–25,000 0.01 (1,3) ms
1 and 5 5000 0.01 (5,10) ms
6a–6c 10,000 0.02 (5,10) ms
6d–6g 5000–10,000 0.01–0.02 (5,10) ms
7 and 10 10,000 0.01 (5,10) ms
11 10,000 0.02 (5,10) ms
12a and 12b 112,500 0.1 (0.3,0.3) ms
12d–12e 10,000 Variable (5,10) ms

the network contains K homogeneous populations of neurons, denoted by
1, 2, . . . ,K . We define mγ (t) as the network activity at time t,

mγ (t) = lim
�t→0

nγ (t − �t, t)
�tNγ

, (3.1)

where nγ (t − �t, t) is the number of spikes emitted by population γ during
the time interval [t − �t, t] and Nγ is the population size for γ = 1, . . . ,K .
In order to build the master equation and obtain the desired Markovian
description of network dynamics, we are interested in the conditional prob-
ability distribution for a short time interval T ,

P({mγ (t)} | {m′
γ (t − T)}), (3.2)

with γ = 1, . . . , K . The system is assumed to be time invariant, so this prob-
ability depends only on the time constant T , and we write PT ({mγ } | {m′

γ }).
This model is eventually intended to describe balanced network dynamics,
which are made with sparse connectivity. For large enough networks, this
property guarantees the existence of AI states in which pairwise correlations
are negligible (van Vreeswijk & Sompolinsky, 1996; Brunel, 2000). We can
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thus assume that the population-conditional probabilities are independent
from each other beyond the timescale of T :

PT ({mγ } | {m′
γ }) = PT (m1 | {m′

γ }) . . . PT (mK | {m′
γ }). (3.3)

Indeed, for a probabilistic system defined through a joint probability dis-
tribution, if the random variables are assumed to be independent, this
distribution can be factorized in a product of marginal distributions de-
scribing each variable exclusively. As the network dynamics is assumed to
be memoryless beyond the time interval T , we can then define a Markovian
transition operator W({mγ } | {m′

γ }) through the continuous master equation
for population activities,

∂t Pt({mγ }) =
∏

α=1,...,K

∫ 1/T

0
dm′

α(Pt({m′
γ })W({mγ } | {m′

γ })

− Pt({mγ })W({m′
γ } | {mγ })), (3.4)

where mγ ∈ [0, T−1] and ∂t Pt({mγ }) is the time derivative of the probability
distribution density. In this context, the population activity must be un-
derstood as the proportion of neurons that have fired at least once during
the last period T , divided by the duration T and not as the instantaneous
activity (see equation 3.1). The parameter T controls the temporal resolu-
tion of the model, and therefore the activity variables are bound by T−1.
However, if T−1 is larger than or equal to the neuron maximal firing rate,
then we can avoid underestimation of the activity. Indeed, the fastest be-
havior in the network is defined by the neurons’ maximal firing rate. In
the SR regime, where excitation prevails over inhibition, the network firing
rate is close to the neuron maximal firing rate. However, the time constant
T cannot be taken as 0 because significant correlations at this scale would
not be considered in this Markovian approach. We aim to describe network
states with activity below 50 Hz, which can allow a quite large value for
T without the risk of underestimation. An equivalent discrete formalism
has been studied by Soula and Chow (2007) with a Markovian approach.
Here we insist on keeping a continuous description characterized by the
timescale T in order to obtain a framework entirely consistent with the
Fokker-Planck approach at the neuron level. The crucial quantity, which
must be small to allow this continuous description, is the activity resolu-
tion �m = 1

NT . It describes the minimal change in network activity due
to a supplementary spike. It is thus necessary to find a good compromise
between network size and time resolution to keep �m small. The transition
operator W({mγ } | {m′

γ }) provides the rate of transition from state {m′
γ } to

state {mγ } giving the master equation its intuitive interpretation. It can be
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defined using the conditional probability density, equation 3.3, by

W({mγ } | {m′
γ }) = lim

T→0

PT ({mγ } | {m′
γ })

T

= lim
T→0

∏
α=1,...,K PT (mα | {m′

γ })
T

. (3.5)

Therefore, we have to compute PT (mα | {m′
γ }) to fully specify the model. We

will adopt a different definition that is more appropriate to our phenomeno-
logical model. We assume that the network follows a quasi-stationary evo-
lution, which means that during time T , the system reaches a stationary
state, determined by the previous state a time T earlier. This corresponds
to the adiabatic hypothesis used in physics. Of course, this approximation
no longer holds if the system is stimulated by a signal that possesses fre-
quencies larger than T−1, which can bring the system far from equilibrium.
Therefore, and to avoid divergencies due to irrelevant high-order fluctua-
tions, we define the transition function for finite T :

W({mγ } | {m′
γ }) =

∏
α=1,...,K PT (mα | {m′

γ })
T

. (3.6)

Similarly as mentioned before, equation 3.1 is reconsidered for finite T and
is bounded by the maximal activity value. Hence, if T is small enough, the
master equation formalism can be used. If we consider the limit T → 0, the
activity fluctuations become too important, and the transition function di-
verges. This parameter is equivalent to the bin size sampling in experiments,
and it is well known that bin sizes that are too small give rise to irrelevant
fluctuations in the population activity. Furthermore, for an infinitesimal
bin size, those fluctuations become punctual, and the transition operator
should be reduced to a two-dimensional matrix between the states where
the network spikes or does not. To avoid this problem, we require that T
has a finite value in the range of the network time constants. The Marko-
vian approach is intended to describe the network dynamics responsible
for the activity autocorrelation envelope (see Figure 1b). Correlations’ fine
structures in the AI regime are caused by residual global oscillations due
to finite size effects. However, as the network size increases, the time con-
stant T can take smaller values because the temporal finite-size effect in
the autocorrelation vanishes because of sparse connectivity (Brunel, 2000).
Thus, we can define a mesoscopic scale for sparsely connected networks in
which the network is large enough to avoid temporal correlation finite-size
effects but small enough to require second-order statistics to describe its
population dynamics. However, the activity autocorrelation decreases ex-
ponentially on a timescale of the same order as the system time constants.
A Markovian approach should not be acceptable below this timescale, and
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we have to choose T carefully according to the regime under consideration.
A T that is too large could underestimate the firing rate in high-activity
regimes, and T values that are too small will overestimate the second-order
statistics. This point has also been discussed in Soula and Chow (2007), but
no mention has been made of the fact that the typical autocorrelation fine
structure timescales of the network could be smaller than any time con-
stant in the system (Gerstner, 2000), as shown in Figure 1b. Eventually, for a
large enough network, we can consider T = ν−1

max, where νmax is the neuron
maximum firing rate, for almost the whole range of the AI regime.

3.1.2 Differential Equations for the Statistical Moments. Using equation 3.4,
we can obtain a hierarchy of first-order differential equations for the sta-
tistical moments. Indeed, the master equation solution provides the time
evolution of the activity probability density. It generally cannot be solved
exactly, but one can extract a hierarchy of equations for the statistical mo-
ments directly from the differential equation. For balanced networks, this
set of equations can be stopped at the second order, and we avoid the clo-
sure problem. Indeed, the stationary activity distribution during AI states
is well described by a gaussian function when the bin size is not too small
(see Figure 1d). This can be understood thanks to the central limit theorem,
because we are averaging out higher-order fluctuations during time steps
T in the asynchronous activity. Of course, this can hold only if N or T is
large enough.

If we close the master equation statistical moments hierarchy to the
second order, we get (see appendix A)

∂t〈mµ〉= aµ({〈mγ 〉}) + 1
2
∂λ∂ηaµ({〈mγ 〉})cλη (3.7)

∂tcµν = aµν({〈mγ 〉}) + ∂λaµ({〈mγ 〉})cνλ + ∂λaν({〈mγ 〉})cµλ,

where 〈mµ〉 is the mean population activity and cµν = 〈(mµ − 〈mµ〉)(mν −
〈mν〉)〉 is the activity covariance matrix. Here and in the following, we
use Einstein index summation convention to avoid excessively awkward
expressions. If an index is present in only one side of an equality, implicit
summation over the whole range of value is understood.

The step moment functions aµ({〈mγ 〉}) and aµν({〈mγ 〉}) are defined as
follows:

aµ({〈mγ 〉}) =
∏

α=1,...,K

∫ 1/T

0
dm′

α(m′
µ − 〈mµ〉)W({m′

γ } | {〈mγ 〉})

=
∫ 1/T

0
dm′

µ(m′
µ − 〈mµ〉) P(m′

µ | {〈mγ 〉})
T
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aµν({〈mγ 〉}) =
∏

α=1,...,K

∫ 1/T

0
dm′

α(m′
µ − 〈mµ〉)

× (m′
ν − 〈mν〉)W({m′

γ } | {〈mγ 〉})

=
∫ 1/T

0
dm′

µ

∫ 1/T

0
dm′

ν(m′
µ − 〈mµ〉)(m′

ν − 〈mν〉)

× P(m′
µ | {〈mγ 〉})P(m′

ν | {〈mγ 〉})
T

. (3.8)

The second and last identity has been obtained by using equation 3.5
given by the independence hypothesis. To complete the second-order de-
velopment, we need to describe the correlation matrix of the network
Corrµν(t, t + τ ) = 〈(mµ(t) − 〈mµ(t)〉)(mν(t + τ ) − 〈mν(t + τ )〉)〉. This is done
in appendix B, and the resulting differential equation for a stationary state
is given by

∂τCorrµν(τ ) = ∂λaν

({〈
mstat

γ

〉})
Corrµλ(τ ), (3.9)

where aν({〈mγ 〉}) is defined in equation 3.8 and {〈mstat
γ 〉} is a the stationary

solution of the set in equation 3.7.

3.1.3 A Model for the Transition Function. Finally, to complete this frame-
work, we need to specify the transition functions W(mα | {m′

γ }) for α =
1, . . . , K . These functions depend directly on the neuron properties. When
a neuron is part of network dynamics and is exposed to intense synaptic
inputs, it can be described using a transfer function that maps the neuron
output firing rate to the synaptic inputs, regardless of their origin. In a re-
current neuron network, the synaptic input is provided by other neurons
in the network and thus depends on the network activity. If we assume that
we know the stationary transfer function of neurons in population α, να ,
then the probability pα that a neuron in this population fires during time T
given the previous state of the network {m′

γ } is

pα({m′
γ }) � να({m′

γ })T ≤ 1.

This is a direct consequence of the adiabatic hypothesis we made in sec-
tion 3.1.1. Indeed, the network in its previous state is characterized by a sta-
tionary transfer function so that the network activity is assumed to evolve
near stationary states. During time T , each neuron can fire only once, so
that we can express for the population α the desired conditional proba-
bility PT (mα | {m′

γ }) with a binomial distribution using the independence
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hypothesis,

PT (mα | {m′
γ }) =

(
Nα

mα NαT

)
pα({m′

γ })mα Nα T (1 − pα({m′
γ }))Nα (1−mα T),

(3.10)

where it is implicitly understood that we take the integer part of mα NαT .
However, as population size Nα increases, the correction due to the noninte-
ger part becomes negligible, and we can apply the gaussian approximation
by using the Stirling formula n! ∼ √

2πn(n+1/2)e−n, leading to

PT (mα | {m′
γ }) �

√
Nα

2πνα({m′
γ })(1/T − να({m′

γ }))

× exp

[
−Nα

(mα − να({m′
γ }))2

2να({m′
γ })(1/T − να({m′

γ }))

]
. (3.11)

We see that this population conditional probability density follows a nor-
mal law with a variance that decreases when the neuron firing rate is near
saturation να = 1/T or in a quiescent state να = 0. If symmetries are broken
in the population α and the neurons are not identical, this law is no longer
valid. However, this law is a good first approximation because if the neu-
ron firing rate in the population α follows a particular distribution due to
slight heterogeneities and Nα are big enough, then the central limit theorem
implies that the activity distribution is well described by a normal law with
the same mean value. In this case, this mean value is the neuron transfer
function in population α, formally να . Furthermore, the more Nα increases,
the narrower the normal distribution becomes. Thus, the theory describes
large networks but also accounts for finite-size effects and is therefore close
to a “mesoscopic” description. Indeed, if {Nα} is taken to infinity, the normal
law tends to a Dirac function in the sense of distribution theory. If T is kept
constant while the network size is taken to infinity, the first-order mean
field is recovered because fluctuations are completely averaged out and
the second-order development is irrelevant. This phenomenological model
stays in accordance with numerical models as long as T is kept finite. We
finally get the transition function by dividing the conditional probability
by T according to definition 3.6,

W({mγ } | {m′
γ })

= 1
T

√
det(A)
(2π)K

exp
[
−1

2
(mµ − νµ({m′

γ }))Aµν(mν − νν({m′
γ }))

]
, (3.12)
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where Aµν = δµν
Nµ

νµ({m′
γ })(1/T−νµ({m′

γ })) . The integral of this transition function
over the entire state space gives trivially 1

T , which can now be roughly
interpreted as the degree of fluctuation taken into account. Indeed, if T →
∞, the total integral goes to 0, which means that we are in the first-order
mean-field approximation and the variance has no meaning, whereas if
T → 0, the total integral goes to infinity, which means that infinitesimal
fluctuations are taken into account. These fluctuations are not relevant in our
framework, and we keep T ∼ ν−1

max. If the interneuron correlations become
substantial, the independence hypothesis no longer holds, and we have
to consider another model to replace the binomial transition function. For
large, sparsely connected networks, however, the independence hypothesis
gives accurate results.

The whole formalism is completely described by the transition function,
equation 3.12. The set of equations for the first- and second-order statistical
moments can be further specified by injecting this transition function in the
functions 3.8. We integrate over the complete real line because equation 3.12
is centered on 0 < να < T−1 with a variance that vanishes at the boundaries,
so that the corrective terms are of order O(e−N) and can be ignored for
large enough populations. This is a natural consequence of the gaussian
approximation. We then obtain

aµ({〈mγ 〉}) = 1
T

∫ ∞

−∞
dm′

µ(m′
µ − 〈mµ〉)P(m′

µ | {〈mγ 〉})

= 1
T

(νµ − 〈mµ〉) (3.13)

aµν({〈mγ 〉}) =
∫ ∞

−∞
dm′

µ

∫ ∞

−∞
dm′

ν(m′
µ − 〈mµ〉)

× (m′
ν − 〈mν〉)W({〈m′

γ 〉} | {〈mγ 〉})

= δµν

T

∫ ∞

−∞
dm′

µ(m′2
µ − ν2

µ + ν2
µ − 2m′

µ〈mµ〉

+〈mµ〉2)P(m′
µ | {〈mγ 〉})

+ (1 − δµν)
T

(νµ − 〈mµ〉)(νν − 〈mν〉)

= 1
T

(
δµν

νµ(1/T − νµ)
Nµ

+ (νµ − 〈mµ〉)(νν − 〈mν〉)
)

= 1
T

(
δµν A−1

µµ + T2aµaν

))
, (3.14)

where νµ = νµ({〈mγ 〉}) is the transfer function of a neuron in the popula-
tion µ, which depends on the mean activity of every population. To get
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every term in equation 3.7, we need to differentiate equation 3.13. The
corresponding functions and derivatives give

aµ({〈mγ 〉}) = 1
T

(
νµ − 〈mµ〉)

∂λaµ({〈mγ 〉}) = 1
T

(∂λνµ − δµλ) (3.15)

∂λ∂ηaµ({〈mγ 〉}) = 1
T

∂λ∂ηνµ.

Equations 3.7, 3.15, 3.9, and 3.14 provide a complete description of this mas-
ter equation formalism, and we can write the set of differential equations
according to those functions:

T∂t〈mµ〉 = (νµ − 〈mµ〉) + 1
2
∂λ∂ηνµcλη (3.16)

T∂tcµν = δµν A−1
µµ + (νµ − 〈mµ〉)(νν − 〈mν〉)

+ ∂λνµcνλ + ∂λννcµλ − 2cµν

T∂τCorrµν(τ ) = (
∂λνν

({〈mstat
γ 〉}) − δλν

)
Corrµλ(τ ) (3.17)

We see that the determinant function for the first-order differential equation
is the transfer function itself, which can be expected from the usual first-
order analysis. The second-order statistics (covariances and correlations)
are led mainly by the first derivative of the transfer function. We can expect
higher-order statistical moments to depend on higher-order derivatives of
this function in this framework. Thus, the set of transfer function {να} for
α = 1, . . . , K plays a crucial role and should be determined to complete the
model. In the next section, we consider different models.

3.2 The Linear Model. In this section, we illustrate some aspect of
this master equation formalism, which could be harder to analyze once it
is used for more realistic transfer functions. Following Soula and Chow
(2007), we treat the simple case of a linear transfer function for a network of
excitatory and inhibitory cells. Every neuron has the same transfer function
(homogeneous intrinsic properties):

ν({mγ }) = ν0 + kexcmexc + kinhminh . (3.18)

This problem is similar to a balanced network where all neurons receive the
same synaptic input and have the same transfer function. In this case, the
differential equations for the mean activities do not depend on the second-
order moments. The set of second-order differential equations 3.16, can
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thus be written with equation 3.15:

T∂t〈mµ〉= ν0 + kexc〈mexc〉 + kinh〈minh〉 − 〈mµ〉 (3.19)

T∂tcµν = δµν

Nµ

ν(T−1 − ν) + (ν − 〈mµ〉)(ν − 〈mν〉)

+ kλcµλ + kλcνλ − 2cµν. (3.20)

This set of equations is linear, and we can look for the fixed point of the
mean activity, equation 3.19, first. The solution of the linear system gives

m0 = 〈mF P
exc 〉 = 〈mF P

inh 〉 = ν0

1 − �
, (3.21)

where � = kexc + kinh is the transfer function slope, which is modulated by
excitatory and inhibitory strengths. The stability of this fixed point is given
by the eigenvalues of the linear system, and we get the following values:

λ1 = −1

λ2 = � − 1,

and we see as expected that the two populations converge to a common
fixed point, whereas this fixed-point stability depends on the total slope �,
which must be inferior to unity. We can now study the remaining equations
for the second-order moments 3.20. With the fixed-point 3.21, the system
reduced to a simple set of three linear equations, which gives the fixed-point
value for the covariance matrix. The solution is given by the following form:

σ 2(mexc)FP = m0(1/T − m0)
2(� − 2)(� − 1)

×
(

(� − 2)(1 − �) + kexckinh(kinh − 1)
(kexc − 1)Nexc

+ k2
inh

Ninh

)

σ 2(minh)FP = m0(1/T − m0)
2(� − 2)(� − 1)

×
(

k2
exc

Nexc
+ (� − 2)(1 − �) + kinhkexc(kexc − 1)

(kinh − 1)Ninh

)

c FP
exc/ inh = − m0(1/T − m0)

2(� − 2)(� − 1)

(
kexc(kinh − 1)

Nexc
+ kinh(kexc − 1)

Ninh

)
.

(3.22)
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Again we have to compute the eigenvalues of this linear system to study
this fixed-point stability. We get

λ3 =−2

λ4 = 2(� − 1)

λ5 =� − 2.

Those values guarantee the coherence in the covariance matrix. Nothing is
learned about the network stability that was not already deduced from the
mean activity set of equations. There is only a need for a balanced activity
such that � < 1 to avoid the system’s exploding. However, one has to re-
member that the fixed point is described with its fluctuations, so transitions
between states are not excluded in a more complex system. We see from
the set 3.22 that the covariance matrix entries decrease with the network
size, and eventually we recover the first-order mean field when the net-
works are large enough, which is not the case with a description in terms
of the number of spiking neurons. This relation is not exactly observed in
small networks (Soula & Chow, 2007) due to a strong pairwise correlation,
but if the network size is increased to biophysical scales, the relation is
quite correct (Kumar et al., 2008). For finite-size networks, excitatory and
inhibitory variances are different when sizes are different, even though the
mean activity has exactly the same value in the stationary regime. Similar
to Soula and Chow (2007), the network displays large fluctuations when it
operates near the critical point � = 1. Here again, we see that a descrip-
tion in terms of activity gives a unified description between neurons and
networks where the limit N → ∞ is well defined. We give the correlation
matrix (see equation B.5) to finish the example:

T∂τCorrµν(τ ) = (
∂λν(

{
mFP

γ

}) − δνλ)Corrµλ(τ ) (3.23)

= kexcCorrµ/exc(τ ) + kinhCorrµ/ inh(τ ) − Corrµν(τ ), (3.24)

for which the eigenvalues are easily determined, and we find the same
values as for the mean activity λ1 and λ2 with an algebraic multiplicity of
2. They describe the decrease of autocorrelation and cross-correlation. We
see here again that � = 1 corresponds to a critical point where correlations
are infinite spatially (between population activities) and temporally (within
population activities).

3.3 Spiking Network Models.

3.3.1 Network Structure. Chaotic spontaneous activity as well as an
asynchronous irregular regime have been observed in sparsely connected
networks (Brunel, 2000; Brunel & Hakim, 1999; Kumar et al., 2008; van
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Vreeswijk & Sompolinsky, 1996, 1998; Mehring et al., 2003; Vogels & Abbott,
2005). Sparse connections have been shown to be crucial to provide the net-
work’s irregular behavior. However, the connections do not need to be
purely random (Mehring et al., 2003). A degree of locality in the connec-
tions can be tolerated as long as the correlations between neurons do not
become critically strong and destroy the chaotic activity. We will consider
sparsely connected networks with random connectivity. We will show in the
numerical simulations that the model can still give good predictions when
the neurons are locally sparsely connected. For the moment, every neuron
from population µ receives randomly Cαµ synaptic input from population
α where Cαµ

Nα
= pconn

αµ < 1. Usually pconn
αµ is taken between 1% and 10%.

3.3.2 Current-Based Integrate-and-Fire Neurons. We will consider current-
based integrate-and-fire (IAF) neurons with the corresponding membrane
potential equation,

τmem
µ

d
dt

Viµ (t) = − (
Viµ (t) − Vrest

µ

) + Rµ Iiµ (t)µ∈ [0, K ] and iµ ∈ [0, Nµ],

(3.25)

where Vrest
µ is the resting potential and Rµ and τmem

µ are, respectively, the
membrane resistance and time constant of neurons in the population µ. If
the threshold Vthreshold

µ is crossed, the neuron emits a spike, and the mem-
brane potential is clamped to the reset potential Vreset

µ during a refractory
period τ

re f
µ . Iiµ (t) is the external current coming from other neurons in the

network I int
iµ (t) or from an external source I ext

iµ (t). Because each population
is homogeneous, we write µ instead of iµ to simplify the notation.

To build the transition function, we have used a binomial law based on
the independence approximation on timescale T . However, nothing was
specified on the temporal structure of the spike trains emitted by each pop-
ulation during this timescale. If we assume the classical Poisson model for
each neuron, the entire population can be modeled as a Poisson process too.
The internal contribution is then represented as the convolution between
a Poisson spike train and a postsynaptic potential function PSPαµ(t) from
population α to population µ,

Rµ I int
µ (t) =

∑
α=1,...,K

∫
R

PSPαµ(t − s)Nαµ(ds), (3.26)

where Nαµ(ds) are Poisson point processes describing the incoming spike
trains. We discuss different synapse functions in the next section. We con-
sider external stimulation currents also as Poisson spike trains with rate
mext

α .
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One of the advantages of a description in term of continuous activity is
that we can benefit from the Fokker-Planck approach to compute different
transfer functions for our neurons. Although neurons can have different
firing rates during the dynamics, we consider that, independently for every
population, the law of large numbers prevails after time T , and only the
mean firing rate of the whole process should be considered. Therefore, if
we have Cαµ incoming spike trains from population α to population µ with
a mean firing rate mα , then the total spike train can be considered a Poisson
process of total rate Cαµmα . Using the diffusion approximation, we can de-
duce the free (without spike mechanism) membrane potential distribution.
This can be used as a first approximation to estimate the neuron transfer
function (Amit & Brunel, 1997). Once the Fokker-Planck solution Pµ(V) is
found, we consider that the output firing rate is given by the distribution
tail that lies above the threshold divided by the membrane time constant:

νµ = 1
τmem
µ

∫ ∞

Vthreshold
µ

dVP(V) = 1
2τmem

µ

(
1 + erf

(
〈Vµ〉 − Vthreshold

µ√
2σ (Vµ)

))
.

(3.27)

This approximation is valid as long as the membrane time constant leads
the dynamics, more specifically in the AI regime. If the spike mechanism is
included in the Fokker-Planck approach, an exact solution can be obtained
for some synapse type for the IAF neuron transfer function. Brunel (2000)
showed that for instantaneous synapses (Dirac functions), the solution is
given by the inverse mean interspike interval of the first passage problem
with white noise (Tuckwell, 1988). More recently (Fourcaud & Brunel, 2002),
a correction has been added to take into account the colored noise produced
by exponential synapses as long as the ratio

√
τsyn

τmem
µ

is small compared to
unity. The transfer function for this first-order correction is similar to the
one used in Brunel (2000) but with a corrective term �hµ ∼ 1.03

√
τsyn

τmem
µ

,

νµ =

τ re f

µ + τmem
µ

√
π

∫ Vthreshold
µ −〈Vµ〉√

2σ (Vµ )
+�hµ

Vreset
µ −〈Vµ〉√

2σ (Vµ )
+�hµ

dueu2
(1 + erf(u))




−1

, (3.28)

where the membrane potential statistics are given by the white noise model
and the new synaptic weights must be normalized to ensure the corre-
spondence between exponential synapses and Dirac synapses when the
synaptic time constants are taken to 0. We have the following relation,
J Dirac
α = J Exp

α
τα

τmem
µ

, where Jα and τα are the synaptic strength and time con-
stant corresponding to synapse α. If we consider a balanced network made
of excitatory and inhibitory neurons, the largest synaptic time constant will
mainly be responsible for the corrective term. In all simulations presented
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here, the inhibitory synaptic time constant will be at least twice as large as
the excitatory time constant, so that the corrective term must be of the or-
der �hµ ∼ 1.03

√
τinh
τmem
µ

. However, in the following, we will consider network
models where the synaptic time constant can be large compared to the mem-
brane time constant (Vogels & Abbott, 2005), so we decided to adopt a differ-
ent model for the transfer function. Instead of using the membrane potential
mean value and variance computed with white noise, we will use shot noise
processes to deduce those values for different synapses and replace 〈Vµ〉 and
σ 2(Vµ) in the transfer function, equation 3.28, without the corrective term:

νµ =

τ re f

µ + τmem
µ

√
π

∫ Vthreshold
µ −〈Vµ〉√

2σ (Vµ )

Vreset
µ −〈Vµ〉√

2σ (Vµ )

dueu2
(1 + erf(u))




−1

. (3.29)

The mean membrane potential 〈Vµ〉 and the variance σ 2(Vµ) depend on the
incoming activity and the chosen synapse. This point is discussed in the
next section, where different types of synapses are considered. As long
as the model allows, we can also estimate the coefficient of variation of
the interspike interval by using the recurrence relation developed for the
first-passage problem (Tuckwell, 1988). For the model introduced in Brunel
(2000), this quantity is given in a stationary point by

CV2
µ = 2π

(
τmem
µ 〈mµ〉stat)2

∫ Vthreshold
µ −〈Vµ〉stat

σ (Vµ )stat

Vreset
µ −〈Vµ〉stat

σ (Vµ )stat

dxex2

×
∫ x

−∞
dyey2

(1 + erf(y))2. (3.30)

It is thus possible to access second-order statistics at the single-neuron level
as well as the network level as long as the neuron model is specified. This
is a powerful aspect of this theory, and it will play a crucial role in applying
this framework to the study of voltage-sensitive dyes optical imaging data.
Indeed, this type of signal is proportional to the subthreshold membrane po-
tential, and we need a simple dynamic description that can give us access to
the membrane potential distribution. This is done on timescales T with the
network activity differential equation. Therefore, it is necessary to have a de-
scription at both levels. The formal equation for the interspike interval coef-
ficient of variation (ISI CV) is not always determined, however, Kumar et al.
(2008) noticed that the activity variance is very informative on the spiking
regularity for self-sustained balanced networks. In some cases, the activity
variance could describe the firing irregularity without the need for an exact
equation for ISI CV. The limitation in the analytical derivation of the trans-
fer function and the ISI CV depends on the chosen synapse or, equivalently,
the nature of correlation in the current input. In the next section, we present
different kind of synapses, some of which allow exact analytical results.
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Synapse models. In the preceding section, we mentioned the Fokker-
Planck approach. We need to determine the relation between the incoming
spike train statistics and the membrane potential probability distribution. In
particular, it is necessary to compute the mean and the variance according to
the firing rate. Under the Poisson approximation, shot noise theory provides
the required relations through Campbell’s theorem,

〈Vµ〉= Vrest
µ +

∑
α=1,...,K

Cαµ

(
mα + mext

α

) ∫
R

dt PSPαµ(t) (3.31)

σ 2(Vµ) =
∑

α=1,...,K

Cαµ

(
mα + mext

α

) ∫
R

dt PSP2
αµ(t), (3.32)

where PSPαµ(t) with α,µ ∈ {1, . . . ,K } are the membrane potential time
courses elicited by population α synapses on population µ. We will con-
sider different synapse functions and compute these functions using equa-
tion 3.25, which is exactly solvable.� Dirac synapses (instantaneous). Our first model is the Dirac synapse

current,

synαµ(t) = Aαµτmem
µ δ(t),

with Aαµ the synaptic strength. Once integrated through equa-
tion 3.25, the membrane potential equation, this synapse gives the
following postsynaptic potential,

PSPαµ(t) = Rµ Aαµe−t/τmem
µ H(t),

where H(t) is the Heaviside function. Using equations 3.31 and 3.32,
we finally get the desired statistics characteristics,

〈Vµ〉 = Vrest
µ + τmem

µ

∑
α=1,...,K

JαµCαµ

(
mα + mext

α

)
σ 2(Vµ) = 1

2

∑
α=1,...,K

τmem
µ J 2

αµCαµ

(
mα + mext

α

)
,

(3.33)

with Jαµ = Rµ Aαµ the potential increment.� Exponential synapses. A more realistic model would include a decay-
ing tail to the synaptic current with a time constant specific to each
synapse type. The next step in modeling realistic synapses is the ex-
ponential synapse model,

synαµ(t) = Aαµe−t/τα H(t)

PSPαµ(t) = Jαµτα

τmem
µ − τα

(
e−t/τmem

µ − e−t/τα
)

H(t),
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where τα is the decay time constant for synapses coming from the
population α, so that we finally get

〈Vµ〉 = Vrest
µ +

∑
α=1,...,K

JαµταCαµ

(
mα + mext

α

)

σ 2(Vµ) = 1
2

∑
α=1,...,K

J 2
αµτ 2

α

τα + τmem
µ

Cαµ

(
mα + mext

α

)
.

(3.34)

� α-synapses. To include a finite rising time of the synaptic current, we
use alpha functions, which correspond to the following forms:

synαµ(t) = Aαµ

t
τα

e1−t/τα H(t)

PSPαµ(t) = Jαµe


 −te−t/τα

τmem
µ − τα

+ τmem
µ τα(

τmem
µ − τα

)2

(
e−t/τmem

µ −e−t/τα
)H(t)

and

〈Vµ〉 = Vrest
µ + e

∑
α=1,...,K

JαµταCαµ

(
mα + mext

α

)

σ 2(Vµ) =
∑

α=1,...,K

(
2τmem

µ + τα

) (
e Jαµτα

2
(
τmem
µ + τα

)
)2

Cαµ(mα + mext
α ).

(3.35)

Neuron transfer function in the master equation. Now that we have speci-
fied the membrane potential mean value and variance, we have to incorpo-
rate these functions in the neuron transfer function to derive the network
dynamics equations. We compute the necessary functions using the free
membrane potential transfer function, as well as the phenomenological
transfer function defined with the Campbell’s theorem in the previous sec-
tion. We thus use the definitions—equation 3.27 or 3.29 into 3.15—to get
a complete description of the set of differential equations. We make some
definitions to simplify the computation for equation 3.27,

Qµ = 〈Vµ〉 − Vthreshold
µ

= αµ

(
mα + mext

α

) + (
Vrest

µ − Vthreshold
µ

)
, (3.36)

where αµ depends on the chosen synapses,

Dirac
αµ = τmem

µ JαµCαµ 
Exp
αµ = τα JαµCαµ αsyn

αµ = eτα JαµCαµ, (3.37)

and similarly

Kµ = 2σ 2(Vµ)

= �αµ

(
mα + mext

α

)
, (3.38)
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with the corresponding synapse functions,

�Dirac
αµ = τmem

µ J 2
αµCαµ �Exp

αµ = J 2
αµτ 2

α

τα + τmem
µ

Cαµ

�αsyn
αµ =

(
2τmem

µ + τα

)
2

(
e Jαµτα(

τmem
µ + τα

)
)2

Cαµ, (3.39)

such that the transfer function, equation 3.27, can be written as

νµ = 1
2τmem

µ

(
1 + erf

(
Qµ√
Kµ

))
. (3.40)

To obtain the full set of differential equations, equation 3.16, we need to
compute the step function derivatives, equation 3.15,

∂λaµ({mγ }) = 1
T


 e− Q2

µ

Kµ

√
πτmem

µ

(
2Kµλµ − Qµ�λµ

2K 3/2
µ

)
− δλµ




and for the second derivative,

∂λ∂ηaµ({mγ }) = e− Q2
µ

Kµ

√
πTτmem

µ

·

2Kµ

(
2Q2

µ−Kµ

)
(λ�η+η�λ)+Qµ

(
3Kµ−2Q2

µ

)
�λ�η−8K 2

µ Qµλη

4K 7/2
µ


.

If we consider the transfer function, equation 3.29, we have to define slightly
different functions,

Qth
µ = Vthreshold

µ − (
Vrest

µ + αµ

(
mα + mext

α

))
Qre

µ = Vreset
µ − (

Vrest
µ + αµ

(
mα + mext

α

))
(3.41)

Kµ =�αµ

(
mα + mext

α

)
,

where αµ and �γµ depend on the chosen synapses and are defined as
previously. We also define

xth
µ = Qth

µ√
K µ

xre
µ = Qre

µ√
K µ
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such that equation 3.29 can be written in a shorter form:

νµ =
(

τ re f
µ + τmem

µ

√
π

∫ xth
µ

xre
µ

dueu2
(1 + erf(u))

)−1

.

As before, we compute the step function derivatives, equation 3.15,

∂λaµ({mγ }) = − 1
T

(
ν2

µτmem
µ

√
π

(
e (xth

µ )2
(1 + erf(xth

µ ))∂λxth
µ

− e (xre
µ )2(

1 + erf(xre
µ

))
∂λxre

µ

) + δλµ

)
∂λ∂ηaµ({mγ }) = 2∂λνµ∂ηνµ

Tνµ

− ν2
µτmem

µ

√
π

T

×
((

2xth
µ e (xth

µ )2
(1 + erf

(
xth

µ

)) + 2√
π

)
∂λxth

µ ∂ηxth
µ

+ e (xth
µ )2

(1 + erf(xth
µ ))∂λ∂ηxth

µ

−
(

2xre
µ e (xre

µ )2
(1 + erf(xre

µ )) + 2√
π

)
∂λxre

µ ∂ηxre
µ

− e (xre
µ )2

(1 + erf
(
xre

µ

))
∂λ∂ηxre

µ

)

with

∂λxth/re
µ = −Qth/re

µ �λµ − 4Kµλµ

4K 3/2
µ

∂λ∂ηxth/re
µ = 4Kµ(λµ�ηµ + ηµ�λµ) + 3Qth/re

µ �λµ�ηµ

16K 5/2
µ

.

From now on, the current-based model can be used to perform a param-
eter space exploration. The stationary solutions can be numerically com-
puted for any set of parameters and compared with network simulations.
This is done in section 3.4.

3.3.3 Conductance-Based Models. For the conductance-based model, every
synaptic event results in an increase in the corresponding conductance, and
the integrate-and-fire equation can be written as

Cmem
µ

d
dt

Vµ(t) = GL
µ

(
Vrest

µ − Vµ(t)
) + Gαµ(t)(Eα − Vµ(t)), (3.42)
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where Cmem
µ and GL

µ are the membrane capacitance and leak conductance,
respectively, such that Cmem

µ

GL
µ

= τmem
µ is the resting membrane time constant.

Gαµ is the total conductance of the synaptic set α and Eα the corresponding
reversal potential. Similar to the current-based model, the synaptic input
can be modeled by Poisson processes, and the total conductance of the
synapses α is

Gαµ(t) =
∫

R
gαµ(t − s)Nαµ(ds), (3.43)

where gαµ(t) is the conductance time course elicited by an incoming spike
from population α. We can write equation 3.42 in an analogous form to the
current-based model with an effective membrane time constant τ

e f f
µ (t),

τ e f f
µ (t)

d
dt

Vµ(t) = −Vµ(t) + GL
µVrest

µ + Gαµ(t)Eα

Gtot
µ (t)

, (3.44)

where the total conductance and the effective time constant are defined as
follows:

Gtot
µ (t) = GL

µ +
∑

α=1,...,K

Gαµ

τ e f f
µ (t) = Cmem

µ

Gtot
µ (t)

.

Even when the synaptic input is considered as white noise, equation 3.42
cannot be solved, and there is no exact solution for the transfer function. We
can use equation 3.27 as a first approximation, but we need to compute the
mean membrane potential 〈Vµ〉 and the variance σ 2(Vµ) in the conductance-
based model. Equation 3.44 can be approximated by the following effective
current-based equation (Kuhn, Aertsen, & Rotter, 2004),

〈
τ e f f
µ

〉 d
dt

Vµ(t) = −Vµ(t) + GL
µVrest

µ + 〈Gαµ〉Eα

〈Gtot
µ 〉 , (3.45)

with

〈Gαµ〉 = Cαµ

(
mα + mext

α

) ∫
R

dsgαµ(ds)

〈
Gtot

µ

〉 = GL
µ +

∑
α=1,...,K

〈Gαµ〉

〈
τ e f f
µ

〉 = Cmem
µ

〈Gtot
µ 〉



70 S. El Boustani and A. Destexhe

Synapse model. Following Kuhn et al. (2004), we can deduce from equa-
tion 3.45 a good approximation for the mean membrane potential and the
variance. The mean membrane potential is given by the following form,

〈Vµ〉 = 〈τ e f f
µ 〉

(
Vrest

µ

τmem
µ

+ Eα

Cmem
µ

〈Gαµ〉
)

(3.46)

= 〈τ e f f
µ 〉

(
Vrest

µ

τmem
µ

+ αµ

(
mα + mext

α

))
, (3.47)

where

αµ = Cαµ

Eα

Cmem
µ

∫
R

dsgαµ(ds)

depends on the chosen synapse. Using this mean membrane potential,
equation 3.45 can be integrated for a synaptic event while the neuron is
clamped around the mean value 〈Vµ〉. The corresponding PSPαµ(t) allows
us to compute the variance:

σ 2(Vµ) = Cαµ

(
mα + mext

α

) ∫
R

dsPSP2
αµ(s) (3.48)

= �αµ

2

(
mα + mext

α

)
. (3.49)

We have to specify the form of αµ and �αµ for different synapses. For
the conductance-based model, we consider only exponential synapses and
α-synapses. Following the same computation as in the current-based model,
we can determine the desired functions,

Exp
αµ = τα�gαµCαµ Eα

Cmem
µ

αsyn
αµ = eτα�gαµCαµ Eα

Cmem
µ

(3.50)

and

�Exp
αµ = Cαµ

τα + 〈τ e f f
µ 〉

(
τα�gαµ〈τ e f f

µ 〉(Eα − 〈Vµ〉)
Cmem

µ

)2

(3.51)

�αsyn
αµ = 1

2
Cαµ(2〈τ e f f

µ 〉 + τα)

(
eτα�gαµ〈τ e f f

µ 〉(Eα − 〈Vµ〉)
Cmem

µ (τα + 〈τ e f f
µ 〉)

)2

, (3.52)

where �gαµ is the synaptic strength.

Neuron transfer function in the master equation. The main difference with
the current-based model is that the effective time constant is now activity
dependent, and �αµ depends on the mean membrane potential. We consider
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that the leading time constant in the neuron dynamic is the effective time
constant whatever the regime. The corresponding approximated transfer
function can be written as

νµ = 1

2〈τ e f f
µ 〉

(
1 + erf

(
〈Vµ〉 − Vthreshold

µ√
2σ (Vµ)

))
. (3.53)

The computation is thus more complicated but still straightforward. We
first define as previously the functions

Qµ = 〈Vµ〉 − Vthreshold
µ (3.54)

Kµ = 2σ 2(Vµ) (3.55)

xµ = Qµ√
Kµ

. (3.56)

Because those functions now depend on mα in a more intricate way, the step
function derivatives, equation 3.15, must be written as follows:

∂λaµ({mγ }) = 1
T

(
e−x2

µ

√
π〈τ e f f

µ 〉

(
2Kµ∂λ Qµ − Qµ∂λKµ

2K 3/2
µ

)

− νµ

∂λ〈τ e f f
µ 〉

〈τ e f f
µ 〉

− δλµ

)
, (3.57)

and for the second derivative,

∂λ∂ηaµ({mγ })

= e−x2
µ

√
πT〈τ e f f

µ 〉

(
1

4K 7/2
µ

(
2Kµ(2Q2

µ−Kµ)(∂λ Qµ∂η Kµ + ∂η Qµ∂λKµ)

+ 4K 3
µ∂η∂λ Qµ − 8K 2

µ Qµ∂λ Qµ∂η Qµ

+ Qµ(3Kµ − 2Q2
µ)∂λKµ∂η Kµ−2K 2

µ Qµ∂η∂λKµ

)

−
(

2Kµ∂λ Qµ − Qµ∂λKµ

2K 3/2
µ

)
∂η〈τ e f f

µ 〉
〈τ e f f

µ 〉

−
(

2Kµ∂η Qµ − Qµ∂η Kµ

2K 3/2
µ

)
∂λ〈τ e f f

µ 〉
〈τ e f f

µ 〉

)

+ 2
∂λ〈τ e f f

µ 〉∂η〈τ e f f
µ 〉

T〈τ e f f
µ 〉2

− ∂λ∂η〈τ e f f
µ 〉

T〈τ e f f
µ 〉

,
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with

Qµ =〈τ e f f
µ 〉

(
Vrest

µ

τmem
µ

+ αµ

(
mα + mext

α

)) − Vthreshold
µ

∂λ Qµ = ∂λ〈τ e f f
µ 〉

(
Vrest

µ

τmem
µ

+ αµ

(
mα + mext

α

)) + 〈τ e f f
µ 〉λµ

∂η∂λ Qµ = ∂η∂λ〈τ e f f
µ 〉

(
Vrest

µ

τmem
µ

+ αµ

(
mα + mext

α

)) + ∂η〈τ e f f
µ 〉λµ

+ ∂λ〈τ e f f
µ 〉ηµ

and

Kµ = �αµ

(
mα + mext

α

)
∂λKµ = ∂λ�αµ

(
mα + mext

α

) + �λµ

∂η∂λKµ = ∂λ∂η�αµ

(
mα + mext

α

) + ∂η�λµ + ∂λ�ηµ.

The derivatives of functions 〈τ e f f
µ 〉 and �αµ are given in appendix C. The

conductance-based model is now completely specified and can be used for
a parameter space exploration as well.

3.4 Numerical Results. Simulations were done to compare the pre-
dicted stationary states given by the master equation and the corresponding
neuron networks. In section 3.4.1, we explore different parameter spaces for
the current-based neuron model, and the conductance-based neuron net-
work is studied in section 3.4.2. Section 3.4.3 is devoted to more general
models where a more realistic connectivity scheme is used.

3.4.1 Current-Based Models. We consider here two types of state diagrams
based on the literature. The three concerned parameters are the external ex-
citatory firing rate stimulation mext

exc and the excitatory/inhibitory synaptic
strength Aµ with µ ∈ {exc, inh}. With those parameters, we were interested
in the (mext

exc, g) space where g = Ainh
Aexc

, as in Brunel (2000) and Mehring et
al. (2003). The second type of state diagram is generated by varying inde-
pendently the excitatory and inhibitory synaptic strength (Aexc, Ainh) by
feeding the network with a constant current in every neuron to sustain the
activity (Vogels & Abbott, 2005). For each simulation, we want to investigate
whether the model can provide a good prediction for the first and second
statistical moments. Therefore, we systematically compare the mean activ-
ity and the standard deviation. First-order predictions have already been
studied for similar network models (Brunel, 2000), and the corrective term
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due to the second-order development does not contribute much. How-
ever, because we suggest using another neuron transfer function in the
following, it is still interesting to perform the first-order analysis. For those
simulations, N = 5000 neurons with a probability connection pconn = 0.01.
Neurons’ intrinsic properties are homogeneous, with a membrane time
constant τmem

µ = 20 ms, a refractory period τ
re f
µ = 5 ms, the resting poten-

tial and the reset potential Vrest
µ = Vreset

µ = −60 mV, the threshold poten-
tial Vthreshold

µ = −50 mV, and the membrane resistance Rmem
µ = 100 M� for

µ ∈ {exc, inh}. Synaptic properties and external stimulations depend on the
parameter space under consideration.

The (mext
exc, g) parameter space. For this state diagram we took exponential

synapses with τexc = 1 ms and τinh = 3 ms for the excitatory and inhibitory
synaptic time constants. The external stimulation will be considered in
the νth unit which is the frequency needed to bring the mean membrane
potential to threshold with an excitatory Poisson input. As we are using
exponential synapses we have, based on equation 3.34,

νth = Vthreshold − Vrest

J excCexcτexc
,

where J exc = Rmem Aexc , we have omitted the second index because of
network homogeneity. We chose Aexc = 0.02 pA such that the resulting
EPSP peak is J exc = 2 mV. The inhibitory synaptic strength is defined by
Ainh = g Aexc where g is the second parameter. We represent in Figure 2a
the network mean cross-correlation and interspike interval to characterize
the asynchronous irregular states.

Three regions can be outlined: a broad AI domain, an intermediate
asynchronous regular (AR) region where neurons begin to fire periodically,
and saturated synchronous regular (SR) states.We were interested in the AI
regime in which the Markovian approximation is assumed to apply. There-
fore, we limited our analysis of the parameter regime to firing rates below
1/τmem = 50 Hz. Above this frequency, long-range correlations in each neu-
ron firing appear, and the analytical framework is not well suited to predict
the macroscopic quantities. This is manifest by the emergence of a new
peak near 0 in the ISI CV distribution (not shown), whereas interneuron
correlations reach very small values. The absence of synchronous irregular
states (SI) for high firing rates is essentially due to the absence of interaction
delays between the neurons (Brunel, 2000). When a finite homogeneous de-
lay is present, SI states could occur in the transitory region (Mehring et al.,
2003); however, if the delays are drawn randomly from a broad distribution,
this SI transition region is replaced by AR states. In the low-activity region,
there is an increase of synchrony concomitant with a decrease in the mean
ISI CV typical of slow SI states. For the whole region, as long as the network
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Figure 2: Characterization of the AI states and the first- and second-order statis-
tics of the excitatory population activity in the (mext

exc, g) parameter space, similar
to Brunel (2000). The network contains N = 5000 neurons randomly connected
with probability pconn = 0.01 and current-based synaptic interactions. Every
statistical quantity has been computed with a time bin of T = 5 ms, and the
analytical model was solved with the same parameters. (a) The AI region is de-
limited using the mean ISI CV and the mean pairwise cross-correlation. In the
right panel, we compute the activity CV to evaluate the validity of the indepen-
dence hypothesis. (b) Top: Mean activity estimated from numerical simulations
(left) and computed using the master equation formalism (middle). In the right
panel, the relative difference between measured and predicted values. Bottom:
The activity standard deviation is estimated from numerical simulations and
compared as well with the mean-field predictions.

is homogeneous and the neuron are independents, the synchrony phase
diagram should be well predicted by the activity second-order statistics.
More precisely, it should be directly related to the activity coefficient of
variation (CV). Therefore, in the last panel in (see Figure 2a), we computed
the activity CV, which can be compared with the synchrony panel. Both di-
agram exhibit the same tendency according to the parameter regime. Thus,
this quantity could be estimated in the framework of the independence
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hypothesis as long as the first- and second-order statistics are well
predicted.

In Figure 2b, we computed and compared the mean excitatory activity
and the standard deviation of excitatory activity for the parameter space.
For each point, a simulation was run for 10 s in order to have an accept-
able evaluation of the second-order statistics. The corresponding stationary
quantities were numerically computed using the master equation formal-
ism, equation 3.16, with the transfer function, equation 3.29. To compare
our prediction with simulations, we computed the relative difference,

�
(
mext

exc, g
) = OSimulation

(
mext

exc, g
) − OPrediction

(
mext

exc, g
)

| OSimulation
(
mext

exc, g
) | + | OPrediction

(
mext

exc, g
) | ,

where O can be either the mean activity or the standard deviation. First-
order and second-order statistics are in good agreement over almost the
entire AI region with a relative error smaller than 0.1. However, the relative
error is larger in the low-activity regime, as can be seen in Figure 2b. The
reasons are twofold. On the one hand, for small networks exhibiting low
activity, the synaptic input impinging on each neuron is equally low, and
the diffusion approximation at the membrane potential level is not a good
approximation anymore. On the other hand, the increase of pairwise corre-
lations among neurons could partially invalidate the model, as can be seen
from the discrepancies between the synchrony and the activity CV. For very
large networks, a mean-field approach can be recovered even in the low-
activity regime, and it provides accurate predictions (Kumar et al., 2008).

As the in vivo activity in awake animals usually displays low firing
rates, we further investigated whether larger networks could generate more
realistic cortical activity regimes. In Figure 3a, we show the results of a
simulation of a larger network (N = 15, 000 neurons) while keeping other
parameters exactly the same as used in the simulation of a smaller network
described in Figure 2. It is apparent that the region between 6 Hz and 10 Hz,
which was not well predicted previously, can now be better described by
the mean-field approach (with relative errors smaller than 0.1). This region
is delimited by black curves in Figure 3a.

To pursue this analysis, we chose a row of parameters in the phase dia-
gram and computed the mean firing rate numerically and with the master
equation for various network sizes. We found that the relative error for each
network size increased very slightly for smaller firing rates, as expected (see
Figure 3b). However, the relative error still stays below 0.1, even for firing
rates around 5 Hz. The corresponding predicted firing rates are given in
Figure 3c for the different network sizes. The error bars are computed with
the relative error using OPrediction(mext

exc, g) | �(mext
exc, g) |. In the right panel,

we show for a particular point of the phase diagram (mext
exc, g) = (6 · νth, 141)

a decrease in firing rate as well as an increase in the relative error. The
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Figure 3: Master equation predictions for low firing rates depend on network
size. (a) A large network of N = 15, 000 neurons has been used to draw a similar
phase diagram as in Figure 2. The region between the two black curves exhibits
firing rates smaller than 10 Hz (higher curve) and relative errors smaller than
0.1 (lower curve). The predictions are improved for a broad range of frequen-
cies compared to a smaller network. (b) The relative error between numerical
simulations and predictions for a row of parameters in the phase diagram (in-
dicated by a dashed rectangle in a for different network sizes. (c) The relative
error is slightly increasing for larger networks, but the firing rate decreases at
the same time. Left: Predicted firing rate in the row for each network size. The
error bars indicate the relative error in units of the corresponding predicted
value. The firing rates decrease quickly compared to the error. Right: The firing
rate decreases as a function of network size, for a particular point in the phase
diagram (mext

exc, g) = (6 · νth, 141). Inset: Decay of the standard deviation with the
network size. All networks had indentical parameters as in Figure 2.

predicted firing rate seems to decrease exponentially compared to the rela-
tive error, which does not change much. A similar tendency has been found
for the standard deviation. The inset of the right panel of Figure 3c shows
that the error remains almost constant while the activity standard deviation
decreases for larger networks. The activity coefficient of variation indicates
that the averaged pairwise correlations also decrease. Therefore, based on
this result, it should be possible to find large enough networks to cover a
realistic range of firing frequencies.
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Figure 4: Correlation functions for the specific point (mext
exc, g) = (8 · νth, 41) of

Figure 2. (a) Cross-correlation between inhibitory and excitatory population
activity for the master equation (thick line) and the numerical simulations (thin
line). (b) Autocorrelation functions computed from the master equation for the
inhibitory and excitatory activity (thick lines) and with T = 10 ms. The same
functions have been estimated from the numerical simulations (thin lines). The
activity traces have been computed with a bin size of 1 ms and then filtered with
a gaussian function to get a smoother curve. The gaussian standard deviation
was chosen to be 1.5T to match the corresponding function without filtering.

Covariance and inhibitory population statistics are equally well pre-
dicted. To compare the activity correlations, we chose a point in the param-
eter space for which we estimated the inhibitory and excitatory autocorrela-
tion and the cross-correlation. The corresponding functions were computed
from the master equation using the last equation of equation 3.16 and the
stationary mean activity computed for that particular state (see Figure 4).
To keep a good resolution of the numerical functions, we took a time bin
T = 10 ms and filter the signal with a gaussian function with a standard
deviation equal to 1.5T . This gives a good prediction except for some part
of the function, which can be due to a temporal finite-size effect. Indeed,
the network is homogeneous, so the only difference between both pop-
ulations is the size. If those populations are not large enough, residual
oscillations that could not be predicted in our framework occur in the cor-
relation functions. These oscillations also appear when the bin size T is too
small (see Figure 1b). According to equation 3.16, we know that the inter-
play between network size and the considered timescale must be carefully
taken into account to validate the model. For a very large network size
or time constant T , the fast oscillations completely vanish. Moreover, we
know from equation 3.16 that the correlation matrix depends directly on
the neuron transfer function first derivative. More precisely, the predicted
correlation exponential decrease as well as the activity standard deviation
are led by this function. Therefore, regions where the autocorrelation and
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the cross-correlation functions can be correctly described are regions where
the second-order statistics match the numerical simulations.

The (Aexc, Ainh) parameter space. To reproduce results obtained in Vogels
and Abbott (2005), we chose a similar model to probe the (Aexc, Ainh)
parameter space. In the AI regime, current-based neurons cannot sustain
activity without external stimulation, and one needs to inject a constant
input in each neuron by bringing the resting potential to Vrest = −49 mV, as
in the original letter. We also took exponential synapses with excitatory and
inhibitory time constant τ exc = 5 ms and τ inh = 10 ms, respectively. The only
free parameters remaining are the current quantal increments (Aexc, Ainh).
We first computed the mean ISI CV, the mean pairwise cross-correlation,
and the activity CV to find the boundaries of the AI region. As in the previ-
ous section, the state diagram was drawn in the AI regime for the excitatory
population with the master equation prediction using equation 3.29 and the
neuron network simulations (see Figure 5). The mean activity prediction
is in good agreement with the numerical simulations, with a relative error
smaller than 0.1, as shown in the first row of Figure 5b. The relative error is
larger for the low-activity regime (<8 Hz), where it can reach 0.2. This can
be understood as previously; in this region, the synaptic input is not strong
enough to fulfill the required conditions for the diffusion approximation.
This error can be reduced for larger networks (see Figure 3). The prediction
for the standard deviation matches quite well except for the region of high
and low activity, where the difference is more substantial. The latter can
be expected from the first-order comparison. Concerning the former, the
region is at the boundary of the AR regime, and the Markov hypothesis be-
gins to fail because of the emergence of regularities in the neuron individual
firing.

Similar simulations were done using the transfer function, equation 3.28,
and the resulting predictions were worse compared to previous results (not
shown). This transfer function has been obtained as a first-order approx-
imation for exponential synaptic noise when the ratio

√
τsyn

τmem is small. In
the numerical simulations here, the inhibitory synaptic time constant is
only half the membrane time constant, and the assumption underlying
equation 3.28 begins to fail. The phenomenological transfer function, equa-
tion 3.29, therefore seems more appropriate for these neuron properties.

3.4.2 Conductance-Based Models. Conductance-based neuron networks
have been shown to display self-sustained activity for specific parameter
space (Vogels & Abbott, 2005). For the (�gexc,�ginh) parameter space, two
regions have been identified exhibiting, respectively, AI and SR states (see
Figures 6a–6c).

In this section, we study a similar model with the resting membrane
time constant τmem = 20 ms, the membrane resistance Rmem = 100 M�, the
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Figure 5: Characterization of AI states and the first- and second-order statis-
tics of the excitatory population activity in the (Aexc, Ainh) parameter space, in
a Vogels-Abbott-type current-based network. The network contains N = 5000
neurons randomly connected with probability pconn = 0.01. Every statistical
quantity has been computed with a time bin of T = 5 ms, and the analytical
model was solved with the same parameters. (a) The AI region is delimited us-
ing the mean ISI CV and the mean pairwise cross-correlation. In the right panel,
we compute the activity CV to evaluate the validity of the independence hy-
pothesis. (b) Top: Mean activity estimated from numerical simulations (left) and
computed using the master equation formalism (middle). In the right panel, the
relative difference between measured and predicted values. Bottom: The activ-
ity standard deviation is estimated from numerical simulations and compared
as well with the mean-field predictions.

resting and reset membrane potential Vrest = Vreset = −60 mV, the thresh-
old Vthreshold = −50 mV, and the refractory period τ re f = 5 ms. Synaptic
time constant and reversal potential are taken to be τexc = 5 ms, Eexc = 0 mV,
τinh = 10 ms, and Einh = −80 mV for excitatory and inhibitory synapses, re-
spectively. Given the state diagram (see Figures 6a–6c), we see that the AI
region is surrounded by unstable states, which is not present in the current-
based correspondent (compare with Figure 5). This is a specificity of the
conductance-based model and an interesting issue that should be discussed
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Figure 6: Sources of instabilities in Vogels-Abbott-type networks. Study of the
stability (a), the mean activity (b), and the mean ISI CV (c) in the (�gexc, �ginh)
parameter space for a self-sustained conductance-based neuron network. The
network in panels a to c contains N = 10,000 neurons, each randomly connected
with pconn = 0.02 of the population. The network is considered stable if its ac-
tivity lasts longer than 1 s. (a–c modified, with authorization, from Vogels and
Abbott, 2005). (d–f ) Excitatory population mean activity for different network
structures. For these numerical simulations, the network is considered stable if
its activity lasts longer than 3 s. The transitory region between the AI and the
SR domain in the (�gexc,�ginh) parameter space is sensitive to synaptic input
fluctuation. (d) Network of N = 5000 neurons with pconn = 0.01. The AR domain
is fully stable. (e) Network of N = 5000 neurons with pconn = 0.02. Some dis-
parate points in the AR domain lose their stability. (f ) Network of N = 10, 000
neurons with pconn = 0.01. The AR domain is almost completely unstable.
(g) Network lifetime in log scale computed in the (�gexc,�ginh) parameter space
for a network of N = 10, 000 neurons and pconn = 0.01. We took mcrit = 1 Hz for
the critical activity because no self-sustained activity of 1 Hz could be produced
with this network model. Furthermore, this prediction has been computed by
using the effective transfer function introduced below. Stability criteria match
qualitatively with f for the low-activity AI region.
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about the network stability in numerical simulation and the corresponding
master equation prediction.

Stability in self-sustained networks. According to the stationary solution of
the master equation, the active state could be unstable or stable in the usual
sense. However, for stable points, there is an important consideration to take
into account to match the numerical simulations. The framework presented
here is a mean-field solution that does not take into account every finite-
size effect that can be encountered in numerical models. For instance, stable
states in the model with very weak activity are not sustained in network
simulation. In some cases, the network activity fluctuations are too strong
and can bring the dynamics to a quiescent state after a transient period. It has
been shown that for multi-unit systems such as neural networks, a quasi-
stationary state could survive for a period that is exponentially proportional
to the system size (Crutchfield & Kaneko, 1988). More particularly, in self-
sustained conductance-based networks, the state loses its stability when
the network activity exhibits fluctuations that are too strong (Kumar et al.,
2008). Therefore, we can adopt a criterion to keep those states with large
fluctuations according to the timescale we are interested in. For instance,
in Vogels and Abbott (2005), a network is said to be stable if it can sustain
its activity longer than a second. Those networks will eventually fall into a
quiescent state after a long transient. In our framework, once the equations
are solved, we can compute the total mean activity and the total variance.
For a balanced network, we have

〈mtot〉= 〈(1 − γ )mexc + γ minh〉
= (1 − γ )〈mexc〉 + γ 〈minh〉

σ 2(mtot) =〈((1 − γ )mexc + γ minh)2〉 − 〈(1 − γ )mexc + γ minh〉2

= (1 − γ )2σ 2(mexc) + γ 2σ 2(minh) + 2(1 − γ )γ cexc/ inh .

As mexc and minh are described as a normal law defined by only the first
two statistical moments, the total activity also follows a normal law with
the following characteristics:

mtot ∼ N ((1 − γ )〈mexc〉 + γ 〈minh〉, (1 − γ )2σ 2(mexc)

+ γ 2σ 2(minh) + 2(1 − γ )γ cexc/ inh
)
. (3.58)

Therefore, we can use a simple criterion for stability by saying that the
survival time is inversely proportional to the probability for the activity to
be below a critical value mcrit near 0. Indeed, the spontaneous AI state is
said to be quasi-stationary such that its activity is described by a stationary
distribution. Eventually the dynamics will fall into this quiescent state,
which is represented in mean-field theory by the probability below mcrit
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normalized by the minimal time step,

Tsurvival = T
P(mtot < mcrit)

(3.59)

= T
F (mtot = mcrit)

, (3.60)

where F (mtot = m) is the repartition function. A similar criterion has been
proposed in Kumar et al. (2008) but based on a first-order semianalytical
model. In their argument, they mention a critical time window that corre-
sponds to our network effective time constant T . In numerical simulations,
they could estimate its value around 1 ms, which is very short compared
to other time constants in the network model. This is encouraging for con-
sidering the master equation formalism well beyond large time constants.
We can easily see from equations 3.16 and 3.22 that the covariance matrix
is inversely proportional to the number of neurons in each population, so
that Tsurvival grows exponentially with the number of neurons. Discrepancy
from this result can be caused by residual correlations between neurons that
could invalidate the binomial model. We can further estimate the network
lifetime dependency on other parameters. We show in Figure 6g in a log
scale the network lifetime evaluated with equation 3.59 for the (�gexc,�ginh)
parameter space for a network of N = 10, 000 neurons with pconn = 0.01.
We see that the AI region considered unstable in Figure 6f matches the re-
gion where the lifetime is beyond the order of a second. Therefore, the state
diagram for self-sustained networks is sensitive to the time-scale under
consideration.

Despite the stability issue, which is due to the limited lifetime of the
network activity, there is finally an important source of instability that can
also cause the network to reach the quiescent state. We can see numerically
in Figures 6d to 6f that if the subthreshold membrane potential fluctuations
are too strong, this induces supplementary fluctuations at the network level,
which can destroy the activity spontaneously. These strong fluctuations can
be caused by high levels of connectivity. Therefore, the upper AI region,
which is predicted to be stable, can be numerically unstable because of
those strong fluctuations. In Kumar et al. (2008), this region is not systemat-
ically unstable, and the lack of evidence with a second-order theory seems
to reveal an artifact of the simulation or the breakdown of the model pre-
diction. The sensitive region lay between the AI and the SR regime in which
correlations can become critical. Indeed, the AR region displays correlated
spike trains, which is not taken into account within the Poisson hypothesis,
and this could go beyond the Markovian prediction. Kumar et al. (2008),
have also suggested that the initial stimulation could contribute to this insta-
bility. Indeed, the initial stimulation must be adequate to allow the network
to reach a self-sustained state. Increasing the network size will diminish the
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firing rate, as predicted by the numerical and analytical transfer function,
making the network more likely to shut down given the fluctuation state.
This instability is reduced for sparser connectivities.

The (�gexc,�ginh) parameter space. We focus on the last configuration
shown in Figure 6 to check the validity of the theoretical prediction. For
each stable point of the state diagram, the set of differential equation 3.16, is
solved with the transfer function, equation 3.53. The resulting analysis (see
Figure 7) shows that the predictions are qualitatively correct, but the relative
difference increases rapidly for low activity. There is a narrow region in the
AI regime where the prediction is good for the first and second statistical
moments. This important discrepancy is due to the approximation made
for the transfer function, which is not derived for a complete conductance-
based neuron with threshold. Similar results have already been reported in
Kuhn et al. (2004) using the same transfer function.

To circumvent this problem, a semianalytical method has been proposed
(Soula & Chow, 2007; Kumar et al., 2008), where the conductance-based
neuron transfer function is determined numerically and then used directly
in the model for a first-order or second-order prediction. Although this
approach can give good predictions in the AI regime, it requires computing
numerically the transfer function for each point of the state diagram, which
can be time-consuming for heterogeneous networks. Indeed, the transfer
function is determined by computing the neuron firing rate for a given
population and for every state of each population in the network. Therefore,
it is necessary to find an effective analytical function that can provide a
better approximation. Although we cannot have an exact expression, it is
still possible to fit a phenomenological model to the numerical simulations.
Based on previous observations, two parameters seem critical in the transfer
function: the time constant τ in the denominator and a corrective term �h,
which takes into account colored noise in the synaptic input (Brunel & Sergi,
1998; Fourcaud & Brunel, 2002). The phenomenological function based on
equation 3.27 can thus be written

ν = 1
2τ

(
1 + er f

( 〈V〉 − Vthreshold

√
2σ (V)

+ �h
))

. (3.61)

Considering the limited region of the whole (�gexc,�ginh) parameter space
in Figure 7, we can estimate the total error made for the set of transfer
function, equation 3.61, according to the free parameters (τ,�h). The total
error is estimated by taking the sum of the relative difference between the
simulation mean activity and the mean activity given by equation 3.61 in
absolute value normalized by the number of stable points. For this opti-
mization problem, there is a global minimum for which the error is small
(see Figure 8). This computation depends on the network configuration and



84 S. El Boustani and A. Destexhe

Figure 7: AI states characterization and the first- and second-order statis-
tics of the excitatory population activity in the (�gexc, �ginh) parameter space
in a Vogels-Abbott-type conductance-based network. The network contains
N = 10, 000 neurons randomly connected with probability pconn = 0.01. Every
statistical quantity has been computed with a time bin of T = 5 ms, and the
analytical model was solved with the same parameters. (a) The AI region is de-
limited using the mean ISI CV and the mean pairwise cross-correlation. In the
right panel, we compute the activity CV to evaluate the validity of the indepen-
dence hypothesis. (b) Top: Mean activity estimated from numerical simulations
(left) and computed using the master equation formalism with the neuron trans-
fer function, equation 3.53 (middle). In the right panel, the relative difference
between measured and predicted values. Bottom: The activity standard devi-
ation is estimated from numerical simulations and compared as well with the
mean-field predictions.

the portion of the state diagram used to estimate the error. Therefore, this
procedure gives a local good approximation that is acceptable as long as
the network parameters (here the synaptic strengths) are kept in the fitted
region.

The second-order statistics depends on the transfer function behavior
around the stationary point through the first and second derivative of this
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Figure 8: Error landscape for the optimization problem that determines the
best parameter set for the effective transfer function, equation 3.61. It has been
computed for a network of N = 10, 000 neurons and pconn = 0.01. The minimal
solution (circle) gives τ = 5.3 ms and �h = 1.5.

function. In particular, the covariance and correlation matrix are strongly af-
fected by the slope of the transfer function in the stationary point. Therefore,
we compare for some point of the parameter space the effective transfer
function with the semianalytical approach (see Figure 9). For each network
configuration, the transfer function of a neuron is computed numerically
and compared with the optimized transfer function. The local behavior
around the stationary point is in good agreement with the latter.

Using the optimized transfer function, we can compare the prediction
to the numerical simulation (see Figure 10). The error is reasonable com-
pared to Figure 7, especially for the standard deviation for which prediction
is much improved. Therefore, for a given network configuration, there is
an effective transfer function that can provide a good description of the
network dynamics in a large part of the parameter space. This allows us
to avoid the semianalytical approach but requires solving an optimization
problem based on numerical simulations.

This method could be useful when considering several network units
described by the master equation. Indeed, eventually we would like to apply
the master equation formalism to large-scale cortical recordings. In order to
do so, it will be necessary to acquire a more realistic transfer function than
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Figure 9: Transfer function estimated with the semianalytical approach com-
pared with the optimized effective transfer function for several points of the
(�gexc, �ginh) parameter space. For each figure, the excitatory synaptic strength
is fixed, and the inhibitory synaptic strength take the values �ginh = 1, 11, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 41, 51, 61, 71, 81, and 91 nS from the top-most
curve to the lowest monotonically. In the first-order mean-field approximation,
the network stationary activity is found by imposing that the input and output
rate must be equal. The intersection with the diagonal line marks this first-order
solution. (a) Effective transfer function and (b) numerical transfer function for
�gexc = 7 nS. (c) Effective transfer function and (d) numerical transfer function
for �gexc = 10 nS.

the one obtained from integrate-and-fire neurons. Using the optimization
strategy, we could consider a large family of functions based on the usual
theoretical results and obtain a representative transfer function adapted
to high-conductance states. This could be done with dynamic-clamp in
vitro experiments by finding autoconsistent solutions for a broad range of
stimulation regimes. The resulting transfer function would then be used
as a kernel in the master equation formalism to represent the dynamical
property of the corresponding neuron population in the network unit. In



A Master Equation for Spiking Neuron Networks 87

Figure 10: First- and second-order statistics of the excitatory population activity
in the (�gexc, �ginh) parameter space. A Vogels-Abbott network was simulated
with N = 10,000 conductance-based neurons randomly connected with prob-
ability pconn = 0.01. The moments are computed with a time bin of T = 5 ms,
and the analytical model was solved with the same parameter and an effec-
tive transfer function (see equation 3.61). (Top) Mean activity and standard
deviation estimated from numerical simulations. (Middle) Mean activity and
standard deviation computed from the master equation formalism. (Bottom)
Relative difference between measured and predicted values.

the context of voltage-sensitive dyes optical imaging, this unit would be
associated with a small set of neighbor pixels. Once effective couplings
between these units are extracted from data, it should be possible to obtain
a theoretical comparative model in order to study activity propagation
within large-scale cortical areas, in particular, dynamical phase transitions
according to different network-controlled conditions.

3.4.3 Effect of Topology and Heterogeneity. In this section, we discuss the
generality of the master equation formalism and possible sources of devi-
ations from the predictions. Heterogeneity in the synaptic input across the
network can create a bias in the mean activity of the network that is not
taken into account in a mean-field model. Indeed, if neurons in the network
do not receive exactly the same number of synapses, the firing rate distribu-
tion in the network will tend to be skewed compared to the sharp gaussian
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Figure 11: The neuron firing rate distribution in the AI state according to the
degree of heterogeneity in the number of incoming synapses per neuron. The
network contains N = 10,000 neurons with a mean connectivity proportion
pconn = 0.02. The synaptic strengths are given by (�gexc, �ginh) = (6, 67) nS. The
number of incoming synapses is taken from a gaussian distribution. From the
back curve to the front curve, the standard deviation is increasing, resulting in
skewer curves.

distribution for a homogeneous system. If the incoming connection num-
ber is gaussian distributed, the skewness of the firing rate distribution will
increase with the standard deviation of the gaussian (see Figure 11), re-
sulting in a shift of the mean activity. Similar results were reported by van
Vreeswijk and Sompolinsky (1998) for heterogeneous thresholds. Therefore,
predictions given by the master equation could lose some accuracy if the
network is not perfectly homogeneous. However, this kind of heterogeneity
does not create dramatic changes in the mean firing rate, so the model still
provides good predictions.

Another interesting aspect of the theory concerns the connectivity
schemes of the network. When the theoretical framework was built, two
important hypotheses were made that directly concern network circuitry.
We assumed that the connectivity is sparse and that the spiking probability
is independent from one neuron to another at each time step. Any connec-
tivity scheme that can account for those two hypotheses should be describ-
able by this master equation formalism. Although connections in the cortex
are highly specific, they are known to exhibit the sparseness property. As
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we are describing macroscopic quantities of the network dynamics, high-
order structure in the connectivity should not affect the analytical validity.
However, the independence hypothesis can be broken if substantial cor-
relations appear between neurons. In our simulations, we used a random
connectivity scheme to avoid this situation. This choice is reasonable for
very small networks, but for larger networks, it is necessary to consider
a more realistic connectivity scheme. In previous work (Mehring et al.,
2003), a numerical study of the (mext

exc, g) parameter space has been made
for networks of locally random connected neurons with periodic boundary
conditions. In this model, each neuron was connected to a fixed proportion
pconn = 0.1 of its neighbors according to a gaussian probability law (see
Figure 12c). The standard deviation is taken to be 0.3 mm for a square net-
work with boundary length of 2 mm. This network contains N = 112,500
current-based neurons with a ratio of 4:1 between excitatory and inhibitory
neurons. Neurons interact with a fixed delay of 1.5 ms. The network is ho-
mogeneous with membrane time constant τmem = 10 ms, refractory period
τ re f = 2 ms, resting and reset potential Vreset = Vrest = −70 mV, and thresh-
old Vthreshold = −50 mV. α-synapses were used with τexc = τinh = 0.3 ms,
and the excitatory synaptic strength was chosen such that the EPSP peak
equals 0.14 mV. We implemented the same network in the formalism with
the transfer function (see equation 3.29) and computed the excitatory mean
activity to compare with their results (see Figures 12a and 12b). For this
macroscopic quantity, it seems that correlations due to local connections do
not dramatically alter the first-order mean-field predictions. This is very en-
couraging, and we hope to get qualitatively good descriptions of large-scale
cortical networks based on this generic behavior of balanced networks. Of
course, those who are interested in higher-order statistics of the dynamics
have to rely on a more specific model of the network connectivity.

We investigated this question for a network that integrates some
realistic features. Based on the anatomical data for the rat (DeFelipe,
Alonso-Nanclares, & Arellano, 2002), we modeled a portion of the cortex
as a layer with periodic boundary conditions respecting the superficial
neuron density. This is defined as ρVe = ρS ∼28,183 neurons/mm2 with
ρV ∼61,670 neurons/mm3 for layer 2–3 volume density, and e ∼0.457 mm
the depth of these layers. We also took distance-dependent delays with a
homogeneous propagation speed of vprop = 5 mm/ms. Intrinsic neuron
properties are identical to the model used in Vogels and Abbott (2005),
and the network contains N = 10,000 neurons. Connections for a neuron
follow a uniform law on a disc centered on the neuron. We considered
as free parameters the radius of the connectivity disc and the proportion
of connected neurons pconn inside the disc (see Figure 12f). For a given
synaptic strength set (�gexc,�ginh) = (6, 67) nS, we computed the mean
excitatory activity as well as the mean interspike interval coefficient of
variation to probe the first- and second-order properties of the dynamics
(see Figures 12d and 12e). We notice the existence of isostatistics lines where
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Figure 12: Effect of local network connectivity on macroscopic statistics.
(a–c) Comparison of mean excitatory activity for a locally randomly connected
current-based network (Mehring et al., 2003) in the (mext

exc, g) parameter space.
(a) Numerical simulations with gaussian distribution (panel reproduced, with
permission, from Mehring et al., 2003). (b) First-order mean-field predictions.
(c) The gaussian distributed connectivity scheme. (d–f) Effect of local uniformly
random connectivity. The parameter space is described by the connectivity disc
radius and the connection probability inside the disc. (d) Mean excitatory ac-
tivity. (e) Mean excitatory interspike interval coefficient of variation. (f) The
uniform local random connectivity scheme.

the network displays the same macroscopic behavior. Those lines lie on
network configurations where the number of inputs per neuron is constant.
Indeed, if the disc radius is increased, the number of incoming synapses
will also increase, and it is necessary to decrease the connection probability
to recover the same statistical properties. This confirms the previous results
shown in Figures 12a and 12b. Interneuron correlations due to more local
connections do not seem to invalidate drastically the mean-field predictions
as long as the number of connections per neuron is kept fixed and homoge-
neous. Note that in Figure 12, the case of the randomly connected network
does not appear as a stable state because of the distant-dependent delays.
Indeed, self-sustained activity cannot occur if the interactions among the
network are too slow and we see a large domain of the state diagram that is
unstable.

Following the discussion started at the end of the previous section,
this result provides an encouraging foundation for large-scale modeling.
Indeed, at first sight, it seems intractable to obtain a realistic model of
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mesoscopic cortical dynamics when considering the high specificity of the
wiring. However, this should not be relevant if population quantities are
considered. Extrinsic optical imaging data provide such a quantity that
could be related to the master equation variables. Therefore, all high-order
patterns in the connectivity should be translated by statistical principles in
effective macroscopic coupling available from large-scale data. Further in-
vestigations should be devoted to this question to ensure that specific high-
order characteristics would not have a dramatic impact on global network
dynamics.

4 Discussion

In this letter, we have proposed a mean-field description of AI cortical
activity states in balanced networks. We have considered a master equation
formalism to describe the activity of networks of size N for timescales
larger than a characteristic time T . These numbers were kept finite in order
to account for finite-size effects and thus obtain a “mesoscopic” level of
description. The resulting phenomenological theory provides a dynamical
description of spiking neuron networks that sought to predict state
diagrams, but could also be used beyond stability analysis. Furthermore,
this framework can be used for any type of neuron as long as its transfer
function is known. We obtained a closed set of equations for the mean and
variance of the activity and showed that the state diagrams predicted by
the mean-field model well matched the diagrams obtained numerically for
different types of networks proposed previously (Brunel, 2000; Mehring
et al., 2003; Vogels & Abbott, 2005).

Studies of network dynamics have shown that higher-order statistics are
crucial in balanced networks. Indeed, chaotic behavior in those systems is
produced by the balanced dynamics at the membrane potential level (van
Vreeswijk & Sompolinsky, 1996, 1998; Brunel, 2000). Once the mean mem-
brane potential is “clamped” at its subthreshold value, only fluctuations can
bring the neuron to fire, thereby providing an irregular firing rate. However,
although firing irregularity can be estimated from the stationary interspike
interval coefficient of variation (Tuckwell, 1988), no model is able to describe
the dynamics of second-order statistics at the network level. The Markovian
approach is directly constrained by the population activity correlation’s fine
structure during AI states and the minimal bin size to capture network dy-
namics. According to the numerical model, those values seem to be of the
same order, which considerably simplifies the choice of the parameter T .

The master equation model directly relies on the neuron transfer func-
tion, which can be chosen according to the desired network model. This
transfer function can be exactly determined in current-based networks
provided that the input spike trains follow Poisson processes with Dirac
synapses (Tuckwell, 1988; Brunel, 2000). However, to cover a broad range of
synapse models, we adopt a phenomenological function that can account
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for first- and second-order network statistics. For conductance-based mod-
els, no exact solution of the equation can be found. We also have to seek
approximations to obtain the transfer function. Two main solutions have
been proposed: estimating the transfer function numerically (Kumar et al.,
2008; Soula & Chow, 2007) or using an approximation with the mean mem-
brane potential of the conductance-based model and the variance taken
from an effective current-based model Kuhn et al. (2004). To stay in an ana-
lytical framework, we decided to use the second approach, which can easily
be implemented in our model.

In current-based models, the predicted state diagrams are in good agree-
ment with the numerical simulations. In this case, the discrepancies are
likely to be due to residual correlations caused by finite size effects or by the
phenomenological transfer function. Indeed, for activity in small networks
that is too low, the diffusion approximation is no longer legitimate, and the
corresponding transfer function leads to incorrect predictions. We showed
that those frequencies can be better described for larger networks, provid-
ing a good model for cortical dynamical regimes. In conductance-based
models, the predicted diagrams match the numerical simulations qualita-
tively but give poor quantitative predictions. It is, however, possible to find
an optimized transfer function from a set of functions described by two free
parameters. This significantly improves the predictions. In section 3.4.2,
we discussed the possibility of adapting this method to dynamics-clamp
recordings in order to obtain biophysically more realistic transfer functions
directly estimated from real neurons. At a large-scale level, this model could
faithfully represent the behavior of conductance-based balanced networks
and is therefore a good candidate for building macroscopic models of local
field potentials or optical imaging data.

Preliminary results have shown that considering more local
connectivities—instead of random schemes—does not alter significantly
the master equation predictions as long as the sparseness is strong enough.
Therefore, first- and second-order activity statistics do not require an exact
description of the network structure. However, heterogeneity among the
neurons can be responsible for slight discrepancies between simulations
and predictions. Although our model does not take into account specific
delays between neurons, for random delays of the order of T , the numerical
simulations are even closer to predictions (data not shown). Indeed, global
oscillations are destroyed by heterogeneous delays, and the AI region is
larger. We are currently working on a systematic study of phase diagrams
and their dependence on various parameters.

In conclusion, we have proposed here a mean-field approach to describe
the activity of large networks but still staying in the finite-size regime.
Such a “mesoscopic” description constitutes a first step toward obtaining
a large-scale model of cerebral cortex tissue. The typical size of the net-
works considered here (N ∼5000 neurons) can be thought of representing
the population of cortical neurons seen under one or several pixels of optical
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imaging data. Typical values are 100×100 pixels, covering from about
3 × 3 mm to 3 × 3 cm of cortical tissue, which gives about 5 to 5000 neurons
per pixel in superficial layers according to neuronal densities published
previously (Braitenberg & Schüz, 1998). Thus, constructing a 100 × 100 net-
work of such populations, each described by a master equation analogous
to the model presented here, would be possible if the connectivity between
adjacent and distant populations could be incorporated in the formalism.
This important addition will require studying interconnected networks of
neurons in AI states, which constitutes a natural extension of the modeling
effort examined in this letter.

Appendix A: Mean Activity and Covariance Matrix
Differential Equations

In this appendix, we compute the set of differential equations for the mean
activity and the covariance matrix from the master equation. For bin-sized
activity defined on the time interval T , the central limit theorem allows one
to stop the statistical moment hierarchy at the second order. In other words,
we consider a gaussian approximation of the stochastic process. We note
the mean activity 〈mµ〉 so that

∂t〈mµ〉

=∂t

∏
α=1,...,K

∫ 1/T

0
dmαmµ Pt({mγ })

=
∏

α=1,...,K

∫ 1/T

0
dmαmµ∂t Pt({mγ })

=
∏

α=1,...,K

∫ 1/T

0
dmα

∏
β=1,...,K

∫ 1/T

0
dm′

β

(
mµ Pt({m′

γ })W({mγ } | {m′
γ })

− mµ Pt({mγ })W({m′
γ } | {mγ }))

=
∏

α=1,...,K

∫ 1/T

0
dmα

∏
β=1,...,K

∫ 1/T

0
dm′

β (m′
µ−mµ)W({m′

γ }|{mγ })Pt({mγ })

=
∏

α=1,...,K

∫ 1/T

0
dmαaµ({mγ })Pt({mγ })

=〈aµ({mγ })〉, (A.1)

with

aµ({mγ }) =
∏

β=1,...,K

∫ 1/T

0
dm′

β (m′
µ − mµ)W({m′

γ } | {mγ }).
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To obtain the first-order equation, we develop this function around each
populations mean activity values to the second order,

aµ({mγ }) = aµ({〈mγ 〉}) + ∂λaµ({〈mγ 〉}) · (mλ − 〈mλ〉) +

+ 1
2
∂λ∂ηaµ({〈mγ 〉}) · (mλ−〈mλ〉)(mη−〈mη〉)+O(δm3),

which becomes, after averaging,

〈aµ({mγ })〉 = aµ({〈mγ 〉}) + 1
2
∂λ∂ηaµ({〈mγ 〉})cλη,

where we have introduced the covariance matrix cλη = 〈(mλ −
〈mλ〉)(mη − 〈mη〉)〉 containing the second-order moments. This gives the
first-order set of equations:

∂t〈mµ〉 = aµ({〈mγ 〉}) + 1
2
∂λ∂ηaµ({〈mγ 〉})cλη

aµ({mγ }) =
∏

α=1,...,K

∫ 1/T

0
dm′

α(m′
µ − mµ)W({m′

γ } | {mγ }).
(A.2)

To compute the second-order equations, we proceed as before:

∂tcµν = ∂t〈(mµ − 〈mµ〉)(mν − 〈mν〉)〉
= ∂t〈mµmν〉 − ∂t

(〈mµ〉〈mν〉
)

= ∂t〈mµmν〉 − 〈mν〉∂t〈mµ〉 − 〈mµ〉∂t〈mν〉. (A.3)

Following the previous equations, we can write,

∂t〈mµmν〉 =
∏

α=1,...,K

∫ 1/T

0
dmα

×
∏

β=1,...,K

∫ 1/T

0
dm′

β (m′
µm′

ν − mµmν)W({m′
γ } | {mγ })Pt({mγ }).

Using the relation

m′
µm′

ν−mµmν = (m′
µ − mµ)(m′

ν − mν) + mν(m′
µ − mµ) + mµ(m′

ν − mν),

we have

∂t〈mµmν〉 = < aµν({mγ }) > +〈mνaµ({mγ })〉 + 〈mµaν({mγ })〉 (A.4)
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with

aµν({mγ }) =
∏

β=1,...,K

∫ 1/T

0
dm′

β (m′
µ − mµ)(m′

ν − mν)W({m′
γ } | {mγ }).

Inserting equation A.4 into A.3, and using A.1, we get

∂tcµν =〈aµν({mγ })〉 + 〈mνaµ({mγ })〉 + 〈mµaν({mγ })〉
−〈mν〉∂t〈mµ〉 − 〈mµ〉∂t〈mν〉

= 〈aµν({mγ })〉 + 〈aµ({mγ }) · (mν − 〈mν〉)〉
+ 〈aν({mγ }) · (mµ − 〈mµ〉)〉.

The first term can be expanded to the second order as we did for the first-
order set of equations. Concerning the two other terms, we have,

〈aµ({mγ }) · (mν − 〈mν〉)〉
= 〈(mν − 〈mν〉) · (

aµ({〈mγ 〉})
+ ∂λaµ({〈mγ 〉}) · (mλ − 〈mλ〉)

)〉 +O(δm3)

= ∂λaµ({〈mγ 〉})〈(mν − 〈mν〉)(mλ − 〈mλ〉)〉 +O(δm3)

= ∂λaµ({〈mγ 〉})cνλ +O(δm3),

and the same for the third term but with µ and ν inverted. The second-order
set of equations can finally be written (van Kampen, 2003)

∂tcµν = aµν({〈mγ 〉}) + ∂λaµ({〈mγ 〉})cνλ + ∂λaν({〈mγ 〉})cµλ

aµν({mγ }) =
∏

α=1,...,K

∫ 1/T

0
dm′

α(m′
µ − mµ)(m′

ν − mν)W({m′
γ } | {mγ }).

(A.5)

Appendix B: Correlation Matrix Differential Equation

In this appendix, we compute the set of differential equations that describes
the correlation matrix in a stationary state. The derivation is slightly differ-
ent from the computation in appendix A. A similar computation has been
done in Ginzburg and Sompolinsky (1994). The derivative can be written as:

∂τCorrµν(τ ) = ∂τ 〈
(
mµ(t) − 〈mµ(t)〉) (mν(t + τ ) − 〈mν(t + τ )〉)〉

= ∂τ

(〈mµ(t)mν(t + τ )〉 − 〈mµ(t)〉〈mν(t + τ )〉) . (B.1)
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If we consider the first term of equation B.1,

∂τ 〈mµ(t)mν(t + τ )〉 =

= ∂τ

∏
α=1,...,K

∫ 1/T

0
dmα

∏
β=1,...,K

∫ 1/T

0
dm′

βmµm′
ν P(

{
m′

γ

}
, t

+ τ | {
mγ

}
, t)Pt(

{
mγ

}
)

=
∏

α=1,...,K

∫ 1/T

0
dmαmµ


 ∏

β=1,...,K

∫ 1/T

0
dm′

βm′
ν∂τ P(

{
m′

γ

}
, t

+ τ | {
mγ

}
, t)


 Pt(

{
mγ

}
).

The conditional probability P({m′
γ }, t + τ | {mγ }, t) is also a solution of the

master equation, so that the term in the bracket is similar to equation A.1,
and we can write

∂τ 〈mµ(t)mν(t + τ )〉 = 〈mµ(t)aν(
{
mγ (t + τ )

}
)〉. (B.2)

The second term in equation A.1 is simply

∂τ 〈mµ(t)〉〈mν(t + τ )〉 = ∂τ 〈mµ(t)〉∂τ 〈mν(t + τ )〉 (B.3)

= 〈mµ(t)〉〈aν(
{
mγ (t + τ )

}
)〉.

Combining equations B.2 and B.3 into B.1, we get

∂τCorrµν(τ ) =〈(mµ(t) − 〈mµ(t)〉)aν(
{
mγ (t + τ )

}
)〉. (B.4)

As we are considering time-scales that are beyond the decreasing time of
the network activity correlations, we can develop aν({mγ (t + τ )}) around
the mean values to the second order,

aν(
{
mγ (t + τ )

}
) = aν(

{〈mγ (t + τ )〉}) + ∂λaν(
{〈mγ (t + τ )〉})

× (mλ(t + τ ) − 〈mλ(t + τ )〉) +O(δm2),

so that equation B.4 becomes, to second order,

∂τCorrµν(τ ) = ∂λaν(
{〈mγ (t + τ )〉})Corrµλ(τ ). (B.5)

We are interested in the activity correlations in the stationary state; therefore,
the mean activities {〈mγ 〉} no longer depend on τ . Moreover, the initial
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conditions for those differential equations are given by the stationary values
of the covariance matrix.

Appendix C: Conductance-Based Synaptic Functions
for the Master Equation

In this appendix, we compute the remaining functions necessary to use the
conductance-based model. The effective time constant is activity dependent
in the conductance-based model, and it is given by

〈
τ e f f
µ

〉 = 1
1

τmem
µ

+ ∑
α=1,...,K

〈Gαµ〉
Cµ

.

We need to compute the first and second derivatives:

∂λ

〈
τ e f f
µ

〉 =−〈
τ e f f
µ

〉2 λµ

Eλ

∂η∂λ

〈
τ e f f
µ

〉 = 2
〈
τ e f f
µ

〉3 ηµ

Eη

λµ

Eλ

.

The function �αµ depends on the chosen synapse, and we compute the
corresponding derivatives for exponential and α-synapses:� Exponential synapses. The function is given by

�Exp
αµ = Cαµ

τα + 〈
τ

e f f
µ

〉
(

τα�gαµ〈τ e f f
µ 〉(Eα − 〈Vµ〉)

Cµ

)2

,

so that

∂λ�
Exp
αµ =�Exp

αµ

(
∂λ

〈
τ e f f
µ

〉 ( 2〈
τ

e f f
µ

〉 − 1〈
τ

e f f
µ

〉 + τα

)

− 2∂λ Qµ

(Eα − 〈Vµ〉)
)

∂η∂λ�
Exp
αµ = ∂η�αµ∂λ�αµ

�αµ

+ �αµ

(
∂η∂λ〈τ e f f

µ 〉

×
(

2〈
τ

e f f
µ

〉 − 1〈
τ

e f f
µ

〉 + τα

)
+ ∂η

〈
τ e f f
µ

〉
∂λ〈τ e f f

µ 〉

×
(

1

(
〈
τ

e f f
µ

〉 + τα)2
− 2〈

τ
e f f
µ

〉2
)

−2∂λ Qµ∂η Qµ

(Eα − 〈Vµ〉) − 2∂λ∂η Qµ

(Eα − 〈Vµ〉)2

)
.
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� α-synapses. Similarly

�αsyn
αµ = 1

2
Cαµ(2

〈
τ e f f
µ

〉 + τα)

×
(

eτα�gαµ

〈
τ

e f f
µ

〉
(Eα − 〈Vµ〉)

Cµ(τα + 〈
τ

e f f
µ

〉
)

)2

,

so that

∂λ�γµ = 2�γµ


∂λ

〈
τ e f f
µ

〉  1(
2
〈
τ

e f f
µ

〉 + τγ

) + 1〈
τ

e f f
µ

〉

− 1(〈
τ

e f f
µ

〉 + τγ

)

 − ∂λ Qµ

(Eγ − 〈Vµ〉)




∂η∂λ�γµ = ∂λ�γµ∂η�γµ

�γµ

+

∂η∂λ

〈
τ e f f
µ

〉  1(
2
〈
τ

e f f
µ

〉 + τγ

) + 1〈
τ

e f f
µ

〉

− 1(〈
τ

e f f
µ

〉 + τγ

)



+∂η

〈
τ e f f
µ

〉
∂λ

〈
τ e f f
µ

〉  1(〈
τ

e f f
µ

〉 + τγ

)2

− 2(
2
〈
τ

e f f
µ

〉 + τγ

)2 − 1〈
τ

e f f
µ

〉2



− ∂η∂λ Qµ

(Eγ − 〈Vµ〉) − ∂η Qη∂λ Qµ

(Eγ − 〈Vµ〉)2

)
.
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We propose a Markov process model for spike-frequency adapting neural
ensembles that synthesizes existing mean-adaptation approaches, popu-
lation density methods, and inhomogeneous renewal theory, resulting in
a unified and tractable framework that goes beyond renewal and mean-
adaptation theories by accounting for correlations between subsequent
interspike intervals. A method for efficiently generating inhomogeneous
realizations of the proposed Markov process is given, numerical methods
for solving the population equation are presented, and an expression for
the first-order interspike interval correlation is derived. Further, we show
that the full five-dimensional master equation for a conductance-based
integrate-and-fire neuron with spike-frequency adaptation and a relative
refractory mechanism driven by Poisson spike trains can be reduced to
a two-dimensional generalization of the proposed Markov process by an
adiabatic elimination of fast variables. For static and dynamic stimula-
tion, negative serial interspike interval correlations and transient pop-
ulation responses, respectively, of Monte Carlo simulations of the full
five-dimensional system can be accurately described by the proposed
two-dimensional Markov process.

1 Introduction

Spike-frequency adaptation (SFA) refers to the intrinsic property of certain
neurons to fire with gradually increasing interspike intervals (ISIs) in re-
sponse to a steady injection of suprathreshold current. SFA is ubiquitous: It
has been observed in many neural systems of diverse species (Fuhrmann,
Markram, & Tsodyks, 2002). In the mammalian visual system, for example,
the majority of retinal ganglion cells (RGCs) (O’Brien, Isayama, Richardson,
& Berson, 2002), geniculate relay neurons (Smith, Cox, Sherman, & Rinzel,
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2001), and neocortical and hippocampal regular spiking pyramidal neurons
(McCormick, Connors, Lighthall, & Prince, 1985) exhibit SFA.

The in-vitro conditions used to experimentally verify the presence of SFA
are far from the operational mode of a typical neuron in a network. Given
cortical neuron firing rates and interconnectivity, each neuron there is un-
der intense bombardment by both excitatory and inhibitory synapses. These
mutually opposing showers of excitation and inhibition induce highly ir-
regular fluctuations of the membrane potential reminiscent of a random
walk. The resulting dominance of the mean synaptic conductances over
the leak results in a markedly shortened effective membrane time con-
stant, a dynamical regime known as the high-conductance state (Destexhe,
Rudolph, & Paré, 2003; Shelley, McLaughlin, Shapley, & Wielaard, 2002).
In this regime, action potentials are emitted when the membrane potential
chances across the firing threshold and the resulting ISIs appear stochastic
and are, for adapting neurons, roughly gamma distributed (Softky & Koch,
1993; Destexhe, Rudolph, Fellous, & Sejnowski, 2001; Dayan & Abbott,
2001).

Conductance-based phenomenological models for SFA and related rel-
ative refractory mechanisms are standard and given in Dayan and Abbott
(2001) and Koch (1999) and recently generalized in Brette and Gerstner
(2005). Benda and Herz (2003) show that a large class of biophysical mech-
anisms that induce SFA can be reduced to these conductance-based phe-
nomenological models. Similar but current-based adaptation mechanisms
have been studied in van Vreeswijk and Hansel (2001) and the related
threshold fatigue model for adaptation, also known as dynamic thresh-
old, in Chacron, Pakdaman, and Longtin (2003) and Lindner and Longtin
(2003). See Ermentrout, Pascal, and Gutkin (2001) for a bifurcation analysis
of Iahp, the afterhyperpolarization current, a calcium-dependent potassium
current, and Im, the muscarinic slow voltage-dependent potassium current,
two biophysical mechanisms behind SFA.

Mean-adaptation approximations for the firing rate of populations
of spike-frequency adapting neurons augmenting the standard Wilson
and Cowan equations (Wilson & Cowan, 1972) were devised in Latham,
Richmond, Nelson, and Nirenberg (2000) and Fuhrmann et al. (2002) and
used to study the synchronizing effects of SFA. Universal mean-adaptation
methods for modeling the firing rate of adapting neurons subject to
suprathreshold noise-free current input are given in Benda and Herz (2003).
In La Camera, Rauch, Lüscher, Senn, and Fusi (2004), mean-adaptation
methods are investigated to describe the static and dynamic firing rates of
a large class of integrate-and-fire neuron models with current-based and
dynamic threshold adaptation mechanisms driven by noisy input currents.
The phenomenological firing rate relaxation dynamics of previous Wilson
and Cowan studies is replaced in La Camera et al. (2004) with a firing rate
that depends instantaneously on filtered synaptic currents, as suggested in
Fourcaud and Brunel (2002) and Renart, Brunel, and Wang (2004). While
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for the Wilson and Cowan approaches, the relaxation time constant is a free
parameter, the approach due to La Camera et al. (2004) has no free parame-
ters, and excellent agreement is reported in the static and dynamic case for
several neuron models.

Originally introduced in Knight (1972) and recently the subject of intense
study, population density formalisms provide powerful tools to under-
stand neural ensemble and network behavior in a quantitative way (Brunel,
2000; Omurtag, Knight, & Sirovich, 2000; Nykamp & Tranchina, 2000, 2001;
Fourcaud & Brunel, 2002; Meffin, Burkitt, & Grayden, 2004; Renart et al.,
2004). Such studies are mostly restricted to exactly solvable white noise in-
put cases, with notable exceptions (Nykamp & Tranchina, 2001; Fourcaud
& Brunel, 2002). In Fourcaud and Brunel (2002), the key observation is
made that colored input noise due to synaptic filtering results in a nonzero
probability density near threshold and allows neurons to respond instanta-
neously to injected currents. This provides the theoretical basis for studies
such as La Camera et al. (2004) and will also play an important role in
the work here. Conductance-based neurons with finite synaptic time con-
stants are treated in Rudolph and Destexhe (2003a, 2005), Richardson (2004),
Richardson and Gerstner (2005), though only in the subthreshold regime,
limiting their applicability for understanding firing rate, and networks dy-
namics. The problem with threshold has yet to be solved exactly, however,
it is treated in Moreno-Bote and Parga (2004, 2005).

For neurons without SFA driven by noisy input, an alternate and fruitful
approach is to apply renewal theory as presented in detail in Gerstner
and Kistler (2002). With the defining characteristic of renewal theory being
that successive ISIs are statistically independent, these models neglect by
definition the observation in Chacron et al. (2003) and Lindner and Longtin
(2003) that SFA induces negative serial ISI correlations.

While the great majority of excitatory neurons exhibit SFA, there has yet
to be a population density treatment accounting for it, given the difficulty
in treating the added dimension analytically and numerically. We present
here a study whereby the ensemble behavior of adapting neurons in the
high-conductance state can be understood in a quantitative way.

We start by considering in section 2 how to go beyond the renewal theory
formalism of Gerstner and Kistler (2002) by introducing a dependence be-
tween ISIs, resulting in a Markov model described by a master equation. A
connection to renewal theory is found by a suitable variable transformation,
and expressions for the ISI distribution and conditional ISI distribution are
derived. We then consider in section 3 the full five-dimensional master equa-
tion of the canonical conductance-based integrate-and-fire neuron model
driven by Poisson spike trains augmented by SFA and a relative refractory
mechanism of the form given in Dayan and Abbott (2001). By applying
an adiabatic elimination of fast relaxing variables (Haken, 1983; Gardiner,
1984), we argue that this five-dimensional master equation can be approx-
imated by a two-dimensional master equation of the same form as the
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“beyond renewal theory” Markov model proposed in section 2. In section
4, we determine the generalized hazard function required for the Markov
model by fitting to Monte Carlo simulations of the full system, given that
the firing rate of the neuron model we employ has yet to be solved exactly.
By reasoning as in Fourcaud and Brunel (2002), Renart et al. (2004), and La
Camera et al. (2004), we show how the generalized hazard function applies
in the dynamic case by accounting for synaptic filtering. In section 5, we
provide numerical methods for solving the master equations and generat-
ing realizations of the proposed Markov processes. In section 6, predictions
for ISI correlations and conditional ISI distributions in the static case, and
firing rates in the dynamic case due to the proposed Markov model are
compared to Monte Carlo simulations of the full system. Finally in section
7, the master equation is employed to analyze the domain of validity of
mean-adaptation approaches.

2 Beyond Renewal Theory

Gerstner and Kistler (2002) demonstrate that for spike response models
(a generalization of integrate-and-fire neuron models), the statistical en-
semble of a single neuron with noise can be described using methods of
inhomogeneous renewal theory, as reviewed in appendix C.

The basic assumption of inhomogeneous renewal theory is that the state
of the modeled system can be described by a single state variable, τ , the time
since last renewal, or age of the system, and time t. The limiting probability
density for the neuron to spike, or more generally, for the system to renew
after surviving a time interval τ ,

ρ(τ, t) = lim
�t→0+

prob{> 0 renewals in [t, t + �t) | τ }
�t

, (2.1)

also known as the hazard function (Cox, 1962), is a function of time, t,
and age, τ .1 Thus, subsequent interspike intervals (ISIs) are by definition
independent and uncorrelated.

As Gerstner and Kistler (2002, pp. 245), stated, “A generalization of the
[renewal] population equation to neuron models with [spike-frequency]
adaptation is not straightforward since the [renewal] formalism assumes
that only the last spike suffices. . . . A full treatment of adaptation would
involve a density description in the high-dimensional space of the micro-
scopic neuronal variables [as in] (Knight, 2000).”

In section 3 we provide a full treatment of the density description men-
tioned above. However, before we proceed, it is instructive to consider what

1For our discussion of renewal processes, we follow the notation of Cox (1962) but use
τ to denote age, t to denote time, and ρ instead of h to denote the hazard function, as in
appendix C.
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a model might look like that allows for a dependence between subsequent
ISIs.

Consider the standard phenomenological model for spike-frequency
adaptation (SFA) proposed in Dayan and Abbott (2001) where a given
neuron model is augmented with a conductance gs(t) that makes the jump
gs(t + dt) = gs(t) + qs when the neuron spikes at time t and is otherwise
governed by

dgs(t)
dt

= − 1
τs

gs(t). (2.2)

Now consider a neuron that has gs as a state variable and a probability
density to fire of the form

hg(gs, t) = lim
�t→0+

prob{> 0 spikes in [t, t + �t) | gs}
�t

, (2.3)

where gs evolves in time by equation 2.2. This process is analogous to a
renewal process, but now with a single state variable, gs , which is not reset
at each occurrence of a spike but slowly forgets with a timescale of τs due to
equation 2.2. For a model of this form, it is possible for correlations to arise
between subsequent ISIs. We refer to both the renewal hazard function,
ρ(τ, t), and the hg(gs, t) defined here as hazard functions, as they both
represent a probability density of the system to spike.

It is straightforward to show that the ensemble of such neurons is gov-
erned by a master equation of the form

∂

∂t
P(gs, t) = ∂

∂gs

[
gs

τs
P(gs, t)

]

+ hg(gs − qs, t)P(gs − qs, t)

− hg(gs, t)P(gs, t), (2.4)

where P(gs, t) is the distribution of state variables gs with P(gs < 0, t) ≡ 0.
The distribution P(gs, t) is analogous to the distribution of ages, f −(τ, t),
of renewal theory, and equation 2.4 is analogous to the renewal theory
equation C.7, both given in appendix C. The model defined by equation 2.4
is referred to as the 1D Markov (1DM) model throughout the text. (See
Table 1 for an overview of the models considered in the text.)
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Understanding the connection of the 1DM model to its renewal theory
cousin is facilitated by transforming gs to a pseudo–age variable ts with
d
dt ts = 1 by2

ts = η(gs) := −τs log (gs/qs) . (2.5)

The hazard function hg(gs, t) becomes h(ts, t) = hg
(
η−1(ts), t

)
, a hazard func-

tion as in equation 2.1 of the pseudovariable ts but defined also for ts < 0.
The distribution of states P(gs, t) becomes P(ts, t), where they are related
by

P(ts, t) = P
(
gs = η−1(ts), t

) d
dts

η−1(ts). (2.6)

The reset condition is not ts �→ 0 as for a renewal process, but ts �→ η(gs + qs),
where the right-hand side can be expressed in terms of ts using the relation
gs = η−1(ts). Defining the reset mapping, ψ(ts), such that the reset condition
becomes ts �→ ψ(ts), it follows that

ψ(ts) = η(η−1(ts) + qs)

=−τs log
(

exp
(−ts

τs

)
+ 1

)
, (2.7)

with its inverse given by

ψ−1(ts) = −τs log
(

exp
(−ts

τs

)
− 1

)
, (2.8)

whereby ψ(ψ−1(t)) = t and ψ−1(ψ(t)) = t as required by the definition of
the inverse.

The variable ts is then a general state variable that no longer represents
the time since the last spike, as in renewal theory. Since ψ : R → R−, it
follows that all trajectories are reinserted at negative pseudo-ages, and it can
be seen from the form of ψ that “younger” spiking trajectories are reinserted
at more negative pseudo-ages. This dependence of the reinserted state on
the state just prior to spiking yields a Markov process (Risken, 1996), which
cannot be described by renewal theory.

2We follow the convention throughout the text of using positional arguments for
functions and labeled arguments for derivatives. Probability distributions are excepted
from this rule, as they are not functions but densities. The notation “:=” denotes definition
of a function and its positional arguments.
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The master equation in terms of ts takes the form

∂

∂t
P(ts, t) = − ∂

∂ts
P(ts, t)

+
{

−h(ts, t)P(ts, t), ts ≥ 0

h(ψ−1(ts), t)P(ψ−1(ts), t) − h(ts, t)P(ts, t) ts < 0,
(2.9)

revealing the advantage of the variable transformation gs → ts : The deter-
ministic drift term in equation 2.4 for the exponential decay of gs is trans-
formed to a constant drift term in ts analogous to age in renewal theory.
As a result, much can be calculated by analogy to renewal theory, and we
are freed from the difficulty of treating the nonconstant drift toward zero
in equation 2.4 numerically. We will see in later sections that h(ts, t) is in
practice approximately of the form

h(ts, t) = a (t) exp
(−b(t)qs exp (−ts/τs)

)
(2.10)

when modeling spike-frequency adapting neurons in the high-conductance
state, where a (t) and b(t) are determined by the stimulus.

For the static case where h(ts, t) ≡ h(ts), P(ts) can be found from equa-
tion 2.9 by setting ∂/∂t P(ts, t) = 0. The resulting equation for ts ≥ 0,

∂

∂ts
P(ts) = −h(ts)P(ts), (2.11)

is exactly as for a renewal process. The solution is the homogeneous survival
function,

P(ts) = kW(ts, 0), (2.12)

where

k−1 =
∫ ∞

−∞
W(ts, 0)dts (2.13)

is a constant of normalization, and the survival function,

W(�t, t0
s ) = exp

(
−

∫ �t

0
h(t0

s + s)ds
)

, (2.14)
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and analogously the inhomogeneous survival function,

W(�t, t0
s , t) = exp

(
−

∫ �t

0
h(t0

s + s, t + s)ds
)

, (2.15)

represent the probability that a system with initial state t0
s ∈ R will survive

for a time �t, and a time �t after t, respectively and are analogous to the
survival function of renewal theory as discussed in appendix C, except for
the explicit dependence on the initial state t0

s . For ts < 0, we solve P(ts)
numerically by discretizing and integrating back from ts = 0.

The distribution of pseudo-ages just prior to spiking at t, P∗(ts, t), is
related to P(ts, t) by

P∗(ts, t) = h(ts, t)P(ts, t)
α(t)

, (2.16)

where

α(t) =
∫ ∞

−∞
h(ts, t)P(ts, t)dts (2.17)

is a normalizing constant and also the firing rate of the ensemble.
The distribution of pseudo-ages just after spiking at t, P†(ts, t), is related

to P∗(ts, t) by transforming variables by the reset mapping (see equation 2.7)
for a probability distribution:

P†(ts, t) = P∗(ψ−1(ts), t)
d

dts
ψ−1(ts). (2.18)

2.1 Computing Renewal Quantities. The various quantities of renewal
theory such as the ISI distribution, hazard function, and survival function
are of interest and are straightforward to calculate for the proposed Markov
process.

First, the renewal survival function,F(τ, t), the probability that a system
that spiked at t will survive the time interval τ , is given by

F(τ, t) =
∫ ∞

−∞
W(τ, ts, t)P†(ts, t)dts . (2.19)

The ISI distribution, f (τ, t), the probability that a neuron that spiked at
t will survive for an interval τ and subsequently spike at t + τ , is

f (τ, t) =
∫ ∞

−∞
h(ts + τ, t + τ )W(τ, ts, t)P†(ts, t)dts . (2.20)
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Equivalently in terms of P∗(ts, t),

f (τ, t) =
∫ ∞

−∞
h(ψ(ts) + τ, t + τ )W(τ, ψ(ts), t)P∗(ts, t)dts . (2.21)

The hazard function of the system in a renewal sense, ρ(τ, t), where τ is a
true age, is by definition the firing rate of the subpopulation that previously
spiked at time t − τ . Thus,

ρ(τ, t) =
∫ ∞

−∞
h(ts, t)P(ts, t| spike at t − τ )dts, (2.22)

where the state distribution of the system given a spike at t − τ ,
P(ts, t| spike at t − τ ), can be determined by reasoning that it is the dis-
tribution of states just after spiking with arguments ts − τ and t − τ ,
P†(ts − τ, t − τ ), which subsequently survive the interval τ ,

P(ts, t| spike at t − τ ) = k1W(τ, ts − τ, t − τ )P†(ts − τ, t − τ ), (2.23)

where k1 is the normalization factor,

k−1
1 =

∫ ∞

−∞
W(τ, ts − τ, t − τ )P†(ts − τ, t − τ )dts, (2.24)

and by inspection of equation 2.19,

k−1
1 = F(τ, t − τ ), (2.25)

such that

ρ(τ, t) = 1
F(τ, t − τ )

∫ ∞

−∞
h(ts, t)W(τ, ts − τ, t − τ )P†(ts − τ, t − τ )dts .

(2.26)

Clearly, the numerator is just f (τ, t − τ ), resulting in

ρ(τ, t) = f (τ, t − τ )
F(τ, t − τ )

. (2.27)

This verifies that the standard renewal theory relation that f (τ ) = ρ(τ )F(τ ),
generalized for the inhomogeneous case, still holds even though the under-
lying stochastic process is not a renewal process. It is interesting to note
that in the inhomogeneous case, there is an alternate definition for the ISI
distribution that is equally sensible: define f̂ (τ, t) as the probability that
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a neuron that spiked at t − τ will survive the interval τ and subsequently
spike at t. This is the ISI distribution that treats the spike at t as the final
spike of the ISI rather than the initial spike as in equation 2.21. If one prefers
this alternate definition of the ISI distribution, as in Gerstner and Kistler
(2002), then one has

f̂ (τ, t) =
∫ ∞

−∞
h(ts + τ, t)W(τ, ts, t − τ )P†(ts, t − τ )dts, (2.28)

implying that f̂ (τ, t) = f (τ, t − τ ), and equation 2.27 becomes

ρ(τ, t) = f̂ (τ, t)
F(τ, t − τ )

. (2.29)

2.2 Correlations. In this section, an expression for the joint serial ISI
distribution, f (τi+1, τi , t), will be derived for the proposed Markov process
and shown to exhibit ISI correlations.

Recall the definition of the absence of correlations between two random
variables: τi and τi+1 are uncorrelated (independent) if and only if

f (τi+1, τi ) = f (τi+1) f (τi ), (2.30)

where f (τi+1, τi ) is the joint probability distribution of two back-to-back
ISIs in the homogeneous case.

For the inhomogeneous case, a separation of this joint distribution
f (τi+1, τi , t) by Bayes’ theorem,

f (τi+1, τi , t) = f (τi+1, t|τi ) f (τi , t − τi ), (2.31)

reveals a subtlety: The time argument of f (τi , t), the marginal distribution
of τi , must be retarded by τi . This is due to the fact that for τi to precede τi+1

at t, it must occur at t − τi . Given that f (τ, t) is known, it is left to determine
an expression for f (τi+1, t|τi ). This can be achieved using equation 2.21 by
replacing P∗(ts, t) with the conditional distribution of states just prior to
spiking given a spike at t − τi , which is denoted by P∗(ts, t|τi ).

The distribution P∗(ts, t|τi ), the conditional distribution of states just
prior to spiking, given a spike at t − τi , takes the form

P∗(ts, t|τi ) = k2h(ts, t)P(ts, t| spike at t − τi ), (2.32)
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where k2 is a normalization factor, and an expression for P(ts, t| spike at t −
τi ) was given in equation 2.23. By inspection of equation 2.22, it can be seen
that k−1

2 = ρ(τi , t). This results in

P∗(ts, t|τi ) = h(ts, t)W(τi , ts − τi , t − τi )P†(ts − τi , t − τi )
f (τi , t − τi )

, (2.33)

where the denominator, ρ(τi , t)F(τi , t − τi ), was replaced by f (τi , t − τi )
using equation 2.27.

Plugging this expression for P∗(ts, t|τi ) into equation 2.21 yields

f (τi+1, τi , t) =

f (τi+1, t|τi ) f (τi , t − τi ) =
∫ ∞

−∞
h(ψ(ts) + τi+1, t + τi+1)W(τi+1, ψ(ts), t)

× h(ts, t)W(τi , ts − τi , t − τi )P†(ts − τi , t − τi )dts, (2.34)

an inhomogeneous expression for the joint ISI distribution of two successive
ISIs.

It is instructive to verify that for the case of a renewal process, equation
2.34 predicts no correlations. For a renewal process, ψ(ts) = 0 and P†(ts, t) =
δ(ts), such that equation 2.34 becomes

f (τi+1, τi , t) = h(τi+1, t + τi+1)W(τi+1, 0, t) · h(τi , t)W(τi , 0, t − τi ). (2.35)

In addition, the ISI distribution given by equation 2.20 reduces to

f (τ, t) = h(τ, t + τ )W(τ, 0, t). (2.36)

Thus, it can be seen by inspection that equation 2.35 is of the form

f (τi+1, τi , t) = f (τi+1, t) f (τi , t − τi ), (2.37)

implying as expected that successive ISIs are uncorrelated for a renewal
process.

3 Connection to a Detailed Neuron Model

In this section we show that the full five-dimensional master equation for
the canonical conductance-based integrate-and-fire neuron model driven
by Poisson spike trains, augmented by mechanisms for SFA and a relative
refractory period, can be reduced to a two-dimensional generalization of
the 1DM model by an adiabatic elimination of fast variables.
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3.1 Neuron Model, Adaptation, Input. Following Rudolph and
Destexhe (2003a, 2005), Richardson (2004), Richardson and Gerstner (2005),
we consider the equations for the membrane potential, v(t), and excitatory
and inhibitory synaptic conductances, ge (t) and gi (t), of the conductance-
based integrate-and-fire neuron driven by Poisson spike trains:

cm
dv(t)

dt
= gl (El − v(t)) + ge (t)(Ee − v(t)) + gi (t)(Ei − v(t)) (3.1)

dge (t)
dt

= − 1
τe

ge (t) + qeSe (t) (3.2)

dgi (t)
dt

= − 1
τi

gi (t) + qiSi (t), (3.3)

where cm represents the membrane capacitance, gl the leak conductance,
Ex the various reversal potentials, qx the quantal conductance increases,
and τx the synaptic time constants. The exact parameters used are given
in appendix A. The excitatory and inhibitory input spike trains, Sx(t) with
x ∈ {e, i}, respectively, are given by

Sx(t) =
∑

k

δ(t − sx,k), (3.4)

where sx,k are the spike times of a realization of an inhomogeneous Poisson
process (Papoulis & Pillai, 1991). Thus, Sx(t) satisfies the constraints

〈Sx(t)
〉 = νx(t) (3.5)

〈Sx(t)Sx(t′)〉 = νx(t)νx(t′) + νx(t′)δ(t − t′). (3.6)

Here νx(t) represents the time-varying rate of the inhomogeneous Poisson
process, and 〈 〉 represents the expectation value over the ensemble of real-
izations. In what follows, all Poisson processes are assumed inhomogeneous
unless otherwise stated.

To put the neuron in a state of high conductance, it is bombarded by
Ne = 1000 and Ni = 250 excitatory and inhibitory Poisson processes, all
with rate functions λe (t) and λi (t), respectively, so that

νx(t) = Nxλx(t). (3.7)

A simple thresholding mechanism approximates the action potential
dynamics of real neurons: If v(t) exceeds the threshold, vth, v(t) is reset to
vreset. Analogous to the input spike train, we can thus define the output
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spike train,

A(t) =
∑

k

δ(t − sk), (3.8)

where sk are the times of membrane potential threshold crossings enumer-
ated by k.

SFA and a relative refractory period can both be modeled with the addi-
tion of a current to equation 3.1 of the form proposed in Dayan and Abbott
(2001),

gy(t)(Ey − v(t)), (3.9)

where Ey is a reversal potential. The conductance gy(t) is governed by

dgy(t)
dt

= − 1
τy

gy(t) + qyA(t), (3.10)

where τy and qy are the time constant and quantal conductance increase of
the mechanism. We label SFA and the relative refractory mechanism by the
subscripts y = s and y = r , respectively. Defining

βv(v, ge , gi , gs, gr ) := gl (El − v) +
∑

µ=e,i,s,r

gµ(Eµ − v) (3.11)

and for µ = e, i, s, r ,

βµ(gµ) := − 1
τµ

gµ, (3.12)

the five-dimensional system of coupled differential equations describing the
conductance-based spike-frequency adapting relative refractory integrate-
and-fire neuron driven by Poisson spike trains is:

cm
dv(t)

dt
= βv(v(t), . . . , gr (t)) − (Vth − Vreset)A(t) (3.13)

dgx(t)
dt

= βx(gx(t), t) + qxSx(t) (3.14)

dgy(t)
dt

= βy(gy(t), t) + qyA(t), (3.15)

where x ∈ {e, i} and y ∈ {s, r}. We refer to equations 3.13 to 3.15 as the full
five-dimensional (5DF) model throughout the text (see the model overview
in Table 1). The parameters used are given in Table 3.
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3.2 Ensemble Behavior. It is natural to look for an ensemble description
of equations 3.13 to 3.15, given that the input is described in terms of an
ensemble.

Equations 3.13 to 3.15 are a set of concurrent first-order differential equa-
tions, that is, the right-hand sides at time t are functions of the instantaneous
values of the state variables, (v(t), ge (t), gi (t), gs(t), gr (t)), implying no de-
lays or memory effects are to be modeled. The system is therefore a Markov
process, and given an initial distribution P(v, ge , gi , gs, gr , t0) for some t0,
the evolution of P(v, ge , gi , gs, gr , t) can be described by a suitable mas-
ter equation (Risken, 1996). For the system in question here, the master
equation takes the form

∂

∂t
P(v, ge , gi , gs, gr , t) =−divJ (v, ge , gi , gs, gr , t)

+ δ(v − vreset)Jv(vth, ge , gi , gs − qs, gr − qr , t), (3.16)

where the probability current density, J , is a vector with components

Jv(v, ge , gi , gs, gr , t) = βv(v, ge , gi , gs, gr , t)P(v, ge , gi , gs, gr , t) (3.17)

Jµ := βµ(gµ, t)P(v, ge , gi , gs, gr , t) (3.18)

with µ ∈ {s, r}. (For J e and J i , see appendix B.) The δ term in equation
3.16 implements the reinsertion of probability flux that crosses the thresh-
old. Furthermore, we define P(v, ge , gi , gs, gr , t) = 0 if one or more of the
conductances ge , . . . , gr is negative.

There exists a wealth of literature treating master equations of con-
ductance and current-based integrate-and-fire neuron models in the ab-
sence of adaptation and relative refractory mechanisms (Knight, 1972;
Gerstner, 1995; Brunel, 2000; Omurtag et al., 2000; Nykamp & Tranchina,
2000; Knight, Omurtag, & Sirovich, 2000; Gerstner, 2000; Fourcaud & Brunel,
2002; Rudolph & Destexhe, 2003a; Richardson, 2004; Richardson & Gerstner,
2005). The usual approach is to make the so-called diffusion approximation
yielding generally a Fokker-Planck equation for the membrane potential,
and perhaps one or two other dimensions treating synaptic conductances.

We present here a novel approach applicable for neurons in the high-
conductance state whereby the variables v, ge , gi are eliminated by a tech-
nique known as an adiabatic elimination of fast variables (Haken, 1983;
Gardiner, 1984), and the system is reduced to a master equation for the
two-dimensional marginal probability distribution, P(gs, gr , t), of the slow
variables, gs and gr . As we will see, the membrane potential, v, and the
synaptic conductances, ge and gi , are thus encapsulated in the hazard func-
tion, hg(gs, gr , t). We treat here the static input case, λe , λi . The case for
dynamic external input λe (t), λi (t) is treated in section 4.
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We follow here the intuitive treatment of adiabatic elimination given in
Haken (1983). We begin by integrating P(v, . . . , gr ) over the fast variables
v, ge , gi , yielding the marginal distribution for the slow variables gs, gr ,

P(gs, gr , t) =
∫ ∞

0

∫ ∞

0

∫ vth

−∞
P(v, ge , gi , gs, gr , t)dvdgedgi . (3.19)

Integrating equation 3.16 over v, ge , gi yields

∂

∂t
P(gs, gr , t) = −

∑
µ=s,r

∂

∂gµ

(βµ(gµ)P(gs, gr , t))

−
∫ ∞

0

∫ ∞

0
βv(vth, ge , gi , gs, gr )P(vth, ge , gi , gs, gr , t)dgedgi

+
∫ ∞

0

∫ ∞

0
βv(vth, ge , gi , gs − qs, gr − qr )

× P(vth, ge , gi , gs − qs, gr − qr , t)dgedgi . (3.20)

For details of the calculation, see appendix B. Now we separate the marginal
distribution for the slow variables from the full distribution by Bayes’ the-
orem, resulting in

P(v, ge , gi , gs, gr , t) = P(v, ge , gi , t|gs, gr , t)P(gs, gr , t), (3.21)

and make the adiabatic approximation as in Haken (1983) that

P(v, ge , gi , t|gs, gr , t) ≈ P (gs ,gr )(v, ge , gi , t), (3.22)

where P (gs ,gr )(v, ge , gi , t) is the solution to the three-dimensional master
equation for the canonical conductance-based integrate-and-fire neuron
with a constant bias current, I (gs, gr ) = gs(Es − v) + gr (Er − v), with nei-
ther SFA nor the relative refractory mechanism. This implies we assume
that v, ge , gi are immediately at equilibrium given the slow variables, or in
other words, the system responds adiabatically to the dynamics of the slow
variables gs, gr . The adiabatic assumption ensures the two-dimensional pro-
cess (gs(t), gr (t)) is a Markov process.

Now defining the hazard function,

hg(gs, gr , t) :=
∫ ∞

0

∫ ∞

0
βv(vth, ge , gi , gs, gr )P (gs ,gr )(vth, ge , gi , t)dgedgi ,

(3.23)
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the master equation, 3.20, becomes

∂

∂t
P(gs, gr , t) =−

∑
µ=s,r

∂

∂gµ

(βµ(gµ)P(gs, gr , t))

− hg(gs, gr , t)P(gs, gr , t)

+ hg(gs − qs, gr − qr , t)P(gs − qs, gr − qr , t). (3.24)

We refer to the model defined by equation 3.24 as the 2D Markov (2DM)
model throughout the text (see the model overview in Table 1). Since no
analytical solution is yet known for P (gs ,gr )(vth, ge , gi , t) in equation 3.23,
hg(gs, gr ) was extracted from Monte Carlo simulations of equations 3.13 to
3.15, as will be discussed in section 4.1. Then given a solution to the master
equation, P(gs, gr , t), the firing rate of the ensemble, denoted by α(t), is
determined by the expectation value of the hazard function hg(gs, gr , t)
over P(gs, gr , t):

α(t) =
∫ ∞

0

∫ ∞

0
hg(gs, gr , t)P(gs, gr , t)dgsdgr . (3.25)

For the adiabatic approximation, the assumption that gs is slow com-
pared to v, ge , gi is easily justified as the timescale of gs is on the order
of 100 ms, while the timescale of v is on the order of 2 ms in the high-
conductance state. The timescale of the mean and standard deviation of ge

and gi are on the order of τe = 1.5 ms and τi = 10 ms, respectively, while
the fluctuations of ge and gi are the source of stochasticity of the system and
are on a still shorter timescale.

The timescale of gr is significantly faster than gs , though its treat-
ment as a slow variable is also justifiable, but in a somewhat indirect
manner. As has been argued in Fourcaud and Brunel (2002) and Re-
nart et al. (2004), for neurons with synaptic time constants comparable
to or larger than the effective membrane time constant and driven by
sufficient input noise, as is the case here, the firing rate follows the input
current almost instantaneously. It is this property that allows the dynamic
firing rate to be treated as a function of the time-dependent means and
variances of the synaptic conductances in La Camera et al. (2004), a method
we follow in section 4. This suggests that such modulations do not push
the system far from equilibrium and that the system returns to equilibrium
on a timescale faster than that of the synaptic means (τe , τi ). Since over
the domain of the gr trajectory for which the integrals on the right-hand
side of equation 3.20 are nonzero, gr has a timescale comparable to the
mean of the synapses, the argument applies equally to gr . However, since
gr is spike triggered, we leave gr in the master equation, while the synaptic
variables, ge and gi , determine hg(gs, gr , t) and can be treated outside the
master equation formalism.



2974 E. Muller, L. Buesing, J. Schemmel, and K. Meier

Methods to undertake a rigorous analysis of the error in the adiabatic
approximation are beyond the scope of this letter. What follows are a vari-
ety of numerical comparisons to demonstrate the accuracy and domain of
applicability of the proposed approximation.

4 Methods

In this section we provide methods for determining appropriate homo-
geneous and inhomogeneous hazard functions for the 1DM, 2DM, and
renewal models. Since no analytical expression for equation 3.23, or the
renewal hazard function of the 5DF model is yet known, we approach
the problem by fitting the homogeneous hazard functions determined by
5DF Monte Carlo simulations in the static case. The inhomogeneous func-
tions are then constructed from the homogeneous ones by discretizing time
and taking one homogeneous hazard function for the duration of a single
time bin.

4.1 Determining the Static Hazard Function for Markov Models.
Given a finite subset of the possible realizations of the Poisson input spike
trains, the 5DF model equations, 3.13 to 3.15, can be integrated for each input
realization. Any statistical quantity of interest can then be approximated by
averaging or histogramming over this finite set of trajectories. This approach
is known as the Monte Carlo method. By increasing the number of trials
in this finite set of realizations, the statistical quantities determined by the
Monte Carlo method converge to the true quantities. Therefore, Monte
Carlo simulations are used for determining the unknown hazard functions
as well as later benchmarking the reduced master equations.

By Monte Carlo simulations of the 5DF model under static stimulation,
the quantities P∗(gs + gr ), P(gs + gr ), and α(t) can be obtained. Then anal-
ogous to equation 2.16, we can determine hg(gs, gr ) by

hg(gs, gr ) = hg(gs + gr ) = αP∗(gs + gr )
P(gs + gr )

, (4.1)

where we treat the sum of the conductances, gs + gr , rather than each in-
dependently because we have chosen their reversal potentials to be equal
(see appendix A). It was found that hg(gs, gr ) can be fit well by a function
of the form

hg(gs, gr ) = a exp(−b · (gs + gr )), (4.2)

where a and b are fit parameters. Some typical fits for various excitatory
Poisson input rates are shown in Figure 1. For the 1DM model, the same
fit parameters were used, but with gr = 0. Transforming to (ts, tr ) by the
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Figure 1: hg(gs, gr ) = hg(gs + gr ) as a function of gtot = gs + gr , as determined
from 5DF Monte Carlo (data points, 1000 trials per λe , 10 s per trial, dt =
0.01 ms) by equation 4.1, was found to be approximately exponential for a
range of excitatory stimulation rates, λe , with the inhibitory stimulation rate
fixed at λi = 11.4 Hz. For the definition of the 5DF model, see Table 1. The
exponential fits (lines) are good for low rates (< : λe = 5.26 Hz, : λe = 5.56 Hz,
�: λe = 5.88 Hz, ×: λe = 6.01 Hz, �: λe = 6.25 Hz, ©: λe = 6.67 Hz) in A, but
poorer for gs near zero for high rates (< : λe = 6.90 Hz, : λe = 7.14 Hz, �:
λe = 7.69 Hz, ×: λe = 8.33 Hz, �: λe = 9.09 Hz, ©: λe = 10.0 Hz) in B.

inverse of equation 2.5, we have

h(ts, tr ) = a exp
(

−b ·
(

qs exp
(−ts

τs

)
+ qr exp

(−tr
τr

)))
. (4.3)

4.2 Constructing Inhomogeneous Hazard Functions. Now given the
hazard functions determined under static input statistics, the inhomoge-
neous hazard function given time-varying Poisson input rates λe (t), λi (t)
can be constructed by accounting for synaptic filtering.

The homogeneous hazard functions given static stimulation rates λe , λi

determined by the recipes in section 4.1 are the hazard functions given
synaptic conductance distributions parameterized by 〈ge,i 〉, neglecting
higher-order moments. It can be shown that

d
dt

〈gx(t)〉 = − 1
τx

(〈gx(t)〉 − qxτx Nxλx(t)), (4.4)

with x ∈ {e, i}, a low-pass filter equation of the quantity qxτx Nxλx(t) with a
cutoff frequency of 2π/τx (Gardiner, 1985; La Camera et al., 2004).

As argued in Fourcaud and Brunel (2002) and Renart et al. (2004), the
firing rate of neurons with nonzero synaptic time constants driven by
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sufficient noise follows their input currents instantaneously. Then the haz-
ard function hg(gs, gr , t) here is also determined instantaneously by the
mean synaptic conductances. Therefore, inhomogeneous parameters a (t)
and b(t) in equation 4.3 can be determined by interpolating the parameters
determined from static 〈ge〉 and 〈gi 〉 with the instantaneous dynamic 〈ge (t)〉
and 〈gi (t)〉 determined by integrating equation 4.4 for some given arbitrary
time-varying input spike trains parameterized by λe (t), λi (t). Thus, we have
the hazard function

hg(gs, gr , t) = a (t) exp(−b(t) · (gs + gr )). (4.5)

A similar approach was taken in La Camera et al. (2004), except that we
do not correctly account for the dynamics of the standard deviation of
the synaptic conductance by the fitting approach used here. This could be
remedied given an analytically solvable neuron model as was used in La
Camera et al.

In this study, we investigate only time-varying excitation. Treating in-
hibition in addition would require additional fits and two-dimensional
interpolation of the resulting parameters but would yield no new results
for this study.

4.3 Comparing to Renewal Theory Models. In inhomogeneous re-
newal theory, only the time since the last spike (age) enters into the hazard
function (Gerstner & Kistler, 2002). While such theories cannot account for
ISI correlations due to SFA, they can account for much of the gradual in-
crease in excitability that follows a spike due to SFA by an appropriately
chosen hazard function. Perhaps surprisingly, such models are sufficient to
exhibit “adapting” transients to step stimuli. Like the 2DM model, we seek
to calibrate such renewal models to the 5DF system and assess their suitabil-
ity for modeling the ensemble firing rate under dynamic stimuli. Sufficient
for such a comparison is a recipe for specifying the hazard function as a
function of the static stimulus. The dynamic case can then be constructed
by using the effective synaptic filtered stimulus to determine the inhomo-
geneous hazard function at each instant in time, as for the Markov models
in the previous section.

For the static case, one can determine the hazard function as a function
of the stimulus by interpolating the ISI distribution due to 5DF Monte Carlo
and applying the standard renewal theory result that

ρ(τ ) = f (τ )
F(τ )

, (4.6)
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where the renewal theory survival function is given by

F(τ ) =
∫ ∞

s=τ

f (s)ds. (4.7)

The renewal model will thus reproduce the ISI distribution of 5DF Monte
Carlo under static stimulation. This process is numerically unstable for
large τ , and for the dynamic case too costly. Another approach is to deter-
mine the renewal hazard function by equation 2.26, with one caveat: since
the resulting renewal hazard function must be uniquely determined by the
stimulus, P(ts, tr , t) in equation 2.26 must be replaced by P∞(ts, tr , t), the
instantaneous equilibrium distribution, or asymptotic state distribution for
large time resulting from a h(ts, tr , t) fixed at the instantaneous value at time
t. The renewal hazard function determined by this recipe, combined with
the renewal master equation C.7, defines what we subsequently refer to
as the effective renewal (ER) model (see the model overview in Table 1).
Typical hazard functions are shown in Figure 2. Indeed, the renewal hazard
functions determined by equation 2.26 are consistent with those of 5DF
Monte Carlo determined by equation 4.6.

Simulation of the ER model implies that the master equation for P(ts, tr , t)
must be allowed to converge to P∞(ts, tr , t) for each time step where the
stimulation changes. This is costly and makes the ER models much less
efficient to simulate than the 1DM and 2DM models, but allows a direct
comparison of renewal models with the 1DM and 2DM models and 5DF
Monte Carlo. When the renewal hazard function is known a priori, as would
be the case for a gamma renewal process, or when the hazard functions can
be fit by simple functions, the renewal theory ensemble equations given in
appendix C are comparatively more efficient to simulate than the 1DM and
2DM models.

5 Numerics

In this section we describe the numerical techniques applied to solve the
1DM and 2DM master equations, generate realizations of the 1DM and
2DM processes, and solve the 5DF neuron model equations.

5.1 Numerical Solution of Master Equations. We solved the 1DM and
2DM master equations numerically by discretizing P(ts, t) and P(ts, tr , t),
respectively, applying the exponential Euler method for the death term, and
reinserting the lost probability by walking the negative time domain and
fetching the probability sources of each bin determined by equation 2.8.
We present the one-dimensional case here, which can be generalized to two
dimensions.
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Figure 2: The renewal hazard function, ρ(τ ), for synaptic input rates (λe =
6.5 Hz, λi = 11.4 Hz) and (λe = 8.3 Hz, λi = 11.4 Hz) resulting in an ensemble
firing rate of α = 6.33 Hz (top row), and α = 18.67 Hz (bottom row), respectively.
The renewal hazard function for 5DF Monte Carlo (circles) was computed by
equation 4.6 with a spike train of 104 s. The renewal hazard function due to the
2DM model (solid line) was determined by equation 2.26. The renewal hazard
function for a gamma renewal process (dashed line) equal to the 2DM renewal
hazard function at large τ and with the same average firing rate was computed
as discussed in section C.2. The small τ region is shown blown up in the right
column. For the definition of the 2DM and 5DF models, see Table 1.

We discretize P(ts, t) on equally spaced grids ti
s and t j with grid spacings

�ts := ti+1
s − ti

s and �t := t j+1 − t j , respectively, with �ts = �t, such that
P(ts, t) → Pi, j . The discretized form of the master equation 2.9 then takes
the form

Pi+1, j+1 = Pi, j exp(−�t · h(ti
s , t j )) + Pi, j

r , (5.1)

where the first term is the exponential Euler computation of loss of proba-
bility due to the death term. On the left-hand side, the first superscript of
P , i + 1, leads i by one to implement the constant drift of ts , dts/dt = 1. The
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reinserted probability, Pi, j
r , is computed for ti

s + �ts < 0 by

Pi, j
r :=

irif(ti+1
s )−1∑

m=irif(ti
s )

Pm, j
d

+ ψ−1(ti+1
s ) − irif(ti+1

s )
�ts

Pi+1, j
d

− ψ−1(ti
s ) − irif(ti

s )
�ts

Pi, j
d , (5.2)

where Pi, j
d is the loss of probability computed by

Pi, j
d := �t · Pi, j · h(ti

s , t j ), (5.3)

and irif refers to the “reinserted-from” index, which satisfies

tirif(ti
s )

s ≤ ψ−1(ti
s ) < tirif(ti

s )
s + �ts . (5.4)

The first term in equation 5.2 is just a sum of all Pi, j
d except the fractional

last bin, which sends probability to the interval t ∈ [ti
s , ti

s + �ts). The second
two terms subtract the fractional first and add the fractional last bins of
Pi, j

d , which are reinserted to the interval, and thus implement a sort of
anti-aliasing of the reinsertion mapping.

5.2 Neuron Simulations. Monte Carlo simulations of the full-system
(5DF Monte Carlo) were performed by solving equations 3.13 to 3.15 using
the NEST simulation environment (Diesmann & Gewaltig, 2002) with a
time step of 0.01 ms.

5.3 Generating Realizations of the Proposed Markov Processes. Gen-
erating realizations of the proposed 1DM or 2DM processes is straight-
forward: The thinning method for a general hazard function described in
Devroye (1986) can be applied. The quantity hmax = maxts ,t(h(ts, t)) for the
1DM case or hmax = maxts ,tr ,t(h(ts, tr , t)) for the 2DM case must be known.
The variables t and ts (1DM), or t, ts , and tr (2DM) are required and can have
initial values of zero. Sequential intervals are generated using a homoge-
neous Poisson process with hazard rate ρ = hmax. Given one such interval,
�ti , it is added to t and ts (1DM), or t, ts , and tr (2DM). Next, a spike is
generated at time t with probability h(ts, t)/hmax (1DM) or h(ts, tr , t)/hmax

(2DM), and if a spike is generated, ts �→ ψs(ts), and tr �→ ψr (tr ), where ψs and
ψr refer to the reinsertion mappings as in equation 2.7 with the respective
parameters for the two mechanisms.



Spike-Frequency Adapting Neural Ensembles 2981

6 Results

In this section we compare ISI distributions, static ISI correlations, and firing
rate dynamics of the 1DM, 2DM, and ER models to 5DF Monte Carlo.

6.1 Interspike Interval Distributions. The predictions due to the ER
and 2DM model are in excellent agreement with the static ISI distribution of
5DF Monte Carlo. The prediction due to the 1DM model neglects refractory
effects and is therefore poor for low ISIs, as can be seen in Figure 3.

6.2 Interspike Interval Correlations. In this section we investigate cor-
relations between subsequent ISIs, a feature of the proposed 1DM and 2DM
models that is absent by definition in renewal theory models of spike statis-
tics.

The correlation coefficient, r , for a finite number of observations is de-
fined by

r2 = (
∑

(xi − x̄)(yi − ȳ))2∑
(xi − x̄)2

∑
(yi − ȳ)2 , (6.1)

and is the standard measure by which to quantify correlations between two
random variables x, y, where xi , yi denote the individual observations and
x̄, ȳ denote the means.

The correlation coefficients of subsequent ISIs under static stimulation
were calculated for 100 runs of 100 s, and the mean and deviation in the
mean are given in Table 2. Indeed, the renewal process shows no ISI corre-
lations. For low and high firing rates, the difference between the correlation
coefficients for 5DF Monte Carlo and realizations of the 2DM model is con-
sistent with zero. Both exhibit negative ISI correlations, implying short ISIs
are generally followed by long ISIs and vice versa, as has been observed
in previous experimental and theoretical studies (Longtin & Racicot, 1997;
Chacron, Longtin, & Maler, 2000; Chacron et al., 2005; Nawrot et al., 2007).

The conditional ISI distribution, f (τi+1|τi ) can be computed for the 1DM
and 2DM models by equation 2.34. Predictions due to the 2DM model are
in agreement with 5DF Monte Carlo for low and high rates, and both long
and short τi , as shown in Figure 3. Applying equation 2.34, we can compute
the quantity

〈τi+1|τi 〉τi+1 =
∫ ∞

0
τi+1 f (τi+1|τi )dτi+1. (6.2)

As discussed in Whittaker and Robinson (1967), this is a linear function of τi

for normal distributions, the slope of which is the correlation coefficient. As
the ISI distributions here are not normal, there are deviations from linearity,
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Figure 3: Comparison of the conditional ISI distributions due to 5DF Monte
Carlo with predictions due to effective renewal theory (ER, dotted line), the 1DM
model (dashed line, determined by equation 2.34), and the 2DM model (solid
line, determined by the 2D generalization of equation 2.34). For the definition
of the 1DM, 2DM, 5DF, and ER models, see Table 1. The left column shows
three representative conditional ISI distributions for an ensemble firing rate
of α = 18.67 Hz (λe = 8.3 Hz, λi = 11.4 Hz), and the right column shows the
same for α = 6.33 Hz (λe = 6.5 Hz, λi = 11.4 Hz). The upper two plots show the
conditional ISI distribution for τi much shorter than the mean. The middle two
plots show the conditional ISI distribution for τi equal to the mean. The lower
two plots show the conditional ISI distribution for τi much longer than the
mean. The preceding ISI, τi , is given on each plot, and a small interval around
τi is used to compute the distributions from 5DF Monte Carlo to yield sufficient
statistics. The theoretical predictions of the conditional ISI distributions using
the 2DM model are in good agreement with 5DF Monte Carlo for all situations
considered. The ISI distribution due to 5DF Monte Carlo is consistent with the
renewal ISI distribution only when the preceding ISI is equal to the mean ISI
(middle row). Spike trains of duration 104 s were used. Error bars represent the
relative error in the histogram bin counts, 1/

√
count.
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Table 2: Serial ISI Correlation Coefficients for Monte Carlo Simulations of
the Full Five-Dimensional System (5DF), Realizations of the One- and Two-
Dimensional Markov Models (1DM, 2DM), and Realizations of the Effective
Renewal Theory Model (ER).

Model Correlation coefficient

α = 6.33 Hz
5DF −0.148 ± 0.004
2DM −0.147 ± 0.003
1DM −0.160 ± 0.003
ER 0.0042 ± 0.0043

α = 18.67 Hz
5DF −0.235 ± 0.002
2DM −0.236 ± 0.002
1DM −0.283 ± 0.002
ER 0.001 ± 0.002

Figure 4: Mean of the conditional ISI distribution as a function of the pre-
ceding ISI, τi , for high-ensemble firing rates (A, (λe = 8.3 Hz, λi = 11.4 Hz),
α = 18.67 Hz) and low-ensemble firing rates (B, (λe = 6.5 Hz, λi = 11.4 Hz),
α = 6.33 Hz). The data points (triangles) shown are for 5DF Monte Carlo. The-
oretical predictions due to the 1DM (dashed line), 2DM (solid line), and ER
(dotted line) models are shown. For the definition of the 1DM, 2DM, 5DF, and
ER models, see Table 1. A linear function with slope equal to the serial ISI cor-
relation coefficient would be the functional form if the ISI distributions were
normal. Thus, these linear functions are plotted for comparison.

as shown in Figure 4. Predictions due to equation 6.2 for the 2DM model
are consistent with 5DF Monte Carlo for both low and high rates, as seen
in Figure 4. Thus, the 2DM model is indistinguishable from the full system
when considering static correlations.
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Figure 5: (A) The ensemble firing rate, α(t), in response to a moderate step
stimulus, determined by 5DF Monte Carlo (5 · 105 trials, solid line), and nu-
merical solution of the 1DM (dotted line), 2DM (dashed line), and ER (dashed
dotted line) master equations. For the definition of the 5DF, 1DM, 2DM, and ER
models, see Table 1. (B) The region outlined by the dashed rectangle is enlarged,
showing consistency between the two-dimensional Markov (2DM) model and
the full system (5DF Monte Carlo) apart from a 0.5 ms lead of the 2DM solution.
This discrepancy is likely due to the neglected membrane potential dynamics.

6.3 Firing Rate Dynamics. In this section, we compare the ensemble
firing rates of the 1DM, 2DM, and ER models to 5DF Monte Carlo for small
to large step stimuli, and for random fluctuating stimuli generated by an
Ornstein-Uhlenbeck process.

We subject the neural ensemble to a dynamic stimulus by specifying a
time-varying excitatory Poisson input rate, λe (t). Given the time-dependent
hazard function determined by the Poisson input rates as described in
section 4.2, the ensemble firing rate, α(t), of the 1DM and 2DM models can
be calculated by solving equations 2.9 and 3.24, respectively, for the time-
dependent state distribution, and subsequently applying equation 2.17 or
the 2D generalization of it. For the ER model, the hazard function was
calculated by the methods discussed in section 4.3, and the ensemble firing
rate was determined by solving equation C.7.

For weak step stimuli that do not bring the system too far from equi-
librium, all models (ER, 1DM, 2DM) faithfully reproduce the step stimulus
response of 5DF Monte Carlo (not shown). For moderate step stimuli, only
the 2DM model faithfully reproduces the step stimulus response of 5DF
Monte Carlo, shown in Figure 5. For large step stimuli, the 2DM model
starts to deviate from 5DF Monte Carlo, as seen in Figure 6.

The effective renewal theory (ER) model does a reasonable job of pre-
dicting the ensemble firing rate of the system to low-amplitude step stimuli.
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Figure 6: (A) The ensemble firing rate, α(t), in response to a large step stimulus,
determined by 5DF Monte Carlo (5 · 105 trials, solid line), and numerical solution
of the 1DM (dotted line), 2DM (dashed line), and ER (dashed dotted line)
master equations. For the definition of the 5DF, 1DM, 2DM, and ER models, see
Table 1. (B) The region outlined by the dashed rectangle is enlarged, showing
disagreement between the two-dimensional Markov (2DM) model and the full
system (5DF Monte Carlo).

This is perhaps surprising, since we do not expect renewal models to
faithfully reproduce the dynamical responses of spike-frequency adapt-
ing neurons, as renewal models do not account for the dependencies of
the firing probability density (hazard function) on spikes prior to the most
recent. However, this shows that if the ensemble is not pushed far from
equilibrium, knowledge of just the last spike is sufficient to predict the
firing rate.

We further compared 5DF Monte Carlo and predictions of the 2DM
model for a stimulus, νe (t), generated by an Ornstein-Uhlenbeck (OU) pro-
cess. Let ζ (t) be an OU process with mean of 10 Hz, standard deviation of
0.6 Hz, and time constant of 0.2 s. Then the excitatory synaptic inputs were
supplied with νe (t) = Neζ (t), with Ne = 1000 being the number of excitatory
synaptic inputs.

The ensemble firing rates for the 2DM model, its adiabatic solution, and
5DF Monte Carlo are shown in Figure 7. The adiabatic solution of the 2DM
model is defined as the system that at each instant in time has a distribution
of states equal to the instantaneous equilibrium distribution, P∞(ts, tr , t), the
asymptotic state distribution for large time resulting from a h(ts, tr , t) fixed
at the instantaneous value at time t. The firing rate of the adiabatic 2DM
model is then calculated by

α(t) =
∫ ∞

−∞
h(ts, tr , t)P∞(ts, tr , t)dtsdtr . (6.3)
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Figure 7: (A) The ensemble firing rate, α(t), in response to an Ornstein-
Uhlenbeck process stimulus (as described in the text), determined by 5DF Monte
Carlo (solid line), numerical solution of the 2DM master equation (dashed line),
and the adiabatic solution (adiabatic 2DM, dotted line) computed by equation
6.3. For the definition of the 5DF, and 2DM models, see Table 1. (B) The region
outlined by the dashed rectangle is enlarged, showing consistency between the
two-dimensional Markov (2DM) model and the full system (5DF Monte Carlo).

By comparison of the ensemble firing rates of the 2DM model with its
adiabatic solution in Figure 7, we can see that the system is being driven
from equilibrium by the stimulus. Furthermore, the behavior of the 2DM
model far from equilibrium captures the ensemble firing rate dynamics of
5DF Monte Carlo faithfully. This is a robust result under variation of neuron
parameters and stimuli, so long as the ensemble is not pushed too far from
equilibrium, as for the large step stimulus in Figure 6.

7 Beyond Mean-Adaptation Approximations

In this section we show that statistical moment theory approximations such
as the mean-adaptation theories due to La Camera et al. (2004) can be
derived from the 1DM master equation. The approach generalizes, and we
derive the next order moment theory approximation, a mean+variance-
adaptation theory and use it to clarify the domain of validity of mean-
adaptation theories.

Recall the 1DM master equation for a spike-frequency adapting neuron,

∂

∂t
P(gs, t) = ∂

∂gs

[
gs

τs
P(gs, t)

]

+hg(gs − qs, t)P(gs − qs, t)

−hg(gs, t)P(gs, t), (7.1)
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where P(gs, t) is the probability density of the adaptation state variable, gs ,
and P(gs < 0, t) = 0. The ensemble firing rate, α(t), is given by

α(t) =
∫ ∞

−∞
hg(gs, t)P(gs, t)dgs . (7.2)

The mean adaptation variable is

〈gs(t)〉 =
∫ ∞

−∞
gs P(gs, t)dgs . (7.3)

Multiplying equation 7.1 by gs and integrating over gs yields the time
evolution of the mean, 〈gs(t)〉,

d〈gs(t)〉
dt

= − 1
τs

〈gs(t)〉 + qsα(t). (7.4)

By Taylor expanding hg(gs) in equation 7.2 around 〈gs(t)〉, and keeping up to
linear terms, a mean-adaptation theory as in La Camera et al. (2004) results.
Keeping up to quadratic terms, we have

α(t) ≈ α
(
〈gs(t)〉, 〈�g2

s (t)〉
)

= hg

(
〈gs(t)〉

)
− 1

2
h′′

g

(
〈gs(t)〉

)
· 〈�g2

s (t)〉, (7.5)

where the h′
g(〈gs(t)〉) term vanishes by a cancellation of means. A

mean+variance-adaptation theory results, but we require the time evo-
lution of the variance. Multiplying equation 7.1 by (gs − 〈gs(t)〉)2 and
integrating over gs yields the time evolution of the variance, 〈�g2

s (t)〉,

d〈�g2
s (t)〉

dt
=− 2

τs
〈�g2

s (t)〉 + q 2
s α(t)

+ 2qs

∫ ∞

0

(
gs − 〈gs(t)〉

)
hg(gs, t)P(gs, t)dgs . (7.6)

Approximating hg(gs) ≈ hg(〈gs(t)〉) + h′
g(〈gs(t)〉)(gs − 〈gs(t)〉), equation 7.6

becomes

d〈�g2
s (t)〉

dt
≈− 2

τs
〈�g2

s (t)〉 + q 2
s α

(〈gs(t)〉, 〈�g2
s (t)〉)

+ 2qsh′
g(〈gs(t)〉) · 〈�g2

s (t)〉, (7.7)
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which has a steady state

〈
�g2

s

〉 = 1
2

q 2
s α

(〈gs〉,
〈
�g2

s

〉)
1
τ

− qsh′
g(〈gs〉)

. (7.8)

Thus, the mean+variance-adaptation theory consistency relation for the
adapted equilibrium firing rate, α∗, reads

α∗ = hg(qsτsα
∗) + 1

4
h′′

g(qsτsα
∗)

[
q 2

s α∗
1
τ

− qsh′
g(qsτsα∗)

]
. (7.9)

Higher-order moment theories can be derived by keeping higher terms
in the expansions in equations 7.5 and 7.7, and computing the necessary
equations for the time evolution of higher statistical moments from the
master equation 7.1.

7.1 Validity of Mean-Adaptation Theories. In this section we give a
heuristic criterion for the validity of mean-adaptation theories in the static
case, and the improved accuracy of the mean+variance-adaptation theory
is demonstrated by a numerical example. It is illustrative to first investigate
the exactly solvable leaky integrate-and-fire neuron driven by white noise
for the parameters considered in La Camera et al. (2004), and subsequently
contrast the findings to the 5DF model defined by equations 3.13 to 3.15.

It can be seen by inspection of equation 7.9 that if h′′
g(gs) ≈ 0 over the

regime where P(gs) is appreciably nonzero, then the mean-adaptation
consistency relation,

α∗ = hg
(
qsτsα

∗), (7.10)

as in La Camera et al. (2004), results.
First, we use the 1DM master equation to verify the mean-adaptation

theory for the leaky integrate-and-fire neuron driven by white noise con-
sidered in La Camera et al. (2004). The hazard function, hg(gs, t), is referred
to there as the response function in the presence of noise and has the exact
solution,

hg(gs, t) =
[
τ

∫ Cθ−(m−gs )τ
σ
√

τ

CVr −(m−gs )τ
σ
√

τ

√
πex2

(1 + erf (x)) dx

]−1

, (7.11)

due to Siegert (1951), Ricciardi (1977), and Amit and Tsodyks (1991), where
Vr is the reset potential, θ is the threshold, τ is the membrane potential,
C is the membrane capacitance, and erf(x) = (2/

√
π)

∫ x
0 e−t2

dt is the error
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Figure 8: (A, top) The hazard function, hg(gs), and (A, bottom) the equilib-
rium distribution of adaptation states, P(gs), in the low-firing rate regime
(α∗ = 4.83 Hz, mean current input m = 0.25 nA and noise σ = s · √

2 ms with
s = 0.6 nA) of the leaky integrate-and-fire neuron (LIF) used in La Camera
et al. (2004). P(gs) was determined by numerical solution of the 1DM master
equation using the hazard function given in equation 7.11. Neuron parame-
ters: C = 0.5 nF, τm = 20 ms, θ = 20 mV, Vr = 10 mV. Adaptation parameters:
τs = 110 ms, qs · τs = 4 pA · s. For comparison, the neuron and adaptation pa-
rameters are as for Figure 1a in La Camera et al. (2004), except τr = 0 ms and
τs = 110 ms. For the definition of the 1DM model, see Table 1. The hazard func-
tion is nearly linear over the distribution of states; thus, terms depending on
the variance of P(gs) in equation 7.9 can be neglected, and mean-adaptation
theories will yield good approximations to the adapted ensemble firing rate.
(B) The adapted ensemble firing rate, α∗, for a range of mean current inputs,
m, determined by numerical solution of the 1DM master equation (circles), and
the mean-adaptation theory consistency relation (solid line).

function. As in La Camera et al. (2004), m and σ are the mean and stan-
dard deviation of the input current. Upon firing, the adaptation current,
gs , makes a jump of qs and relaxes with a time constant τs . As can be seen
in Figure 8A, hg(gs) is quite near linear over the regime where P(gs) is
appreciably nonzero, and predictions of the adapted firing rate due to a
mean-adaptation theory are in excellent agreement with the 1DM master
equation as shown in Figure 8B. The mean+variance-adaptation theory
helps us to understand this: agreement is good because h′′

g(gs) ≈ 0 over the
regime where P(gs) is appreciably nonzero for all firing rates considered.

For the 5DF models defined by equations 3.13 to 3.15, we have hg(gs) ≈
a · exp(−bgs). As can be seen in Figure 9A, hg(gs) has an appreciable second
derivative over P(gs), and thus we expect mean-adaptation equilibrium
ensemble firing rate predictions to deviate from the ensemble firing rate
of the 1DM master equation. Indeed, such deviations are observed and are
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Figure 9: (A, top) The hazard function, hg(gs), and (A, bottom) the equilibrium
distribution of adaptation states, P(gs), determined by numerical solution of
the 1DM master equation. The hazard function, hg(gs), was determined by
fitting to 5DF Monte Carlo as in Figure 1 with λe = 9.75 Hz, λi = 11.4 Hz. For
the definition of the 5DF and 1DM model, see Table 1. The hazard function
has nonzero curvature (h′′

g(gs) > 0) over the distribution of states; thus, terms
depending on the variance of P(gs) in equation 7.9 cannot be neglected, and
mean-adaptation theory predictions for the adapted ensemble firing rate are
expected to be in error. (B) The adapted ensemble firing rate, α∗, for a range
of Poisson input rates, λe , determined by solution of the 1DM master equation
(circles), the mean-adaptation theory consistency relation (dashed line), and
the mean+variance-adaptation consistency relation (solid line). As expected,
mean-adaptation theory predictions for the adapted firing rate are corrected by
the mean+variance-adaptation theory consistency relation in equation 7.9.

corrected by the mean+variance-adaptation consistency relation, as seen in
Figure 9B. Thus, a heuristic condition for the validity of mean-adaptation
theories is that we must have h′′

g(gs) ≈ 0 over the regime where P(gs) is
appreciably nonzero. Less heuristically, the contributions due to the second
term (and all neglected higher-order terms) on the right-hand side of equa-
tion 7.9 must vanish compared to the first. When this condition is violated,
higher-order moment theories such as the mean+variance-adaptation the-
ory given here, or the 1DM master equation, should be applied to determine
the ensemble firing rate.

For the neuron models considered here, the accuracy of the
mean+variance-adaptation theory was also verified in the dynamic case
for an OU stimulus as in Figure 7, as shown in Figure 10.

8 Discussion

In this letter, we propose a one-dimensional Markov process (the 1DM
model) for modeling neural ensemble activity and spike train statistics
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Figure 10: (A) The ensemble firing rate, α(t), in response to an Ornstein-
Uhlenbeck process stimulus (as for Figure 7), determined by the 1DM
model (solid line), the adiabatic solution (thick solid line) computed by the
mean+variance-adaptation consistency relation equation 7.9, the dynamic
mean+variance-adaptation theory equations 7.4 to 7.6 (dotted line), and the
dynamic mean-adaptation theory equations (dashed line). (B) The region out-
lined by the dashed rectangle is enlarged, showing consistency between the
1DM model and the mean+variance-adaptation theory, while predictions due
to the mean-adaptation theory are poor. For the definition of the 1DM model,
see Table 1.

that goes beyond renewal theory by accounting for interspike interval (ISI)
correlations due to spike-frequency adaptation (SFA) mechanisms without
the need to model the high-dimensional space of the microscopic neuronal
state variables.

We demonstrated that the full five-dimensional master equation of a
conductance-based integrate-and-fire neuron with SFA and a refractory
mechanism driven by Poisson spike trains (the 5DF model) can be reduced
to a two-dimensional master equation plus filtering differential equations
accounting for synaptic dynamics (the 2DM model), under an adiabatic
elimination of the fast variables v, ge , gi , assuming the neuron has nonzero
synaptic time constants and is in the high-conductance state. The resulting
2DM master equation is a two-dimensional generalization of the Markov
process proposed at the outset as an extension of renewal theory to account
for ISI correlations.

We presented methods for generating inhomogeneous realizations of
the proposed 1DM and 2DM models and a method for solving their
master equations numerically. The 2DM model was shown to accurately
predict firing rate profiles of the full system under dynamic stimulation
and conditional ISI distributions and serial ISI correlations under static
stimulation.
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It was shown that mean-adaptation theories for spike-frequency adapt-
ing neurons with noisy inputs such as in La Camera et al. (2004) and higher-
order statistical moment theories can be derived from the 1DM master
equation as long as one neglects the refractory period. A heuristic condition
for the validity of mean-adaptation theories was derived and found to be
violated for the neuron model (5DF) and parameters considered here. Fur-
thermore, a mean+variance-adaptation theory was derived that corrected
the ensemble firing rate predictions of mean-adaptation theories in this
case.

8.1 Comparison with Other Studies of Adaptation. Studies of the fir-
ing rates of networks and ensembles of spike-frequency adapting neurons
due to Latham et al. (2000) and Fuhrmann et al. (2002) augment a Wilson
and Cowan equation (Wilson & Cowan, 1972) for the firing rate with a mean
adaptation variable.

As is typical of the Wilson and Cowan approach, the ensemble firing
rate, α, enters a differential equation of the form

τe
dα

dt
= −α + hg(〈gs(t)〉, · · ·), (8.1)

where hg(〈gs(t)〉, · · ·) is the static firing rate given the input and the mean
adaptation, and τe is the timescale for relaxation to a firing rate equilibrium.
As is suggested in Fuhrmann et al. (2002), τe is determined mainly by the
membrane time constant of the neuron, but is also affected by the mean
amplitude of the input, and is treated there as a free parameter.

It has been argued in Gerstner (2000), Brunel, Chance, Fourcaud, and
Abbott (2001), Fourcaud and Brunel (2002), Renart et al. (2004), and La
Camera et al. (2004) that for current and conductance-based synapses with
nonzero time constants and biological input statistics, the ensemble firing
rate responds instantaneously to input currents, and synaptic filtering dom-
inates. In this case, the Wilson and Cowan equation for α can be replaced
by an instantaneous f-I function, and the synaptic currents or conductances
modeled by relaxation equations for their means and variances. This is the
approach taken in La Camera et al. (2004). Thus, one sidesteps the concerns
mentioned in Fuhrmann et al. (2002) that the Wilson and Cowan equation
“cannot be rigorously derived from the detailed integrate-and-fire model”
and has been “shown not to accurately describe the firing rate dynamics
[by] (Gerstner, 2000).”

The models due to Latham et al. (2000), Fuhrmann et al. (2002), and
La Camera et al. (2004) all approximate the evolution of the ensemble of
adaptation variables by its mean value and are therefore mean-adaptation
theories. La Camera et al. (2004) state that such mean-adaptation theo-
ries are a good approximation under the assumption that “adaptation is
slow compared to the timescale of the neural dynamics. In such a case, the
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feedback [adaptation] current . . . is a slowly fluctuating variable and does
not affect the value of s [the standard deviation of the input current].”

La Camera et al. (2004) explore adaptation time constants on the order of
100 ms under the assumption that the adaptation dynamics are “typically
slower than the average ISI.” They report that “for irregular spike trains the
agreement is remarkable also at very low frequencies, where the condition
that the average ISI be smaller than τN [the time constant of adaptation] is
violated. This may be explained by the fact that although 〈I SI 〉 > τN , the ISI
distribution is skewed towards smaller values, and [the mean adaptation
current proportional to the firing rate] . . . is still a good approximation.”

In section 7 we used the 1DM master equation to derive a
mean+variance-adaptation theory, the next correction to the mean-
adaptation theories in La Camera et al. (2004), yielding another explanation
for the success reported there. We found that the error in the firing rate in
La Camera et al. remained small because the hazard function used there is
a nearly linear function of the adaptation variable in the interesting regime
where P(gs) is appreciably nonzero. Thus, perturbing contributions to the
average firing rate from deviations of the adaptation variable above and
below the mean over the course of one ISI roughly cancel on average. For
the neuron model (5DF) and parameters considered here, the hazard func-
tion has an appreciable nonlinearity resulting in erroneous predictions of
the firing rate when using a mean-adaptation theory. The mean+variance-
adaptation theory derived here corrected the predictions.

It is appropriate to reiterate that both the 1DM master equation and
the resulting mean+variance-adaptation theory approximation considered
here neglect refractory dynamics. It was demonstrated by the adiabatic
reduction of the 5DF model to the 2DM model that the inclusion of a relative
refractory period requires a two-dimensional master equation. Indeed, as
shown in Figure 6, oscillations emerge for large and fast stimulation changes
that are qualitatively captured by the 2DM model but not by the 1DM
model. It remains to be seen if a two-dimensional mean- or mean+variance-
adaptation theory can be constructed that accounts for this behavior, and
under what conditions it can be reduced to a one-dimensional model by
simply rescaling the firing rate by f ′ = 1/(1/ f + τeff), as in La Camera et al.
(2004) for the absolute refractory period case, where τeff is some effective
absolute refractory period of the relative refractory mechanism.

In Benda and Herz (2003), a thorough mathematical analysis of several
well-known mechanisms for SFA based on biophysical kinetics is performed
for the case of a suprathreshold current. A universal phenomenological
mean-adaptation model for such biophysical mechanisms for SFA is intro-
duced with much the same form as later used in La Camera et al. (2004) for
the case of noisy drive. Methods are given to completely parameterize the
model using quantities that can be easily measured by standard recording
techniques. Implications for signal processing are considered there and in
subsequent publications (Benda, Longtin, & Maler, 2005).
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In Chacron et al. (2003), a novel approach is taken compared to Latham
et al. (2000), Fuhrmann et al. (2002), Benda and Herz (2003), and La
Camera et al. (2004). There an expression is derived for the serial corre-
lation coefficient of ISIs in the static case by employing a Markov chain.
In their analysis, they define a quantity analogous to the static distribution
P†(ts) here. In their framework, they prove that adaptation of the threshold
fatigue form used there results in ISI correlations as have been observed
experimentally (Longtin & Racicot, 1997; Chacron et al., 2000; Nawrot et al.,
2007). Their expression, however, contains integrals that require “the com-
putation of the FPT [first-passage time] PDF of the Ornstein-Uhlenbeck
process through an exponential boundary. Given that no general analytical
expression is available for this quantity, derivation of the correlation from
the integrals can be computationally more demanding than estimating the
same quantities from simulations” (Chacron et al., 2003). Subsequently, only
simulations are performed, and the derived expression is never compared
to the simulated result. Thus, they miss an important benchmark to ensure
the calculations are correct. It is possible that the numerical techniques used
here could be applied to compute a prediction for the correlation coefficient
by the expression they derive and subsequently compared to the simulated
result.

Mean-adaptation theories cannot be used to model the correlation be-
tween subsequent ISIs, as they do not preserve the ensemble statistics. Our
approach is that one simply not replace the trajectory of the adaptation
variable, gs , by its mean. This resolves the problem in the development
in La Camera et al. (2004) that the mean input current and instantaneous
gs have an equal role in determining the instantaneous firing rate, and gs

cannot be consistently replaced by its mean. What results is the 1DM master
equation presented here. We subsequently calculate an expression for the
inhomogeneous conditional ISI distribution and compare it to 5DF Monte
Carlo in the static case. Furthermore, we calculate the variation of the mean
of the conditional ISI distribution as a function of the preceding ISI, a gen-
eralization of the serial correlation coefficient of ISIs, and compare it to 5DF
Monte Carlo. By our Markov process master equation, we avoid the diffi-
culty encountered in Chacron et al. (2003) of treating the first passage times
of an Ornstein-Uhlenbeck process through an exponential boundary, while
capturing the full inhomogeneous ensemble dynamics in a framework that
is tractable.

8.2 On the Adiabatic Reduction of the Master Equation. Under the
assumption that the neuron is in the high-conductance state due to biolog-
ically realistic noisy inputs, we show that the 5DF master equation for the
conductance-based spike frequency adapting relative refractory integrate-
and-fire neuron model used here can be reduced to the 2DM master equa-
tion by an adiabatic elimination of fast variables. The variables that remain
are those of SFA and the relative refractory mechanism, and the form is
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analogous to the 1DM master equation proposed to extend renewal theory
to a class of Markov processes that account for SFA.

The adiabatic reduction does not solve explicitly the firing rate of the
given neuron model (without adaptation or the refractory mechanism) or
rely on such a solution. We leave the firing rate dynamics of the given neuron
model (without adaptation or the refractory mechanism) encapsulated in
the hazard function (see equation 3.23). The approach applies to other mod-
els of adaptation such as the adapting threshold models in Chacron et al.
(2003) and the current-based adaptation models in La Camera et al. (2004).

Concerning the generality of the adiabatic elimination for the adaptation
variable, we expect it could be applied to a larger class of formally spiking
neuron models with fast, intrinsic dynamics compared to adaptation. For
those interested in modeling a class of neurons where a solution to equation
3.23 already exists, the framework can be easily and immediately applied.
The fitting methods presented allow the connection to be made between
models for which an explicit solution for the hazard function is unknown
and the 1DM and 2DM models presented here. What results is a reduced
state space to explore for functional implications.

The generality of treating the relative refractory mechanism as a slow
variable in the adiabatic elimination is less clear. There are some issues
that need to be clarified before one could specify the class of neurons to
which it applies. Specifically, the relationship between the requirement that
the neuron be in the high-conductance state (small effective τm) and the
requirement that the synapses have nonvanishing time constants (τe > 0)
resulting in a nonvanishing probability at threshold (P(vth, · · ·) > 0) remains
to be thoroughly investigated. The delta-conductance-based approach in
Meffin et al. (2004), for example, does not satisfy the second requirement.
The nonvanishing probability at threshold seems to be a criterion for the
neuron to respond quickly to the synaptic signal (Fourcaud & Brunel, 2002;
Renart et al., 2004).

An important step in the reduction is the treatment of the synaptic con-
ductances. As their statistics are assumed to instantaneously determine the
equilibrium statistics of the membrane potential, they were removed from
the master equation. Then differential equations were found for their first
statistical moments (means) in terms of the rate of the Poisson process in-
put, as in La Camera et al. (2004). One weakness of the fitting approach
used here is that we cannot account for the dynamics of the second central
moment (variance), as was done in La Camera et al., and modeling both dy-
namic excitation and inhibition simultaneously requires a laborious fitting
of a two-dimensional space of synaptic inputs. Further work will apply
methods such as those due to Moreno-Bote and Parga (2004) to obtain a
solution to equation 3.23 without fitting, thus allowing ensemble studies
of adapting network models and analysis as in Latham et al. (2000) with
the rigor of, for example, (Brunel, 2000), and the possibility for quantitative
agreement with traditional large-scale network simulations.
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8.3 Beyond Renewal Theory. We reviewed standard results of inhomo-
geneous renewal theory in appendix C and uncovered a conceptual error
often made in the literature when using the intensity-rescaling transfor-
mation to make the transition from homogeneous (static) to inhomoge-
neous (dynamic) renewal theory. We clarified and remedied the problem
by presenting a correct renewal process generation scheme as discussed in
Devroye (1986).

By means of a variable transformation, we provided a link between the
1DM model and inhomogeneous renewal theory methods, allowing direct
comparison and contrast. The 1DM master equation was found to have an
analogous structure to the renewal master equation, but with a state space
spanning the whole real line. Furthermore, the 1DM state is not reborn
to a universal initial value upon spiking, as in renewal theory (zero age),
but reinserted to a state that is a function of the state just prior to spiking.
This fact introduces a memory into the system and results in negative ISI
correlations as reported in Chacron et al. (2003).

Due to the detailed adiabatic reduction and fitting, we proposed the
nested exponential form of the hazard function as given by equation 2.10
and the state-dependent reinsertion function as given by equation 2.7 for
the conductance-based SFA mechanism considered here. The hazard func-
tion (perhaps time-dependent) and the reinsertion function together are a
complete specification of the proposed Markov model given an initial dis-
tribution of states. We provided a numerical recipe to efficiently generate
inhomogeneous realizations of the proposed Markov process.

With an additional dimension for a relative refractory mechanism, the
Markov process faithfully reproduces the transient dynamics and ISI cor-
relations of 5DF Monte Carlo, as expected by the adiabatic reduction. The
same comparison between a one-dimensional Markov process and a neu-
ron model without the relative refractory mechanism was not done, as we
found that without refractory mechanisms, the neuron model used exhib-
ited a high probability to spike just after spiking due to correlations in the
synaptic conductance on the timescale of the refractory mechanism. We feel
this is a bug rather than a feature of neuron models without a refractory
mechanism. Thus we chose not to build a Markov process to account for
it. Furthermore, the proposed relative refractory mechanism requires only
slightly more effort than treating an absolute refractory period, as done in
Nykamp and Tranchina (2001). When the hazard function calibrated for the
2DM model is used directly for the 1DM model, reasonable agreement to
refractory neuron models was still observed for the moderate firing rates
considered.

8.4 Suprathreshold Stimuli. For large and rapid changes in stimulus
that bring the ensemble predominantly into the suprathreshold regime, the
predictions due to numerical solutions of the 2DM model deviated some-
what from 5DF Monte Carlo simulations, as seen in Figure 6. The reasons
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for this are twofold. First, the stimulus brings us into a regime where the
exponential fitting procedure for h(ts, tr ) begins to fail and was poorly pop-
ulated with data points. This fact likely accounts for the larger amplitude of
the oscillations of the 2DM model compared to 5DF Monte Carlo. It is likely
that a choice of function that improves the fit in this regime or a proper
analytical solution for h(ts, tr ) would improve the agreement here. Second,
following the large stimulus change, a large portion of the population is in
the suprathreshold regime where neurons make large migrations from the
reset potential directly to the threshold following a spike. The 2DM model
completely neglects the dynamics of the membrane potential and thus this
migration period, resulting in the phase lead over the full system.

A closer inspection of Figure 6 reveals a transition from predominantly
supra- to predominantly subthreshold firing. Shortly after stimulus onset,
a large portion of the population fires almost immediately and is reinserted
with the adaptation conductance increased by qs , that is, a mass exodus
in phase space. For the 2D case, the neurons also start a refractory period
upon reinsertion; in the 1D case, they do not. The stimulus is sufficiently
strong that in the 2D case, it is still suprathreshold following the refractory
period. In the 1D case, there is no refractory period, and the neurons can
fire immediately following a spike cycle, and no lull is seen in the firing rate
following the initial mass exodus. For the 2D case, and even the renewal
case, the system is refractory following the mass exodus, and a lull in
the firing rate results, to peak again as the neurons are released from the
refractory state. With the accumulation of adaptation, the fraction of the
ensemble participating in subsequent exodus events is ever diminished
as more and more neurons enter the subthreshold regime where neurons
survive for highly variable durations following the refractory period. Thus,
for large stimuli that keep the neuron suprathreshold over several spikes,
the population is initially synchronized, firing at a rate determined by the
refractory mechanism. As adaptation accumulates, spiking becomes more
irregular, and the neurons desynchronize.

The desynchronization of neurons driven by suprathreshold current has
been observed experimentally in Mainen and Sejnowski (1995). It is shown
there that this transition to the subthreshold regime due to adaptation is not
strictly necessary for the neurons to desynchronize due to the constant pres-
ence of noise. However, adaptation is also a mechanism by which an other-
wise irregularly firing neural ensemble is synchronized at a stimulus onset.
Following such a synchronization, the transition from the predominantly
suprathreshold regime to the predominantly subthreshold regime induced
by the accumulation of adaptation is akin to a transition from a noisy oscil-
lator firing mode to a point process firing mode. While the ensemble would
gradually desynchronize in the noisy oscillator firing mode, the transition
to the point process firing mode over only a few spikes ensures this occurs
much more rapidly. Thus, adaptation works to both synchronize and then
desynchronize at changes in stimulus. This is an implementation of novelty
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detection and is related to the high-pass filtering properties of SFA reported
in Benda et al. (2005). Evidence for a synchronization-desynchronization
coding scheme for natural communication signals was recently reported
for the spike-frequency adapting P-unit electroreceptors of weakly electric
fish in Benda, Longtin, and Maler (2006).

9 Conclusion

In this letter, we have focused on establishing a framework for rigorously
treating the dynamic effects of spike-frequency adaptation and refractory
mechanisms on neural ensemble spiking. The resulting master equation
formalism unifies renewal theory models and previous studies on adapta-
tion (e.g., Latham et al., 2000; Fuhrmann et al., 2002; Chacron et al., 2003;
Benda & Herz, 2003; La Camera et al., 2004) into an ensemble, or popula-
tion density framework such as those due to Knight (1972, 2000), Brunel
(2000), Omurtag et al. (2000), Nykamp and Tranchina (2000), Fourcaud and
Brunel (2002), Richardson (2004), Rudolph and Destexhe (2005), Meffin et al.
(2004), and Moreno-Bote and Parga (2004). The resulting methods are new
and powerful tools for accurately modeling spike-frequency adaptation,
an aspect of neuron dynamics ubiquitous in excitatory neurons that has
been largely ignored in neural ensemble studies thus far due to the added
difficulties of treating the extra state variable.

By distilling the detailed neuron model down to two essential dimen-
sions, spike-frequency adaptation and a relative refractory period, using an
adiabatic elimination, their central role in perturbing neural firing is empha-
sized. Future work will employ the framework to examine the functional
implications of spike-frequency adaptation. Given the variety of intriguing
and prominent consequences such as interspike interval correlations and
transient synchronization following stimulus changes, one is compelled to
question if spike-frequency adaptation can be neglected when considering,
for example, the dynamic nature of the neural code (Shadlen & Newsome,
1998; Rieke, Warland, de Ruyter van Steveninck,& Bialek, 1997), the propa-
gation of synchrony (Abeles, 1991; Diesmann, Gewaltig, & Aertsen 1999), or
the function of spike-timing-based learning rules (Gerstner, Kempter, van
Hemmen, & Wagner, 1996; Song, Miller, & Abbott, 2000).

Appendix A: Neuron and Adaptation Model Parameters

The parameters of the 5DF neuron model given in equations 3.13 to 3.15
were determined by fitting to a single-compartment Hodgkin-Huxley (HH)
model of a pyramidal neuron under various conditions using NEURON
(Hines & Carnevale, 1997) as described in Muller (2003). The HH model
and parameters are taken from Destexhe, Contreras, and Steriade (1998).

The phenomenological mechanism for spike-frequency adaptation (SFA)
used here, the counterpart to the M-current and AHP-current mechanisms
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in the HH model, was inspired by (Dayan & Abbott, 2001), and similar
models have been proposed in (Koch, 1999) and Fuhrmann et al. (2002),
and more recently generalized in Brette and Gerstner (2005).

Additionally, a relative refractory period (RELREF) mechanism identical
to the SFA mechanism was added, but with a much shorter time con-
stant and a much larger conductance increase. Both the SFA and RELREF
mechanisms consist of an action potential (AP) activated and exponentially
decaying conductance coupled to an inhibiting reversal potential so that
the standard membrane equation takes the form:

cm
dv(t)

dt
= gl (El − v(t)) + ge (t)(Ee − v(t)) + gi (t)(Ei − v(t))

+ gs(t)(Es − v(t)) + gr (t)(Er − v(t)).

If v exceeds the threshold vth:� v is reset to vreset.� gs �→ gs + qs .� gr �→ gr + qr .� The time of threshold crossing is added to the list of spike times.

All conductances, gx(t), where x ∈ {s, r, e, i} are governed by an equation of
the form

dgx(t)
dt

= − 1
τx

gx(t).

The arrival of a spike at a synapse triggers gx �→ gx + qx for x ∈ {e, i}.
Poisson processes were used to supply spike trains to the 1000 excitatory
and 250 inhibitory synapses, where Poisson rates in the range 3 to 20 Hz
were used as described in the text for each specific simulation. The synaptic
model and parameters were directly transferred from the HH models, while
the remaining parameters, as determined by fits to the HH model, are given
in Table 3.

Appendix B: Further Details on the Adiabatic Reduction

In this appendix, we give the mathematical steps that lead from equation
3.16 to 3.20 in a more detailed way.

For notational simplicity, we introduce the five-dimensional state
variable x = (v, ge , gi , gs, gr ). The indices 1, 2, 3, 4, 5 shall correspond to
v, e, i, s, r , as used in the definition of the neuron model in equations
3.13 to 3.15 (e.g., τ2 := τe ). The partial derivatives with respect to xµ are
denoted by ∂µ and with respect to time by ∂t . Furthermore, we define
P(x1, x2, x3, x4, x5) = 0 if one or more of the conductances x2, . . . , x5 is neg-
ative.
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Table 3: Neuron and Synapse Model Parameters Used for Simulations of the
Full System (5DF) Given by Equations 3.13 to 3.15.

Parameter Description Value

vth Threshold voltage −57 mV
vreset Reset voltage −70 mV
cm Membrane capacitance 289.5 pF
gl Membrane leak conductance 28.95 nS
El Membrane reversal potential −70 mV
qr RELREF quantal conductance increase 3214 nS
τr RELREF conductance decay time 1.97 ms
Er RELREF reversal potential −70 mV
qs SFA quantal conductance increase 14.48 nS
τs SFA conductance decay time 110 ms
Es SFA reversal potential −70 mV
Ee,i Reversal potential of excitatory and inhibitory 0 mV, −75 mV

synapses, respectively
qe,i Excitatory and inhibitory synaptic quantal 2 nS

conductance increase
τe,i Excitatory and inhibitory synaptic decay time 1.5 ms, 10.0 ms

The master equation governing the evolution of the probability density
P(x, t) may be formulated as a conservation equation:

∂t P(x, t) = −divJ (x, t) + δ(x1 − vreset)J1(vth, x2, x3, x4 − q4, x5 − q5, t).

(B.1)

The second term on the right-hand side of equation B.1 accounts for neurons
that cross the threshold surface x1 = vth at time t with the state variables
(vth, x2, x3, x4 − q4, x5 − q5) and are reinserted to (vr , x2, x3, x4, x5).

The probability current J (x, t) is determined by the underlying stochastic
differential equations 3.13 to 3.15. The components Jµ(x, t) for µ = 1, . . . , 5
consist of the current due to the drift terms, βµ(x), and for µ = 2, 3 of
additional currents due to the excitatory and inhibitory input Poisson spike
trains, respectively. The drift term for the membrane potential reads

β1(x) := 1
cm


 5∑

µ=2

xµ(Eµ − x1) + gl (El − x1)


 . (B.2)

For the conductances xµ with µ = 2, . . . , 5, the drift terms are:

βµ(x) = βµ(xµ) := − 1
τµ

xµ. (B.3)
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The components of the probability current for µ = 1, 4, 5 obey the equation

Jµ(x, t) = βµ(x)P(x, t). (B.4)

For the excitatory synaptic conductance x2, the component J2(x, t) is

J2(x, t) =β2(x)P(x, t)

+
∫ x2

0

[∫ ∞

0
W2(y2, y1, t)P(x1, y1, x3, . . . , x5)dy2

]
dy1

−
∫ x2

0

[∫ ∞

0
W2(y1, y2, t)P(x1, y2, x3, . . . , x5)dy2

]
dy1. (B.5)

The component J3(x, t) has a similar form with obvious modifications. Since
the synaptic input is modeled as a Poisson process, the transition rates
Wµ(y1, y2, t) for µ = 2, 3 may be written as

Wµ(y1, y2, t) = νµ(t)δ(y1 − (y2 + qµ)), (B.6)

given the presynaptic firing rates νµ(t). The diffusion approximation can
be obtained by a Kramers-Moyal expansion of the components J2 and J3

(Gardiner, 1985).

B.1 Integration. To obtain an equation for the marginal probability dis-
tribution, P(x4, x5, t), one integrates equation B.1 over x1, x2, x3. The integral
of the terms ∂µ Jµ(x, t) on the right-hand side in B.1 for µ = 2, 3 vanishes
due to the boundary condition that the probability current vanishes in the
limit xµ → 0 and xµ → ∞ for µ = 2, 3:∫ ∞

0
∂µ Jµ(x, t)dxµ = lim

xµ→∞ Jµ(x, t) − Jµ(x, t)
∣∣∣
xµ=0

= 0. (B.7)

The component J1(x, t) yields a nonvanishing contribution:∫ ∞

0

∫ ∞

0

(∫ vth

−∞
∂1 J1(x, t)dx1

)
dx2dx3

=
∫ ∞

0

∫ ∞

0
J1(vth, x2, . . . , x5, t)dx2dx3. (B.8)

The reinsertion term involves an integration over a delta distribution:∫ ∞

0

∫ ∞

0

(∫ vth

−∞
δ(x1 − vreset)J1(vth, x2, x3, x4 − q4, x5 − q5, t)dx1

)
dx2dx3

=
∫ ∞

0

∫ ∞

0
J1(vth, x2, x3, x4 − q4, x5 − q5, t)dx2dx3. (B.9)
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Integration of the left-hand side in equation B.1 results in:

∫ ∞

0

∫ ∞

0

∫ vth

−∞
(∂t P(x, t)) dx1dx2dx3 = ∂t P(x4, x5, t). (B.10)

Plugging these results into equation 3.16 yields:

∂t P(x4, x5, t) = −
∑

µ=4,5

∂µ

(
βµ(xµ)P(x4, x5, t)

)

+
∫ ∞

0

∫ ∞

0
J1(vth, x2, x3, x4 − q4, x5 − q5, t)dx2dx3

−
∫ ∞

0

∫ ∞

0
J1(vth, x2, . . . , x5)dx2dx3. (B.11)

Returning to the initial notation and using the definition for J1(x, t) =
β1(x, t)P(x, t) yields equation 3.20.

Appendix C: Inhomogeneous Renewal Processes

The proposed Markov models can be easily understood by analogy to in-
homogeneous renewal theory. We review some standard results thereof,
which define the renewal models used in the text.

Poisson and gamma renewal processes, both special cases of a renewal
process, are used extensively to model the spike train statistics of corti-
cal neurons (van Rossum, Bi, & Turrigiano, 2000; Song & Abbott, 2001;
Rudolph & Destexhe, 2003b; Shelley et al., 2002), and are treated in detail
in (Gerstner & Kistler, 2002) in sections 5.2, 5.3, 6.2.2, and 6.3.2. While the
treatment in section 6.2.2 is developed for spike response model neurons
with escape noise and in section 6.3.2 for populations of neurons satisfying
a few basic assumptions, it is not explicitly stated there that the analysis
is that of an arbitrary inhomogeneous renewal process, though it is men-
tioned in Gerstner (2001). We first reiterate this fact by producing the main
results of section 6.2.2 and 6.3.2 of Gerstner and Kistler (2002) using an
inhomogeneous generalization of the notation of Cox (1962), a classic ref-
erence work on homogeneous renewal theory. Second, we present a recipe
for efficiently generating spike trains of a general inhomogeneous renewal
process.

In what follows, by working exclusively with the inhomogeneous haz-
ard function, we avoid the pitfall of studies that erroneously assume an
intensity-rescaling transformation of a stationary gamma renewal process
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with parameter γ , or a yields an inhomogeneous gamma renewal process
with parameter γ , or a (Barbieri, Quirk, Frank, Wilson, & Brown, 2001;
Gazères, Borg-Graham, & Frégnac, 1998).

A renewal process is defined here to be inhomogeneous when its hazard
function takes the form ρ(τ, t), where τ denotes the age, and t denotes the
explicit dependence of the hazard function on time. The ensemble firing
rate3 at t, denoted by α(t), is the expectation value,

α(t) = 〈ρ(t)〉 =
∫ ∞

0
ρ(s, t) f −(s, t)ds, (C.1)

where f −(τ, t) denotes the probability density function (PDF) of times since
last renewal, also called the backward recurrence time in Cox (1962). The
PDF, f −(τ, t), can be determined by reasoning that the probability that the
system has an age in the interval (τ, τ + �τ ) is equal to the probability that
there is a renewal in the time interval (t − τ, t − τ + �τ ) and that the system
subsequently survives until t. This yields

f −(τ, t) = α(t − τ )F(τ, t − τ ), (C.2)

where F(�t, t) is the inhomogeneous survival function, representing the
probability that the system will survive for a time �t after t. Generalizing
equation 1.2.10 in Cox (1962) for the inhomogeneous case, we have

F(�t, t) = exp
(

−
∫ �t

0
ρ(s, t + s)ds

)
. (C.3)

Plugging equation C.2 into C.1 results in the equivalent of equations 6.44
and 6.45 of Gerstner and Kistler (2002).

A differential formulation of equations C.1 to C.3 is possible. First, note
that age increases with increasing t and thus

dτ

dt
= 1.

This suggests a transform of the age variable τ → τ ′ = t − τ , as in equation
6.46 of Gerstner and Kistler (2002). This new age variable, τ ′, is stationary
with the evolution of t. We define the stationary backward recurrence time
PDF as

f −
s (τ ′, t) := f −(t − τ ′, t).

3The ensemble firing rate is referred to as the population activity, A(t), in Gerstner and
Kistler, 2002.
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Thus,

d
dτ

f −
s (τ ′, t) = ∂

∂t
f −
s (τ ′, t)

= ∂

∂t
(α(τ ′)F(t − τ ′, τ ′)),

and differentiation of equation C.3 yields d
dtF(t − τ ′, τ ′) = F(t − τ ′, τ ′)ρ(t −

τ ′, t) whereby we have

d
dt

f −
s (τ ′, t) = −α(τ ′)F(t − τ ′, τ ′)ρ(t − τ ′, t)

d
dt

f −
s (τ ′, t) = − f −

s (τ ′, t)ρ(t − τ ′, t). (C.4)

This relation determines d
dt f −

s (τ ′, t) for τ ′ ∈ (−∞, t). Additionally, we need
to ensure that the normalization of f −

s (τ, t) is preserved, namely, that

∫ ∞

−∞

∂

∂t
f −
s (τ, t)dτ = 0. (C.5)

Splitting the integral into three regions of interest, we have

lim
�t→0+

[∫ t−�t

−∞

∂

∂t
f −
s (s, t)ds

+
∫ t+�t

t−�t

∂

∂t
f −
s (s, t)ds

+
∫ ∞

t+�t

∂

∂t
f −
s (s, t)ds

]
= 0.

Since f −
s (τ ′ > t, t) = 0, the third integral is zero. We then have

lim
�t→0+

∫ t+�t

t−�t

∂

∂t
f −
s (s, t)ds = −

∫ t

−∞

∂

∂t
f −
s (s, t)ds.

Since the contribution from equation C.4 in the integral on the left-hand
side is vanishing, we need to add an additional term to d

dt f −
s (τ, t), which is

zero for all τ �= t but which has a finite integral when integrating around t.
This can be achieved by addition of a δ-function term:

d
dt

f −
s (τ, t) → d

dt
f −
s (τ, t) − δ(τ − t)

∫ t

−∞

∂

∂t
f −
s (s, t)ds.
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Clearly the factor behind the δ-function is α(t). Thus, we have the final form,

d
dt

f −
s (τ ′, t) =

{− f −
s (τ ′, t)ρ(t − τ ′, t), τ ′ < t

0, τ ′ ≥ t

+α(t)δ(τ ′ − t), (C.6)

defined for τ ′ ∈ (−∞,∞). Equation C.6 expressed in terms of f −(τ, t) results
in the master equation,

∂

∂t
f −(τ, t) = − ∂

∂τ
f −(τ, t) − f −(τ, t)ρ(τ, t) + α(t)δ(τ ), (C.7)

defined for τ ∈ [0,∞). This is exactly equation 6.43 in Gerstner and Kistler
(2002). It is analogous to equation 2.9, but with reinsertion to τ = 0 after a
spike.

C.1 Numerical Solution of the Renewal Master Equation. As the re-
newal master equation C.7 is just a special case of the 1DM master equation,
it can be solved with the same numerical techniques as described in section
5.1. The content of the δ term in equation C.7 is that all probability lost
due to the death term (the second term on the rhs) is accumulated and
reinserted to the τ = 0 bin. Thus, we are spared the complication of treating
state-dependent reinsertion of probability, as was necessary for the 1DM
and 2DM master equations.

C.2 Generating Random Numbers of a General Hazard Function.
Random numbers with a general hazard function can be generated by the
thinning method as discussed in Devroye (1986) and summarized here. The
maximum of the hazard function, ρmax = maxτ,t(ρ(τ, t)), must be known.
Sequential event intervals are generated using a homogeneous Poisson
process with a rate of ρmax. The resulting spike train is then sequentially
thinned, given the event time t and time since last event τ , by the rule:

1. Generate a uniform random number, T, on [0, 1).

2. if ρ(τ, t)/ρmax > T, keep the event in the spike train; otherwise remove it.

The remaining event times are consistent with the prescribed hazard func-
tion.

For the case of random number generation for a GRP, evaluation of
ρ(τ, t) using equation 4.6 is numerically unstable for large τ and costly. An
implementation of the algorithm (Shea, 1988) for calculating the cumula-
tive hazard function of a gamma renewal process is available in pgamma.c

of the Mathlib of the R statistics environment (Ihaka & Gentleman, 1996)
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under the GNU Public License. Alternatively, the logarithm of the function
gsl_sf_gamma_inc_Q provided by the GNU Scientific Library can be used.
The hazard function can then be calculated by a simple discrete difference
calculation of the derivative. Time dependence can be introduced by giving
a time dependence to the parameters of the gamma distribution.

Acknowledgments

This work is supported in part by the European Union under the grant IST-
2005-15879 (FACETS). Thanks to M. Rudolph, A. Destexhe, M. Diesmann,
N. Brunel, M. Pospischil and N. Nurpeissov for helpful discussion. Thanks
to the reviewers for their many detailed and insightful comments which
have had a significant and positive impact on this letter.

References

Abeles, M. (1991). Corticonics. Cambridge: Cambridge University Press.
Amit, D. J., & Tsodyks, M. V. (1991). Quantitative study of attractor neural network

retrieving at low spike rates: I. Substrate-spikes, rates and neuronal gain. Network,
2, 259–273.

Barbieri, R., Quirk, M., Frank, L., Wilson, M., & Brown, E. (2001). Construction and
analysis of non-Poissonian stimulus-response models of neural spiking activity.
Journal of Neuroscience Methods, 105, 25–37.

Benda, J., & Herz, A. (2003). A universal model for spike-frequency adaptation.
Neural Computation, 15, 2523–2564.

Benda, J., Longtin, A., & Maler, L. (2005). Spike-frequency adaptation separates tran-
sient communication signals from background oscillations. Journal of Neuroscience,
25, 2312–2321.

Benda, J., Longtin, A., & Maler, L. (2006). A synchronization-desynchronization code
for natural communication signals. Neuron, 52, 347–358.

Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as
an effective description of neuronal activity. Journal of Neurophysiology, 94, 3637–
3642.

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and in-
hibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.

Brunel, N., Chance, F. S., Fourcaud, N., & Abbott, L. F. (2001). Effects of synaptic
noise and filtering on the frequency response of spiking neurons. Physical Review
Letters, 86, 2186–2189.

Chacron, M., Longtin, A., & Maler, L. (2000). Suprathreshold stochastic firing dynam-
ics with memory in p-type electroreceptors. Physical Review Letter, 85, 1576–1579.

Chacron, M., Pakdaman, K., & Longtin, A. (2003). Interspike interval correlations,
memory, adaptation, and refractoriness in a leaky integrate-and-fire model with
threshold fatigue. Neural Computation, 15, 253–278.

Cox, D. R. (1962). Renewal theory. London: Methuen.



Spike-Frequency Adapting Neural Ensembles 3007

Dayan, P., & Abbott, L. (2001). Theoretical neuroscience: Computational and mathematical
modeling of neural systems. Cambridge, MA: MIT Press.

Destexhe, A., Contreras, D., & Steriade, M. (1998). Mechanisms underlying the syn-
chronizing action of corticothalamic feedback through inhibition of thalamic relay
cells. Journal of Neurophysiology, 79, 999–1016.

Destexhe, A., Rudolph, M., Fellous, J., & Sejnowski, T. J. (2001). Fluctuating synaptic
conductances recreate in vivo–like activity in neocortical neurons. Neuroscience,
107, 13–24.
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Abstract Nonlinear time series analyses have suggested that
the human electroencephalogram (EEG) may share statisti-
cal and dynamical properties with chaotic systems. During
slow-wave sleep or pathological states like epilepsy, corre-
lation dimension measurements display low values, while in
awake and attentive subjects, there is not such low dimen-
sionality, and the EEG is more similar to a stochastic vari-
able. We briefly review these results and contrast them with
recordings in cat cerebral cortex, as well as with theoreti-
cal models. In awake or sleeping cats, recordings with mi-
croelectrodes inserted in cortex show that global variables
such as local field potentials (local EEG) are similar to the
human EEG. However, in both cases, neuronal discharges
are highly irregular and exponentially distributed, similar
to Poisson stochastic processes. To attempt reconcile these
results, we investigate models of randomly-connected net-
works of integrate-and-fire neurons, and also contrast global
(averaged) variables, with neuronal activity. The network
displays different states, such as “synchronous regular” (SR)
or “asynchronous irregular” (AI) states. In SR states, the
global variables display coherent behavior with low dimen-
sionality, while in AI states, the global activity is high-dim-
ensionally chaotic with exponentially distributed neuronal
discharges, similar to awake cats. Scale-dependent Lyapunov
exponents andε-entropies show that the seemingly stochas-
tic nature at small scales (neurons) can coexist with more
coherent behavior at larger scales (averages). Thus, we sug-
gest that brain activity obeys similar scheme, with seem-
ingly stochastic dynamics at small scales (neurons), while
large scales (EEG) display more coherent behavior or high-
dimensional chaos.
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1 Introduction

A number of methods from nonlinear dynamical systems
have been applied to the different states of the human EEG.
Early studies have calculated correlation dimensions from
EEG and reported evidence for low-dimensional chaos for
slow-wave sleep [Babloyantz et al., 1985; Mayer-Kress et
al., 1988], as well as for pathological states such as epilepsy
[Babloyantz & Destexhe, 1986; Frank et al., 1990] or the
terminal state of Creutzfeldt-Jakob disease [Destexhe et al.,
1988]. These findings have been confirmed by numerous
studies [reviewed in Destexhe, 1992; Elbert et al., 1994; Korn
& Faure, 2003]. Interestingly, in these studies, the EEG dy-
namics during wakefulness or REM sleep did not show ev-
idence for low-dimensional dynamics. These results were
also corroborated with other measurements such as Lyapunov
exponents, entropies, power spectral densities, autocorrela-
tions and symbolic dynamics [Destexhe, 1992].

The existence of low-dimensional chaotic dynamics in
systems with such large degrees of freedom is surprising.
Chaotic dynamics in extended coupled systems have been
studied extensively for the last decades and is still a matter
of intense investigation. In particular, for network of sim-
plified neurons, as the spin-glass models, mean-field theo-
ries have proven the existence of stable chaotic attractors
[Sompolinsky et al., 1988; van Vreeswijk & Sompolinsky,
1996; van Vreeswijk & Sompolinsky, 1998]. These systems
have been shown to exhibit chaotic persistence regarding pa-
rameter changes [Albers et al., 2006], a property that makes
chaotic dynamics more common than exceptional [Sprott,
2008]. From a computational point of view, chaotic behaviour
or nearly chaotic regime (edge of chaos) can be optimal for
information processing [Bertschinger & Natschläger, 2004;
Legenstein & Maass, 2007]. In network models of spiking
neurons, chaotic regimes have also been studied [Cessac,
2008; Cessac & Viéville, 2008] and can be present only as
transients during which the system is numerically indistin-
guishable from a usual chaotic attractor. However the life-
time of these transient periods is known to increase exponen-
tially with network size [Crutchfield & Kaneko, 1988; Tél &
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Lai, 2008] making them more relevant in practice than the
real stable attractor for large enough networks.

In this paper, we intend to study a specific spiking neuron
model which displays these properties and yield biophysical
behaviour relevant to understand EEG data. Classical non-
linear tools as the correlation dimension or the Lyapunov
exponents have given some insight on macroscopic quanti-
ties as the EEG or the overall activity of numerical mod-
els but are often criticized because of their limitation for
low-dimensional dynamics [Kantz & Schreiber, 2004]. In
order to distinguish between microscopic dynamics and col-
lective behaviour, we borrow recent tools developed in the
context of high-dimensional systems and which offer anal-
ysis at different scales. In particular, finite-size Lyapunov
exponent [Aurell et al., 1997] as well asε−entropy [Gas-
pard & Wang, 1993] provide a scale-dependent description
of spiking neuron networks and could detect whether or not
low-dimensional dynamics prevail at a macroscopic scales.
These tools will be applied to EEG data as well as numerical
models.

2 Methods

In this section we briefly describe the analytical and numer-
ical tools which will be used to probe the nonlinear nature
of the EEG recordings or the numerical simulations. Most of
these analysis are extensively used in the literature. Further-
more, we used the TISEAN toolbox [Hegger et al., 1999] to
perform most of our nonlinear analysis. We also give infor-
mation about the numerical model.

2.1 Phase space reconstruction

We used the method of time-delayed vectors of the time se-
ries, which yields reconstructed attractors topologically equiv-
alent to the original attractor of the system [Takens, 1981;
Sauer et al., 1991]. We chose a fixed delay parameter de-
termined by the first minimum of the mutual information
[Fraser & Swinney, 1986]. The embedding dimension was
chosen such that any self-similar asymptotic behavior satu-
rates beyond this dimension, indicating a successful attractor
reconstruction.

2.2 Correlation dimension

The correlation dimension was measured from the correla-
tion integral [Grassberger & Procaccia, 1983] which is esti-
mated by using

C(ε) =
1

N2

N

∑
i, j=1

Θ (ε−||x(i)−x( j)||) (1)

wherex(i) ∈ IR is the m-dimensional delay vector andε is
a threshold distance which reflects the scale under consider-
ation. Moreover we used a Theiler window [Theiler, 1990]

according to the temporal correlation of each time series to
avoid spurious estimation. If the correlation integral mani-
fests a power-law behavior over a range of scale which sat-
urates with increasing embedding dimension, the correla-
tion dimension is simply the corresponding power-law co-
efficient.

2.3 Recurrence plots

This tool provides an intuitive visualization of recurrences
in trajectories on the attractor [Eckmann et al., 1987]. The
recurrence matrix is defined by

RP(i, j) = Θ (ε−||x(i)−x( j)||) (2)

where the matrix entry is equal to 1 if the trajectoryx at i is
in theε-neighbor of itself atj and 0 otherwise. Stereotypic
patterns in the recurrence plot can indicate the existence of
periodic behavior, low-dimensional chaos or stochastic-like
dynamics. In particular, diagonal lines are typical of periodic
dynamics whereas clouds of dots are produced by a stochas-
tic component. For an extensive review on recurrence plot,
the reader should refer to [Marwan et al., 2006].

2.4 Finite-size Lyapunov andε-entropy

Scale-dependent nonlinear analysis have been greatly stud-
ied the last decade and have come in handy to distinguish
deterministic (possibly chaotic) dynamics from stochastic
noise. In this paper, we will mainly consider two quanti-
ties : the Finite-Size Lyapunov Exponent (FSLE) and the
ε-entropy. The former has been introduced in the context of
developed turbulence [Aurell et al., 1997] and has proven to
be more suited for a broad range of system which dynam-
ics can exhibit low-dimensional chaotic behavior only on
large-scale [Shibata & Kaneko,1998; Cencini et al., 1999;
Gao et al., 2006]. Roughly speaking, if we want to quantify
the sensitivity to initial conditions on large scales, it isnec-
essary to consider perturbations which are not infinitesimal.
Therefore, the FSLE can be defined as follows

λ(δ ) =
1

< Tr(δ ) >

〈
ln

(
∆r

δ

)〉
(3)

where for a perturbation between two initial trajectoriesδ ,
Tr is the minimal time required for those trajectories to be
separated by a distance∆r greater than or equal toδ r where
r = 2 is usually taken. The brackets in Eq. 3 denotes aver-
ages on the attractor for many realizations. Theε-entropy is
a generalization of the Kolmogorov-Sinai entropy rate [Gas-
pard & Wang, 1993] which is defined for a finite scaleε and
time delayτ by

h(ε,τ) = lim
m→∞

hm(ε,τ) (4)

=
1
τ

lim
m→∞

1
m

Hm(ε,τ) (5)
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with

hm(ε,τ) =
1
τ
(Hm+1(ε,τ)−Hm(ε,τ) (6)

whereHm(ε,τ) is the entropy estimated with box partition
of the phase space for box size given byε on the attractor
reconstructed with a time delayτ and an embedding dimen-
sionm. This quantity exhibits a plateau on particular scales
if a deterministic low-dimensional dynamics occurs at these
scales. It can thus be used to describe large scale dynamics
independently of the small scale noisy behavior or can be
used to distinguish noise from chaos in some cases [Cencini,
2000].

2.5 Avalanche analysis

To identify the presence of scale invariance, typical of self-
organized critical states [Jensen, 1998], we used an “avalanche
analysis” methods [Beggs and Plenz, 2003]. This method
consists of detecting “avalanches” as clusters of contiguous
events separated by silences, by binning the system’s activ-
ity in time windows (1 ms to 16 ms were used). Cluster of
events were defined from the spike times among the ensem-
ble of simultaneously recorded neurons. The scale invari-
ance was determined from the distribution of avalanche size,
calculated as the total number of events [Beggs and Plenz,
2005].

2.6 Network of Integrate-and-Fire neurons

Networks of ”integrate-and-fire” neurons were simulated ac-
cording to models and parameters published previously [Vo-
gels & Abbott, 2005; El Boustani et al., 2007]. The network
consisted of 5,000 neurons, which were separated into two
populations of excitatory and inhibitory neurons, forming
80% and 20% of the neurons, respectively. All neurons were
connected randomly using a connection probability of 2%.

The membrane equation of celli was given by:

Cm
dVi

dt
= −gL(Vi−EL) + Si(t) + Gi(t) , (7)

whereCm = 1 µF/cm2 is the specific capacitance,Vi is the
membrane potential,gL = 5×10−5 S/cm2 is the leak conduc-
tance density andEL = -60 mV is the leak reversal potential.
Together with a cell area of 20,000µm2, these parameters
give a resting membrane time constant of 20 ms and an input
resistance at rest of 100 MΩ . The functionSi(t) represents
the spiking mechanism intrinsic to celli andGi(t) stands for
the total synaptic current of celli. Note that in this model,
excitatory and inhibitory neurons have the same properties.

In addition to passive membrane properties, IF neurons
had a firing threshold of -50 mV. Once the Vm reaches thresh-
old, a spike is emitted and the membrane potential is reset to
-60 mV and remains at that value for a refractory period of
5 ms. This model was inspired from a previous publication

reporting self-sustained irregular states [Vogels and Abbott,
2005].

Synaptic interactions were conductance-based, accord-
ing to the following equation for neuroni:

Gi(t) = − ∑
j

g ji(t)(Vi−E j) , (8)

whereVi is the membrane potential of neuroni, g ji(t) is the
synaptic conductance of the synapse connecting neuronj to
neuroni, andE j is the reversal potential of that synapse.E j
was 0 mV for excitatory synapses, or -80 mV for inhibitory
synapses.

Synaptic interactions were implemented as follows: when
a spike occurred in neuronj, the synaptic conductanceg ji
was instantaneously incremented by a quantum value (qe =
6 nS andqi = 67 nS for excitatory and inhibitory synapses,
respectively) and decayed exponentially with a time constant
of τe = 5 ms andτi = 10 ms for excitation and inhibition, re-
spectively.

3 Evidence for chaotic dynamics in EEG activity

Human EEG recordings during different brain states are il-
lustrated in Fig. 1, along with a 2-dimensional representa-
tion of the phase portrait obtained from each signal. Dur-
ing wakefulness (eyes open) and REM sleep, the dynamics
is characterized by low-amplitude and very irregular EEG
activity, while during deep sleep, the EEG displays slow
waves (“delta waves”) of large amplitude. Oscillatory dy-
namics with a frequency around 10 Hz is seen in the occipi-
tal region when the eyes are closed (“alpha rhythm”). Patho-
logical states, such as epilepsy or comatous states, display
large amplitude oscillations, which are strikingly regular.

A first evidence for chaotic dynamics is that EEG dy-
namics display a prominent sensitivity to initial conditions.
This sensitivity is illustrated in Fig. 2 for the alpha rhythm
(awake eyes closed) and slow-wave sleep (stage IV). A set
of close initial conditions is defined by choosing a neigh-
boring points in phase space, and this set of points is fol-
lowed in time. The divergence of the trajectories emanating
from each initial condition is evident from the illustration of
Fig. 2, and is actually exponential. This exponential diver-
gence betrays the presence of at least one positive Lyapunov
exponent. A more quantitative investigation using numerical
methods [Wolf et al., 1985] reveals the presence of positive
Lyapunov exponents for all EEG states investigated [Des-
texhe, 1992].

EEG dynamics also displays other characteristics of chaotic
dynamical systems, such as broad-band power spectra (not
shown) and fractal attractor dimensions. This latter point
was investigated by a number of laboratories, and is sum-
marized in Fig. 3. Correlation integralsC(r) are calculated
from the reconstructed phase portraits for different embed-
ding dimensions (Fig. 3A-B). The correlation dimensiond
is obtained by estimating the scaling ofC(r) by using loga-
rithmic representations, in which the slope directly givesan
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Time (sec)

0. 1.00 2.00 3.00 4.00 5.00

Awake, eyes open

Awake, eyes closed

Sleep stage 2

Sleep stage 4

REM sleep

Epileptic seizure (absence)

Comatous (CJ disease)

Fig. 1 Electroencephalogram signals and phase portraits during differ-
ent brain states in humans.
Left: 5 seconds of EEG activity in different brain states (same ampli-
tude scale). Right: 2-dim phase portrait of each signal. Modified from
[Destexhe, 1992].

A

B

Fig. 2 Illustration of the sensitivity to initial conditions in EEG dy-
namics.
A cluster of neighboring points in phase space (leftmost panels) is fol-
lowed in time and is shown on the same phase portrait after 200ms,
400 ms and 3 seconds (from left to right; same data as in Fig. 1). A,
Awake eyes closed; B. Sleep stage IV. Modified from [Destexhe, 1992].

estimate ofd. The calculation ofd as a function of the em-
bedding dimension (Fig. 3C) saturates to a constant values
for some states (such as deep sleep or pathologies), but not
for others. This is the case for the EEG during wakefulness,
which dimensiond does not saturate, which is a sign of high
dimensionality.

The correlation dimensions obtained for different brain
states are represented in Fig. 4 as a function of the mean
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Fig. 3 Correlation dimension calculated from different brain states in
humans.
A. Correlation integralsC(r) calculated from sleep stage IV. B. Cor-
relation integrals calculated from Awake eyes open. C. Correlation
dimension as a function of embedding dimension for different brain
states. Symbols: * = Awake eyes open, + = REM sleep, squares = sleep
stage 2, circles = sleep stage 4. Modified from [Destexhe, 1992].

amplitude of the EEG signal. This representation reveals a
“hierarchy” of dimensionalities for the EEG. The aroused
states, such as wakefulness and REM sleep, are character-
ized by high dimension and no sign of slow-wave activ-
ity. As the brain drifts towards sleep, the dimensionality de-
creases and attains its lowest level during the deepest phase
of sleep, in which the EEG is dominated by large-amplitude
slow waves. A further decrease is seen during pathologies,
which are also dominated by slow-wave activity.
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Fig. 4 Dimension – amplitude representation for different brain states.
The correlation dimension of the EEG is shown as a function ofthe
amplitude range (maximal amplitude deflection calculated over 1 sec-
ond periods. Modified from [Destexhe, 1992].
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4 Evidence for stochastic dynamics in brain activity

The above results are consistent with the idea that awake
brain activity may be associated with high-dimensional dy-
namics, perhaps analogous to a stochastic system. To fur-
ther investigate this aspect, we have examined data from
animal experiments in which both microscopic (cells) and
macroscopic (EEG) activities can be recorded. The corre-
spondence between these variables is shown in Fig. 5 for cat
cerebral cortex during wakefulness and slow-wave sleep.

5 sec

LFP

Units

1

2

3

4

5

6

7

8

Wake SWS

250 ms

Fig. 5 Distributed firing activity and local field potentials in catcortex
during wake and sleep states.
Recordings were done using eight bipolar tungsten electrodes in cat
parietal cortex (data from [Destexhe et al., 1999]). The irregular firing
activity of 8 multi-units is shown at the same time as the LFP recorded
in electrode 1. During wakefulness, the activity is sustained and irreg-
ular (see magnification below). During slow-wave sleep (SWS), the
activity is similar as wakefulness, except that “pauses” offiring occur
in all cells, and in relation to the slow waves (one example isshown in
gray in the bottom graph). The boxes in the top graphs are shown in
bottom graphs at 20 times higher temporal resolution.

Those electrical measurements were made using tung-
sten microelectrodes directly inserted in cortical gray matter
[Destexhe et al., 1999]. This recording system enables the
extraction of two signals: a global signal, similar to the EEG,
which is called “local field potential” (LFP) and reflects the
averaged electrical activity of a large population of neurons.
In addition, single neurons can be distinguished and can be
extracted. These signals are shown and compared in Fig. 5.
During wakefulness, the LFP shows low-amplitude irregu-
lar activity, while neuronal discharges seem random. Slow-
wave sleep is characterized by dominant delta waves in the
LFP, as in human sleep stage IV. The occurrence of slow

waves is correlated with a concerted pause in the firing of
the neurons [Destexhe et al., 1999].

Analyzing the spike discharge of single neurons revealed
that the interspike-intervals (ISI) are exponentially distributed,
in a manner indistinguishable from a Poisson stochastic pro-
cess (Fig. 6A). Performing an avalanche analysis revealed
that the distribution of avalanche size from the neuronal dis-
charges was also exponential (Fig. 6B). The same scaling
could be explained by uncorrelated Poisson processes, as if
the neurons discharged randomly and independently. This
analysis was reproduced from a previous study (Bedard et
al., 2006).
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Fig. 6 Analysis of neuronal activity in awake cat cerebral cortex.
A. Interspike interval (ISI) distributions computed from extracellularly
recorded neurons in wakefulness (natural logarithms). A Poisson pro-
cess with the same average rate is shown for comparison (blue; curve
displaced upwards for clarity). The inset shows a log-log represen-
tation. The red curves indicate the theoretical value for Poisson pro-
cesses. B. Avalanche analysis of extracellular recordingsin the awake
cat (natural logarithms). The same analysis was performed on surro-
gate data (blue; Poisson processes). The inset shows the same data in
log-log representation. Modified from Bedard et al., 2006.

Thus, these data and analysis show that the dynamics of
neuronal activity in the awake cerebral cortex is similar to
stochastic processes. The statistics of the ISI distributions,
as well as the collective dynamics (“avalanches”) cannot be
distinguished from a Poisson stochastic processes.

5 Models of irregular dynamics in neuronal networks

We next consider if this type of dynamics can be found in
theoretical models of neuronal networks. We consider ran-
domly-connected networks of excitatory and inhibitory point
neurons, in which firing activity is described by the “integrate-
and-fire” model, while synaptic interactions are conductance-
based. As shown in previous publications (Vogels and Ab-
bott, 2005; El Boustani et al., 2007), this model can display
states of activity consistent with recordings in awake neocor-
tex, as shown in Fig. 7. The network can display different
types of states, such as “synchronous regular” (SR) states,
or “asynchronous irregular” (AI), both of which are illus-
trated in Fig. 7. In SR states, the activity is oscillatory and
synchronized between neurons, while in AI states, neurons
are desynchronized and fire irregularly, similar to recordings
in awake cats (compare with cells in Fig. 5). The averaged
activity of the network is coherent and of high amplitude
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in SR states, but is very noisy and of low amplitude in AI
states, similar to the EEG or LFP activity seen in wakeful-
ness (compare with EEGs in Fig. 1 and LFPs in Fig. 5).
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Fig. 7 Different network states in randomly-connected networks of
spiking neurons.
Top: state diagrams representing the average firing rate (left) and the
firing irregularity (ISI CV, right) of a randomly-connectednetwork
of 5,000 integrate-and-fire neurons with a sparse connectivity of 2%.
The phase diagram is drawn according to the excitatory and inhibitory
quantal conductance. For increasing inhibition the dynamics undergo a
transition from synchronous firing among the neuron and regular firing
to a state where the synchrony has substantially decreased and neurons
fire irregularly. The black rectangle indicates a transition from the SR
to the AI regime. We selected this region for the rest of the study (see
next figures). Bottom: the two different states, “Synchronous Regular”
(SR, left) and “Asynchronous Irregular” (AI, right). The corresponding
regions in the state diagram are indicated on top. For both panels, the
upper part show a raster plot of a 500 neurons taken randomly from
the network. Each dot is a spike emitted by the correspondingneuron
across time. In the lower part, the mean firing rate computed among the
whole network with a time bin of 0.1 ms. The asynchronous activity is
reflected through the less fluctuating mean activity.

The time series of these averaged network activities (bot-
tom graphs in Fig. 7) were analyzed similarly to the EEG in
Section 3. We were particularly interested in the transition
region between AI and SR states where the firing looses its
coherence. This trajectory in the phase diagram is shown as
a black rectangle in the upper panels of Fig. 7 and is charac-
terized by a abrupt drop of activity concomitant with an in-
creasing irregular firing. Similar results can be obtained by
reducing the excitatory synaptic strength instead. However,
to avoid a loss of stability, we preferred to study the tran-
sition by increasing the inhibitory synaptic strength. Phase
portraits of SR and AI states, as well as the corresponding
recurrence plots, are illustrated in Fig. 8. As expected, SR
states (leftmost panel in Fig. 8) display a limit cycle phase
portrait, while AI states (rightmost panel) appear as a dense

unstructured attractor. When the dynamics is dominated by
inhibition the limit cycle is rapidly blurred by small-scale
fluctuations which become ubiquitous for AI states. How-
ever, even though the phase portrait does not display any
structure, the recurrence plot still exhibit a strong determin-
istic component (diagonal line) which is completely lost for
a state well beyond the boundary region (noisy recurrence
plot).
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Fig. 8 Recurrence plot and phase portraits of different network states.
From left to right, different step of the transition from theSR state
(leftmost) to AI state (rightmost). All states differed by the value of
the inhibitory conductance∆ginh, as indicated. The top graphs indicate
the recurrence plot. The diagonals indicate the existence of a domi-
nant periodic component. As the slaved degrees of freedom are un-
leashed with increasing inhibition, the recurrence plot isblurred by the
stochastic-like component emerging at larger scales. Thisis the mani-
festation of the transition to a high-dimensional dynamics. For network
states in the middle of the AI region, there is almost no visible recur-
rency and the recurrence plot looks like that of a stochasticprocess.
The bottom graphs show bi-dimensional phase space reconstruction
of the corresponding state. We can clearly see the ”noisy” limit cycle
which progressively degenerates into a dense high-dimensional attrac-
tor confirming what is shown by the recurrence plot.

To quantify this progressive release of degree of free-
dom, we estimated the correlation dimension on the over-
all activity for those different states. Fig. 9 shows the com-
puted dimension for three different embedding dimensions.
The network activity displays a low-dimension dynamics as
expected for SR state whereas the dimension suddenly in-
creases with increasing inhibition conductance. Moreover,
the corresponding values don’t saturate with increasing em-
bedding dimension suggesting a high-dimensional attractor.
Therefore, beyond the dotted black line, the correlation di-
mension is not a relevant measure anymore.

We also analyzed the spiking activity of the model us-
ing the same statistical tools as for experimental data. The
distribution of ISIs during AI states was largely dominated
by an exponential component (Fig. 10A, very similar to ex-
perimental data (compare with Fig. 6A). Analyzing popula-
tion activity, through “avalanche analysis”, displayed expo-
nential distributions (Fig. 10B), also similar to experimental
data (compare with Fig. 6B). Power-law scaling was also
present for a limited range (see Fig. 10B, inset). Similar re-
sults were obtained for different network states (not shown).

One can ask what would be the effect of a more spe-
cific connectivity architecture on these results. In previous
work, we have shown that macroscopic properties in these
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Fig. 9 Transition to a high-dimensional attractor in the AI regime.
The correlation dimension is plotted according to the network state
from the SR to the AI regime. Saturation of the scaling regionin the
correlation integral is shown by illustrating the estimated correlation
dimension for three embedding dimensions. Below the dottedline, the
measure is considered to saturate correctly whereas above this line,
the measure can not be trusted anymore. In particular for lowinhibi-
tion conductances, there are severe shifts with increasingembedding
dimension. The dotted line is given by the disappearance of the plateau
in theε-entropy of Fig. 12.

networks are conserved for more local connectivity, as long
as the the connexions remain sparse [El Boustani & Des-
texhe, 2009]. Therefore, the phase diagram for topological
networks owns similar structures as those displayed in Fig.7.
However, in the limit of “first-neighbor” connectivity, corre-
lations between neurons become significantly stronger and
the resulting neuronal dynamics are more regular and far
from biological observations. Thus, even though more lo-
cal architectures can result in more correlated activity, these
correlations have to remain small in order to preserve the
network stability and the rich repertoire of regimes. Our re-
sults are thus general for locally-connected networks as long
as the sparseness is respected.
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Fig. 10 Analysis of the network dynamics in a model of asynchronous
irregular states.
A. ISI distributions during the AI state in a randomly-connected net-
work of 16,000 integrate-and-fire neurons. ISI distributions are expo-
nential (noisy trace), as predicted by a Poisson process (red line; in-
set: log-log representation using natural logarithms). B.Absence of
avalanche dynamics in this model (same description as Fig. 6B). The
red lines indicates regions of exponential scaling; the redline in inset
indicates a region with power-law scaling. Modified from El Boustani
et al., 2007.

6 How to reconcile these data ?

The above data show that in both human, cat and models, the
dynamics can show clear signs of coherence and low dimen-
sionality at the level of macroscopic measurements (EEG,
LFPs, averages), while microscopically, neuronal dynamics
are highly irregular and resemble stochastic processes. Inan
attempt to reconcile these observations, we rely on recently
introduced generalization of classical nonlinear tools. In par-
ticular, Finite-Size Lyapunov Exponent [Aurell et al., 1997;
Shibata & Kaneko, 1998; Cencini et al., 1999; Gao et al.,
2006] and theε-entropy [Cencini et al., 2000] have proven
to be valuable measures to probe system which display dif-
ferent behaviors at different scales. In the present context,
where low-dimensional dynamics can take place in top of a
highly irregular neuronal behavior, those measures appearas
the most natural.

They were applied to the human EEG, as shown in Fig. 11.
The FSLE in the upper panel neither possess a plateau nor
behave according to a power-law except in the small-scale
limit where the stochastic-like component is dominant. For
Creutzfeldt-Jacob disease as well as for epileptic seizure,
however, it seems that a small region displays a almost scale-
free behavior which would indicate a low-dimensional chaotic
dynamics. Following [Shibata & Kaneko, 1998], it seems
that the cortical activity lives in a high-dimensional attrac-
tor which could be chaotic. Therefore, the FSLE does not
really help to untangle the different scales dynamics here.
However, when resorting to theε-entropy, we get a differ-
ent picture. Fig. 11B clearly shows that most of these cor-
tical states manifest a large plateau on large-scale. These
plateau is a signature of low-dimensional dynamics [Cencini
et al., 2000] whereas the small-scale power-law behavior is
the signature of stochastic-like dynamics produced by high-
dimensional attractor. In accordance with Fig. 3, the dynam-
ics during awake eyes open and REM sleep do not own a
plateau, and their attractor dimension is too high to be distin-
guished from noise. However, it should be noted that those
different dynamics are produced by the same system hence
being mainly modulated by endogenic factors. In light of
this result, we can conclude that there is no contradiction
between the experimental data acquired at the macroscopic
level (EEG) and the at the microscopic level (Spiking Activ-
ity). For large network of coupled units, averaged quantities
can display low-dimensional structured dynamics while be-
ing seemingly stochastic at a smaller scale.

We also evaluated the same quantities from the aver-
aged activities of the numerical model. In Fig. 12A, we see
as before that the FSLE does not exhibit any scale-free re-
gion except for the small-scale limit. Thus we can not rely
on this measure to distinguish small- and large- scale be-
havior. In contrast, theε-entropy in Fig. 12B yields a large
and distinct plateau in the SR regime. The disappearance of
this plateau have been used as a criteria to draw the dot-
ted black line in Fig. 9. For inhibitory conductances larger
than∆ginh ≃ 23.5 (nS), theε-entropy slowly converges to its
small-scale stochastic-like behavior. We thus recover a very
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Fig. 11 Scale-dependent Lyapunov exponent and Epsilon-entropy for
different brain states.
The scale-dependent Lyapunov exponent (A) andε-entropy (B) were
calculated from the same EEG states as shown in Fig. 1. The FSLE
(A) does not show any plateau and if the inverse FSLE is plotted
in a semilog scale on the x-axis, no low-dimensional chaoticbehav-
ior can be detected for most states (data not shown). Following [Shi-
bata & Kaneko,1998] example for general coupled maps, the macro-
scopic activity seems to exhibit high-dimensional chaoticdynamics.
For small scalesε → 0, a scall-free region is found with a power-
law exponent around 0.791 (black dotted line) as expected from the
microscopic stochastic-like dynamics [Cencini et al., 2000; Gao et
al., 2006]. Because of the absence of a large scale-free region in the
semilog region, we can not define a macroscopic Lyapunov exponent
from this measure. However, for the Creutzfeldt-Jacob disease and the
epileptic seizure, the FSLE have a free-scale region on a broad range
which is different from the other cortical states. This could indicate
a low-dimensional chaotic dynamic even though it is not reflected in
the semilog scale. Indeed, theε-entropy (B) manifests a clear plateau
(red dotted line) for the epileptic seizure, the Creutzfeldt-Jakob dis-
ease, sleep stage 2 and 4 and the alpha waves. These plateau indi-
cates the existence of a low-dimensional attractor on the corresponding
scales [Cencini et al., 2000] which can sometimes be easily visualized
with an embedding procedure (see Fig. 1). For REM and awake states,
this plateau disappears leaving the dynamics in a stochastic-like (high-
dimension) state at all scales. The small-scale behavior isidentical to
the FSLE (green dotted line).

comparable behaviour to the EEG data where pathological
states or deep sleep produce structured activity at the EEG
level and awake state or REM are comparable to the dynam-
ics of AI regime, as suggested previously [van Vreeswijk &
Sompolinsky, 2006; van Vreeswijk & Sompolinsky, 2008;
Vogels & Abbott, 2005; El Boustani et al., 2007; Kumar et
al., 2008].

B

A

Fig. 12 Scale-dependent Lyapunov exponent and Epsilon-entropy for
different network states.
The Finite-Size Lyapunov Exponent (A) andε-entropy (B) were cal-
culated from the same network states as shown in Fig. 7. The FSLE
behaves almost identically for every network state. There is no evi-
dence for a low-dimensional chaotic dynamics which would beindi-
cated by a scale-free region in intermediate scales. The power-law at
small-scale owns a coefficient around 0.418 (black dotted line) charac-
terizing the stochastic-like dynamic (high-dimensional deterministic)
at those scales. Even though no evidence for low-dimension chaos can
be found from the FSLE, theε-entropy (B) has a large plateau (red dot-
ted line) for state lying in the SR region (low inhibitory conductance).
This plateau is shortened when the network dynamics is driven toward
the AI regime where eventually the dynamics is indistinguishable from
stochastic process. The small-scale behavior is identicalto the FSLE
(green dotted line).

7 Discussion

In this paper, we have briefly reviewed correlation dimen-
sion analyses of human EEG, which revealed a hierarchy of
brain states, where the dimensionality varies approximately
inversely to the level of arousal (Fig. 4). In particular, awake
and attentive subjects display high dimensionalities, while
deep sleep of pathological states show evidence for low di-
mensionalities. These low dimensions are difficult to recon-
cile with the fact that these signals emanate from the activity
of millions (if not billions) of neurons. In cat cerebral cor-
tex, the cellular activity during wake and sleep are highly
irregular, and exponentially distributed like stochastic(Pois-
son) processes, a feature which is also difficult to reconcile
with low dimensionalities at the EEG level, even though LFP
data do not manifest low-dimensional dynamics (data not
shown). We performed similar analyses on computational
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models, which also display these apparently coherent activ-
ities at the level of large-scale averages, while the micro-
scopic activity is highly irregular. In particular SR states can
display coherent behavior at large scales, while AI states do
not show evidence for coherence, similar to recordings in
awake cats and humans.

The nature of the dynamics exhibited by models is as-
similable to high-dimensional chaos. It has been shown that
AI states in such models shut down after some time, and are
thus transient in nature [Vogels & Abbott, 2005; El Bous-
tani et al., 2007; Kumar et al., 2008; El Boustani & Des-
texhe, 2009]. This lifetime has been estimated to increase
exponentially with the network size [Kumar et al., 2008;
El Boustani & Destexhe, 2009], and can reach considerable
times (beyond any reasonable simulation time; [Kumar et
al., 2008]). Moreover, other recent studies [Cessac, 2008;
Cessac & Viéville, 2008] have obtained analytical resultson
similar models where “transient chaotic-like regimes” were
found. More precisely, these regimes are periodic, but with
a period which also grows exponentially with network size.
These results are reminiscent of the non-attractive chaotic
manifolds extensively discussed in the literature [Crutchfield
& Kaneko, 1988; Dhamala et al., 2001; Dhamala & Lai,
2002; Tél & Lai, 2008; Zillmer et al., 2006]. Hence, even
though the chaotic nature of the dynamics is not inherent of
the underlying system, the network spends a long enough
period trapped in this transient dynamics indistinguishable
from chaos from a numerical point of view.

To characterize the dynamics at different scales, we es-
timated quantities such as FSLE orε-entropy, which clearly
show that microscopic scales (neurons) tend to be very high-
dimensional and complex, in many ways similar to “noise”,
while more coherent behavior can be present at large scales.
This analysis is consistent with the recently proposed con-
cept of “macroscopic chaos”, where a very high-dimensional
microscopic dynamics coexists with low dimensionality at
the macroscopic level. In this paper, the chosen numerical
model is known to be purely deterministic and can display
highly irregular spiking patterns close to stochastic processes
or noise. From a nonlinear analysis point of view, most of
this dynamics is indistinguishable from a random process.
However, as soon as a large scale behaviour emerges, the
ε-entropy can keep track of it and still manifests the small-
scale irregular fluctuations.

We conclude that numerical models of recurrent neu-
ronal networks, with conductance-based integrate-and-fire
neurons, can be assimilated to high-dimensional chaotic sys-
tems, and are in many ways similar to the EEG. Moreover,
even though they exhibit limit-cycle regimes for several pa-
rameter sets, this collective dynamics is built on top of irreg-
ular and high-dimensional neuronal activity which is only
apparent at small-scales. Interestingly, this scheme reminds
fluid dynamics, where a seemingly random microscopic dy-
namics may also coexist with more coherent behavior at
large scales. This is the case for example close to the transi-
tion to turbulence, where fluids can show evidence for low-
dimensional chaos [Brandstater et al., 1983]. More devel-

oped turbulence, however, does not show such evidence, pre-
sumably because a large number of degrees of freedom have
been excited and the high-dimensional dynamics is present
at all scales. It is possible that similar considerations apply
to brain dynamics, especially when considering the recent
debate about the nature of the ongoing activity of visual pri-
mary cortex (V1). Recordings made using voltage-sensitive
dyes imaging (VSDI) in this cortical area have suggested
that spontaneous activity consists of a seemingly-random re-
play of sensory-evoked orientation maps of activity in anes-
thetized [Kenet et al., 2003], but not in awake animals [Omer
et al., 2008]. These observations have raised the question of
whether the cortical activity of V1 could be described by a
single-state high-dimensional attractor or a low-dimensional
multistable attractor [Goldberg et al., 2004]. It is likelythat
at the VSDI scale, both scenarios are possible at the same
time but at different scales, which would be consistent with
the present results.
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