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Short description:  

 

In August 2007 with the milestone M4-1 'Availability of plasticity model concepts and discussion of 
their  relevance to software and hardware modelling approaches', the Facets consortium has already 
agreed on a framework of how to treat plasticity in the hardware as well as in the software simulations. 
This plasticity framework offers a certain amount of freedom regarding the choice of parameters and 
allows for the instantiation of different specific versions of plasticity, e.g. different weight-dependence, 
different voltage dependence, specific choices of spike-timing dependence. 

Within the framework, the FACETS partners have studied the functional properties of several models. 

The work can be summarized as follows: 

 

(i) Voltage and Frequency Dependence of STPD and LTP and their functional consequences 

Partner EPFL-LCN has developped a model where presynaptic activity is combined with the voltage 
of the postsynaptic membrane. The essential model ideas were developed while Lars Buesing from 
FACETS partner TU Graz was spending several weeks at the EPFL-LCN. The voltage enters into the 
model both as instantaneous voltage and as filtered voltage averaged over the recent past (in the range 
of some tens of millisecond). For example, LTP occurs if a presynaptic spike arrive AND shortly 
afterwards the instantaneous voltage is above firing threshold AND the average voltage is significantly 
above rest. LTD occurs if the average voltage is slightly above rest at the moment when a presynaptic 
spike arrives. This model accounts for 

(a) the voltage dependence found by Artola-Broecher-Singer; 

(b) STDP found by Markram or Bi and Poo; 

(c) the frequency dependence of STDP found by Markram and Sjoestroem; 

(d) the intricate interaction of voltage dependence and spike-timing dependence reported by 
Sjoestroem. 

Moreover, this model has been implemented in small to medium-sized recurrent networks driven by 
different stimulation protocols. It was found that for inputs that show slow rate modulation, the 
network develops a structure with strong bidirectional connections, leading to clusters of strongly 
connected neurons. However, the same learning rule and the same network showed strong unilateral 
connections and no lateral connectivity when driven with a stimulus showing systematic and rapid 
temporal modulation. These results suggest an intriguing relation between network connectivity and 
neural coding. 

The model has been presented in a manuscript submitted to Nature Neuroscience and available as 
Nature precedings 

 



Claudia Clopath, Lars Büsing, Eleni Vasilaki, Wulfram Gerstner: 

Connectivity reflects coding: A model of voltage-based spike-timing-dependent-plasticity with 
homeostasis 

Nature Neuroscience (submitted) 

http://precedings.nature.com/documents/3362/version/1 

This manuscript is included as appendix 1. 

 

(ii) Frequency dependence of STDP 

In a parallel study, Christian Mayr from the TU Dresden tested whether the same scenarios (a) - (d) 
could also be explained by a slightly different variant of the FACETS model. 

 

C. Mayr, J. Partzsch, and R. Schüffny, BCM and 

Membrane Potential: Alternative Ways to Timing Dependent Plasticity, 

15th International Conference on Neural Information Processing (ICONIP 

2008), Springer LNCS, vol. 5506, pp. 137-144, 2009 

This paper is added as appendix 2. 

 

(iii) The voltage based plasticity rule discussed under point (i) has been used by partner EPFL-LCN as 
the plasticity induction step in a model that combines induction of LTP with consolidation during a 
late phase of LTP. After the induction, a dopaminergic (or other neuromodulatory signal) is necessary 
to trigger protein synthesis and to transform the early trace of LTP into stable synaptic weights. 

This model is related to the paradigm of tagging introduced by Frey and Morris more than 10 years 
ago and explains a large body of tagging, cross-tagging, and consolidation experiments. 

The study has appeared in December 2008 in PLOS Computational Biology 

 

C. Clopath, L. Ziegler, E. Vasilaki, L. Büsing and W. Gerstner,  

Tag-Trigger-Consolidation: A Model of Early and Late  

ong-Term-Potentiation and Depression, 

PLoS Comput Biol, Vol. 4, Nr. 12, 2008. 

This study is included as appendix 3. 

 

(iv)  Functional consequences of Spike-Timing Dependent Plasticity modulated by reward have been 
analyzed by the FACETS partner TU-Graz. Legenstein et al. derived conditions under which 
modulation of synaptic plasticity can learn a given task. Moreover, they applied the learning rule to a 
model of biofeedback of Fetz and Bakerso as to illustrate some of the functional consequences. 

The work of Legenstein et al. has appeared in PLOS Computational Biology 

 

A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application to 
Biofeedback. Robert Legenstein, Dejan Pecevski, and Wolfgang Maass 

PLoS Comput Biol. 2008 October; 4(10): e1000180. 

This paper is included as appendix 4. 

 

(v)  Moritz Helias and colleages from the FACETS partner ALUF in Freiburg showed how a 



simplified plasticity model, similar the one used in the FACETS consortium can be derived from basic 
biophysical signals such as the calcium concentration in spines and correlation detection by Hebbian 
synaptic plasticity. Moreover, they could relate this model to structural plasticity, i.e., changes in 
spines and connection patterns rather than only changes in synaptic weights. This work has appeared in 
Frontiers in Computational Neuroscience: 

 

M. Helias, S. Rotter, M.-O. Gewaltig,  and Markus Diesmann, 

Structural Plasticity controlled by calcium based correlation detection 

Frontiers in Computational Neuroscience December 2008 2: 7 

 

This paper is included as appendix 5. 
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Connectivity reflects Coding: A Model of Voltage-based

Spike-Timing-Dependent-Plasticity with Homeostasis

Claudia Clopath, Lars Büsing∗, Eleni Vasilaki, Wulfram Gerstner

Laboratory of Computational Neuroscience

Brain-Mind Institute and School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne

1015 Lausanne EPFL, Switzerland

∗ permanent address: Institut für Grundlagen der Informationsverarbeitung, TU Graz, Austria

June 3, 2009

Abstract

Electrophysiological connectivity patterns in cortex often show a few strong connections in a sea of weak

connections. In some brain areas a large fraction of strong connections are bidirectional, in others they are

mainly unidirectional. In order to explain these connectivity patterns, we use a model of Spike-Timing-

Dependent Plasticity where synaptic changes depend on presynaptic spike arrival and the postsynaptic

membrane potential, filtered with two different time constants. The model describes several nonlinear effects

in STDP experiments, as well as the voltage dependence of plasticity under voltage clamp and classical

paradigms of LTP/LTD induction. We show that in a simulated recurrent network of spiking neurons our

plasticity rule leads not only to receptive field development, but also to connectivity patterns that reflect the

neural code: for temporal coding paradigms strong connections are predominantly unidirectional, whereas

they are bidirectional under rate coding. Thus variable connectivity patterns in the brain could reflect

different coding principles across brain areas; moreover our simulations suggest that rewiring the network

can be surprisingly fast.

1 Introduction

Experience-dependent changes in receptive fields [1, 2, 3] or in learned behavior [4] may occur through changes

in synaptic strength. Thus, electrophysiological measurements of functional connectivity patterns in slices of
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neural tissue [5, 6] or anatomical connectivity measures [7] can only present a snapshot of the momentary

connectivity – which may change with the next set of stimuli. Indeed, modern imaging methods show that

spine motility can lead to a rapid rewiring of the connectivity pattern [8, 9] by formation of new synapses or by

strengthening or weakening of existing synapses. The question then arises whether the connectivity patterns

and changes that are found in experiments can be connected to basic rules of synaptic plasticity, in particular

to modern or traditional forms of Hebbian plasticity [10] such as Long-Term Potentiation and Depression [11].

Long-term potentiation LTP and depression LTD of synapses depends on the exact timing of pre- and

postsynaptic action potentials [12, 13], but also on postsynaptic voltage [14, 15], and presynaptic stimulation

frequency [16]. Spike-Timing-Dependent Plasticity (STDP) has attracted particular interest in recent years,

since temporal coding schemes where information is contained in the exact timing of spikes rather than mean

frequency could be learned by a neural system using STDP [17, 18, 19, 20, 21]. The question, however, whether

STDP is more fundamental than frequency dependent plasticity or voltage dependent plasticity rules has not

been resolved, despite an intense debate [22]. Moreover it is unclear how the interplay of coding and plastic-

ity yield the functional connectivity patterns seen in experiments. In particular, the presence or absence of

bidirectional connectivity between cortical pyramidal neurons seems to be contradictory across experimental

preparations in visual [5] or somatosensory cortex [6].

Recent experiments have shown that STDP is strongly influenced by postsynaptic voltage before action

potential firing [23], but could not answer the question whether spike timing dependence is a direct consequence

of voltage dependence, or the manifestation of an independent process. In addition, STDP depends on stim-

ulation frequency [23] suggesting an interaction between timing and frequency dependent processes — or this

interaction could be the manifestation of a single process in different experimental paradigms. We show that a

simple Hebbian plasticity rule that pairs presynaptic spike arrival with the postsynaptic membrane potential is

sufficient to explain STDP and the dependence of plasticity upon presynaptic stimulation frequency. Moreover,

the intricate interplay of voltage and spike-timing dependence seen in experiments [23] as well as the frequency

dependence of STDP can be explained in our model from one single principle. In contrast of earlier attempts

towards a unified description of synaptic plasticity rule that focused on detailed biophysical descriptions [24, 25],

our model is a mechanistic one (phenomenological model). It does not give an explicit interpretation in terms

of biophysical quantities such a Calcium concentration [24], CaMKII [25], glutamate binding, NMDA receptors

etc. Rather it aims at a minimal description of the major phenomena observed in electrophysiology experiments.

The advantage of such a minimal model is that it allows us to discuss functional consequences in small [26, 27],

and possibly even large [28, 29], networks. We show that in small networks of up to 10 neurons the learning rule

leads to input specificity, necessary for receptive field development - similar to earlier models of STDP [17, 26] or

rate-based plasticity rules [30, 31]. Going significantly beyond earlier studies we explicitly address the question

of whether functional connectivity patterns of cortical pyramidal neurons measured in recent electrophysiological

studies [5, 6] could be the result of plasticity during continued stimulation of neuronal model networks. We

found that connectivity patterns strongly depend on the underlying coding hypothesis: With a temporal coding

hypothesis, where input spikes arrive in a fixed temporal order, the recurrent network develops a connectivity
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pattern with a few strong unidirecitional connections. However, under a rate coding paradigm, where stimuli

are stationary during a few hundred milliseconds the same network exhibits sustained and strong bidirectional

connections. This is in striking contrast to standard STDP rules where bidirectional connections are impossible

[26].

The mathematical simplicity of the model enables us to identify conditions under which it becomes equivalent

to the well-known Bienenstock-Cooper-Munro model [30] used in classical rate-based descriptions of develop-

mental learning; and equivalent to some earlier models of STDP [32] — and why our model is fundamentally

different from classical STDP models [17, 26, 21], widely used for temporal coding.

2 Results

In order to study how connectivity patterns in cortex can emerge from an interplay of plasticity rules and

coding, we need a plasticity rule that is consistent with a large body of experiments, not just a single paradigm

such as STDP. Since synaptic depression and potentiation take place through different pathways [33] our model

uses separate additive contributions to the plasticity rule, one for LTD and another one for LTP (see Fig. 1

and methods).

2.1 Fitting the Plasticity Model to Experimental Data

Consistent with voltage clamp [15] and stationary depolarization experiments [14] LTD is triggered in our

model if presynaptic spike arrival occurs while the membrane potential of the postsynaptic neuron is slightly

depolarized (above a threshold θ−) whereas LTP occurs if depolarization is big (above a second threshold θ+

(see Fig. 1). The mathematical formulation of the plasticity rule makes a distinction between the momentary

voltage u and the low-pass filtered voltage variables ū− or ū+ which denote temporal averages of the voltage

over the recent past (the symbols ū− and ū+ indicate filtering of u with two different time constants). Similarly,

the event x of presynaptic spike arrival needs to be distinguished from the trace x̄(t) that is left at the synapse

after stimulation by neurotransmitter. Potentiation occurs only if the momentary voltage is above θ+ (this

condition is fulfilled during action potential firing) AND the average voltage ū+ above θ− (this is fulfilled if

there has a been a depolarization in the recent past) AND the trace x̄ left by a previous presynaptic spike event

is nonzero (this condition holds if a presynaptic spike arrived a few milliseconds earlier at the synapse); these

conditions for plasticity are illustrated in Fig. 1B. LTD occurs if the average voltage ū− is above rest at the

moment of a presynaptic spike arrival (see Fig. 1A). The amount of LTD in our model depends on homeostatic

process on a slower time scale [34]. Low-pass filtering of the voltage by the variable (ū− or ū+) refers to some

unidentified intracellular processes triggered by depolarization, e.g., increase in calcium concentration or second

messengers messenger chains. Similarly, the biophysical nature of the trace x̄ is irrelevant for the functionality

of the model, but a good candidate process is the fraction of glutamate bound to postsynaptic receptors.

We checked the performance of the model on a simulated STDP protocol, where presynaptic spikes arrive
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a few milliseconds before or after a postsynaptic spike that is triggered by a strong depolarizing current pulse.

If a post-pre pairing with a timing difference of 10 millisecond is repeated 60 times at frequencies below 35Hz,

LTD occurs in our model (Fig. 2 A, B), consistent with experiments [23]. Repeated pre-post pairings (with

10 millisecond timing difference) at frequencies above 10Hz yield LTP, but pairings at 0.1Hz do not show any

significant change in the model or in experiments [23]. In the model these results can be explained by the fact

that at 0.1Hz repetition frequency, the low-pass filtered voltage ū+ which increases abruptly during postsynaptic

spiking decays back to zero before the next impulse arrives, so that LTP can not be triggered. However, since

LTD in the model requires only a weak depolarization of ū− at the moment of presynaptic spike arrival, post-

pre pairings give rise to depression, even at very low frequency. At repetition frequencies of 50Hz, the post-pre

paradigm is nearly indistinguishable from a pre-post timing, and LTP dominates.

Since spike-timing dependence in our model is induced only indirectly via voltage dependence of the model,

we wondered whether our model would also be able to account for the intricate interactions of voltage and

spike timing found by Sjöström et al. [23]. If a pre-post protocol at 0.1Hz, that normally does not induce LTP,

is combined with a depolarizing current pulse (lasting from 50ms before to 50ms after the postsynaptic firing

event), then potentiation is observed in the experiments [23], as well as in our model (Fig. 2 C, F, I). Due to

the injected current, the low-pass filtered voltage variable ū+ is depolarized before the pairing. Thus at the the

moment of the postsynaptic spike, the average voltage ū+ is above the threshold θ− leading to potentiation.

Similarly, a pre-post protocol that normally leads to LTP can be blocked if the postsynaptic spikes are triggered

on the background of a hyperpolarizing current (Fig. 2 E, H, I).

In order to study some nonlinear aspects of STDP, we simulate a protocol of burst-timing-dependent plastic-

ity where presynaptic spikes are paired with 1, 2 or 3 postsynaptic spikes [35] (see Methods). We observe that

60 pre-post pairs at 0.1Hz do not change the synaptic weight, as discussed above. However, repeated triplets

pre-post-post generate potentiation in our model because the first postsynaptic spike induces a depolarizing

spike after potential so that ū+ is depolarized. Adding a third postsynaptic spike to the protocol (i.e., quadru-

plets pre-post-post-post) does not lead to stronger LTP (Fig. 3A). Our model also describes the dependence of

LTP upon the intra-burst frequency (Fig. 3B). At an intra-burst frequency of 20Hz, no LTP occurs, because

the second spike in the burst comes so late that the presynaptic trace x̄ has decayed back to zero. At higher

intra-burst frequencies, the three conditions for LTP (u(t) > θ+ and ū+ > θ− and x̄ > 0) are fulfilled. The

burst timing dependence (Fig. 3C) is qualitatively similar to that found in experiments [35], but only four of

the six experimental data points are quantitatively reproduced by the model.

2.2 Functional implications

Connectivity patterns in a local cortical circuit have been shown to be non-random, i.e. the majority of connec-

tions are weak and the rare strong ones have a high probability of being bidirectional [5]. However, standard

models of STDP do not exhibit stable bidirectional connections [36]. Intuitively, if the cell A fires before the cell

B, a pre-post pairing for the ’AB’ connection is formed so that the connection is strengthened. The post-pre
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pairing occurring at the same time in the ’BA’ connection leads to depression. Therefore it is impossible to

strengthen both connections at the same time. Moreover, in order to assure long-term stability of firing rates

parameters in standard STDP rules are typically chosen such that inhibition slightly dominates excitation [17]

which implies that under purely random spike firing connections decrease, rather than increase. However, the

non-linearity aspects of plasticity in our model change such a simple picture. If we simulate two neurons with

bidirectional connections at low firing rates, the plasticity model behaves like standard STDP and only unidi-

rectional connections emerge. However, from Fig. 3B we expect that at higher neuronal firing rates, our model

could develop a stable bidirectional connection, in striking contrast to standard STDP rules [21].

Since bidirectional connections require neurons to fire at a high rate, we wondered how coding and con-

nectivity relate to each other. We hypothesized that bidirectional connections are supported by rate-coding

as opposed to temporal-coding. To test this idea we first simulated a small network of 10 all-to-all connected

neurons in a simplified rate-coding scheme where each neuron fires at a fixed frequency, but the frequency varies

across neurons. We find that bidirectional connections are formed only between those neurons that both fire at

a high rate, but not if one or both of the neurons fire at low frequencies (Fig. 4A). In a second paradigm, the

neurons in the same network are stimulated such that they are firing in a distinct order (1, 2 , 3,..) mimicking

an extreme form of temporal coding [37]. In that case, the weights form a loop where strong connections from

1 to 2, 2 to 3, ... develop, but no bidirectional connections (Fig. 4B). These results are in striking contrast to

simulation experiment with a standard STDP rule, where connections are always unidirectional, independently

of coding (Fig. 4C, D).

We wondered whether the same results would emerge in a more realistic network of excitatory and inhibitory

neurons driven by feedforward input. We simulated a network of 10 excitatory neurons and 3 inhibitory neurons.

Each inhibitory neuron receives input from 8 randomly selected excitatory neurons and randomly projects

back to 6 excitatory neurons. In addition to the recurrent input, each excitatory neuron receives feedforward

spike input from 500 presynaptic neurons j that generate stochastic Poisson input at a rate νj . The rates

of neighboring input neurons are correlated, mimicking the presence or absence of spatially extended objects.

In a rate-coding scheme, the location of the stimulus is switched every 100ms to a new random position. In

case of retinal input, this would correspond to a situation where the subject fixates every 100ms on a new

stationary stimulus. In a temporal-coding paradigm, the model input is shifted every 20ms to a neighboring

location, mimicking movement of an object across an array of sensory receptors. For both scenarios the network

is identical. Feedforward connections and lateral connections between model pyramidal neurons are plastic

whereas connections to and from inhibitory neurons are fixed.

After 1000s of stimulation with the rate-coding paradigm, the excitatory neurons developed localized re-

ceptive fields and a structured pattern of synaptic connections (Fig. 5B). While the labeling of the excitatory

neurons at the beginning of the experiment was randomly assigned, we can relabel the neurons after the for-

mation of lateral connectivity patterns so that neurons with strong reciprocal connections have similar indices,

reflecting the neighborhood relation of the network topology. After reordering we can clearly distinguish that

three groups of neurons have been formed, characterized by similar receptive fields and strong bidirectional
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connectivity within the group, and different receptive fields and no lateral connectivity between groups (Fig.

5C). If the overall amplitude of plastic changes is small (compared to that found in the experiments) the pattern

of lateral connectivity is stable and shows a few strong bidirectional connections in a sea of weak lateral con-

nectivity. Unidirectional strong connections are nearly absent. If the amplitude and rate of plasticity is more

realistic and in agreement with the data of Fig. 2, then the pattern of lateral connectivity changes between one

snapshot and another one 5 seconds later, but the overall pattern is stable when averaged over 100s. In each

snapshot, about half of the strong connections are bidirectional (Fig. 5H).

This is in striking contrast with the temporal coding paradigm. Neurons develop receptive fields similar to

those seen with the rate-coding paradigm. As expected for temporal Hebbian learning rate [21] the receptive

field slowly shifts over time. More importantly, amongst the lateral connections, strong reciprocal links are

completely absent (Fig. 6). This suggests that temporal coding paradigms are reflected in the functional

connectivity pattern by strong uni-directional connections whereas rate coding leads to strong bidirectional

connections.

3 Discussion

Plasticity models over the last decades have primarily focused on questions of development of receptive fields

and cortical maps [30], or memory formation [38]. Because traditional plasticity rules are rate models, the

relation between coding and connectivity could not be studied. Our plasticity rule is formulated on the level of

postsynaptic voltage. Since action potentials present large and narrow voltage peaks, they act as singular events

in a voltage rule so that in the presence of spike our rule turns automatically into spike-timing dependent rule.

Indeed, for spike coding (and in the absence of significant subthreshold voltage manipulations) our plasticity rule

behaves like a STDP rule where triplets of spikes with pre-post-post or post-pre-post timing evoke LTP, whereas

pairs with post-pre timing evoke LTD. Moreover, for rate coding where pre- and postsynaptic neurons fire with

Poisson firing statistics, our plasticity rule presents structural similarities to the model of Bienenstock, Cooper,

and Munro (BCM-model, [30]). Both our spiking rule and the rate-based BCM model require presynaptic

activity in order to induce a change. Furthermore for our rule as well as for the simplest BCM rule (see [30]),

the depression terms are linear and the potentiation terms are quadratic in the postsynaptic variables (i.e., the

postsynaptic potential or the postsynaptic firing rate). Beyond these qualitative similarities, an approximate

quantitative relation between the BCM model and our model can be constructed under appropriate assumptions.

In this case the total weight change Δw in our model is proportional to νpreνpost(νpost − ϑ) where νpre and

νpost denotes the firing rate of a pre- and postsynaptic neurons, respectively and ϑ is a sliding threshold related

to the ratio between the LTP and LTD inducing processes (see methods).

Due to its similarities to BCM, it is not surprising that our spike-based learning rule with sliding threshold

is able to support independent component analysis (ICA) that has been hypothesized to underly receptive field

development [30, 39]. In our experiments, the input consists of small patches of natural images using standard

preprocessing [40]. Image patches are selected randomly and presented to the neuron for T = 200ms, which
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is on the order of a fixation time between saccades [41]. Pixel intensities above an average grey value are

converted to spike trains of ON-cells and and those below reference intensity to spikes in OFF-cells, using the

relative intensity as the rate of a Poisson process. The spike trains from ON- and OFF-cells are the input to

a cortical neuron. The synaptic weights undergo plasticity following our learning rule (Eq. 3). After learning,

the weights exhibit a spatial structure that can be interpreted as a receptive field (Fig. 7). In contrast to the

principal component analysis of the image patches (as for example implemented by Hebbian learning in linear

neurons [42]), the receptive fields are localized (i.e. the region with significant weights does not stretch across

the whole image patch). Development of localized receptive fields can be interpreted as a signature of ICA [40].

In contrast to most other ICA algorithms [43] our rule is biologically more plausible since it is consistent with

a large body of plasticity experiments.

For a comparison of our model with experiments we have mainly focused on experiments in slices of visual

cortex, but some of the results can also be related to work in hippocampus. First, as the model explicitly

takes into account the postsynaptic membrane potential it can successfully reproduce the voltage dependence of

LTP/LTD seen in experiments under depolarization of the postsynaptic membrane [14, 15]. Second, for classical

STDP experiments such as [13, 23, 44], which have a stimulation protocol unambiguously defined in terms of pre-

and postsynaptic spike times, the model gives a timing dependence reminiscent of the typical STDP function

[13]. Moreover in contrast to standard STDP rules [21], more complicated effects such as the pairing frequency

dependence [23] and burst-timing dependence plasticity [35] are qualitatively described. In addition the rule

is expected to reproduce the triplet and quadruplet experiments in hippocampal slices [44] (data not shown),

because for all STDP protocols the plasticity rule in this paper is similar to an earlier nonlinear STDP rule

[32]. Deriving STDP rules from voltage dependence has been attempted before [45, 46]. However, since these

earlier models use the momentary voltage [46] or its derivative [45], rather than a combination of momentary

and averaged voltage as in our model, these earlier models cannot account for the broad range of nonlinear

effects in STDP experiments or interaction of voltage and spike-timing. Our model shows similarities with LTP

induction in the TagTriC model [47], but the TagTriC model focuses on the long-term stability of synapses,

rather than spike timing dependence of the induction mechanism.

Our plasticity rule allows to explain experiments from two different laboratories by one single principle. Both

the ”potentiation is rescued by depolarization” [23] scenario (Fig. 2F) and that of burst-timing dependent

LTP [35] (Fig. 3) show that LTP at low frequency is induced when the membrane is depolarized before the

pre-post pairing. This depolarization can be due to a previous spike during a postsynaptic burst [35] or to a

depolarization current. Our model is also consistent with results that LTP can be induced in distal synapses

only if additional cooperative input or dendritic depolarization prevent failure of backpropagating action po-

tentials [48]. A further unexpected result is that, with the set of parameters derived from visual cortex slice

experiments, synapses fluctuate between strong and weak weights. This aspect is interesting in view of synapse

mobility reported in imaging experiment [8].

There are, however, certain limitations to our plasticity rule. First, we did not address the problem of weight

dependence of synaptic plasticity and simply assumed that weights can grow to a hard upper bound. Neverthe-

7

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.3
36

2.
1 

: P
os

te
d 

22
 J

un
 2

00
9



less, the rule can be easily changed to soft bounds [21] by changing the prefactors ALTP, ALTD accordingly [47].

Second, short term plasticity [49] could be added for a better description of the plasticity phenomena occurring

especially during high frequency protocols. Third, our plasticity rule describes only induction of potentiation

or depression during the early phase of LTP/LTD [50]. Additional mechanisms need to be implemented in the

model to describe the transition from early to late LTP/LTD [47, 51]. Finally, in modeling voltage-clamp ex-

periments, we assume in our model a unique voltage throughout the whole neuron. In particular the dendrite is

assumed to be equipotential to the soma. Yet, experiments controlling the voltage at the soma do not guarantee

an equal or even fixed voltage at the synapse with respect to the soma. An obvious and promising improvement

would be to use a multi-compartment neuron model (e.g. distinct compartments for the soma and dendrites).

In the presented work we did not use a more sophisticated multi-compartment model as this would introduce a

considerable number of new parameters making overfitting more likely to occur.

Our plasticity model leads to several predictions that could be tested in slice experiments. First, under the

assumption of voltage clamp, our rule is linear in the presynaptic activities (see Methods). Thus the model

predicts that in voltage clamp experiments the weight change is only dependent on the voltage and the number

of presynaptic spikes but not on their exact timing (e.g., low frequency, tetanus, burst input should give the

same result). Second, in the scenario where potentiation is rescued by depolarization, the amount of weight

change should be the same whether a depolarizing current of amplitude B stops precisely when the postsynaptic

spike is triggered or whether a current of slightly bigger amplitude B’ stops a few milliseconds earlier. Third,

multiple STDP experiments have shown that pre-post pairing (with 10 millisecond timing difference) repeated

at 10Hz leads to potentiation [23]. In our plasticity model, LTP occurs in that case because the depolarizing

spike-afterpotential of the last postsynaptic spike leads to an increase of the filtered membrane voltage just be-

fore the next postsynaptic spike. If this interpretation is correct, a hyperpolarizing current sufficient to cancel

the spike afterpotential during 40 milliseconds should block LTP (note that this is different from blocking LTP

by a hyperpolarizing current a few milliseconds before the next spike [23]). Alternatively cutting dendrites, i.e.

dendrotomy [52] would sharpen the spike after potential.

The influence of STDP on temporal coding has been studied in the past primarily with respect to changes

in the feedforward connections [21]. The effect of STDP on lateral connectivity has been studied much less

[28, 29, 27]. We have shown in this paper that, because of STDP, coding influences the network topology, because

different codes give different patterns of lateral connectivity. Our results are in contrast to standard STDP rules

which always suppress short loops, and in particular bidirectional connections [36]. Our more realistic plasticity

model shows that under a rate coding paradigm bidirectional connectivity and highly connected clusters with

multiple loops are not only possible, but even dominant. It is only for temporal coding, that our biologically

plausible rule leads to dominant unilateral directions. Our model also predicts that for a code consisting of

synchronous firing events at low frequencies synapses decrease, consistent with earlier findings [27]. We speculate

that the differences in coding between different brain areas could lead, even if the learning rule were exactly the

same, to different network topologies. Our model predicts that experiments where cells in a recurrent network

are repeatedly stimulated in a fixed order would decrease the fraction of strong bidirectional connections, whereas
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a stimulation pattern where clusters of neuron fire at high rate during episodes of a few hundred milliseconds

would increase this fraction. In this views it is tempting to connect the low degree of bidirectional connectivity

in barrel cortex [6] to the bigger importance of temporal structure in whisker input [37], compared to visual

input.
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5 Figure Captions

Figure 1: Illustration of the model. Synaptic weights react to presynaptic events (top) and postsynaptic
membrane potential (bottom) A. The synaptic weight is decreased if a presynaptic spike x (green) arrives when
the low pass filtered value ū− (magenta) of the membrane potential is above θ− (dashed horizontal line) B.
The synaptic weight is increased if the membrane potential u (black) is above a threshold θ+ and the low
pass filtered value of the membrane potential ū+ (blue) higher than a threshold θ− as well as the presynaptic
low pass filter x̄ (orange) non zero. C. Step current injection makes the postsynaptic neuron fire at 50Hz in
the absence of presynaptic stimulation (membrane potential u in black). No weight change is observed. Note
the depolarizing spike-afterpotential consistent with experimental data D., reproduced from [23]. E-H. Voltage
clamp experiment. A neuron receives weak presynaptic stimulation of 2Hz during 50s while the postsynaptic
voltage is clamped to values between -60mV and 0mV. E-G. Schematic drawing of the trace x̄ (orange) of the
presynaptic spike train (green) as well as the voltage (black) and the synaptic weight (blue) for the experimental
conditions E. Hyperpolarization F. Slight depolarization and G. Large depolarization. H. The weight change
as a function of clamped voltage using the standard set of parameters for visual cortex data (blue line, voltage
paired with 25 spikes at the synapse). With a different set of parameters the model fits experimental data (red
circles) in hippocampal slices [15], see methods for details.

Figure 2: A-B. Simulated STDP experiments. A. Spike-timing dependent learning window. The change of the
synaptic weight is shown for different time intervals T between the presynaptic and the postsynaptic spike using
60 presynaptic/postsynaptic spike pairs at 20Hz. B. Weight change as a function of repetition frequency for
5 spike pairs at frequency ρ with a time delay of +10ms (pre-post, blue) and -10ms (post-pre, red), repeated
15 times at 0.1Hz (only 10 times for frequency of ρ=0.1Hz). Weight changes are shown as a function of the
frequency, dots represent the data taken from Sjöström et al. [23] and lines the plasticity model simulation.
C-I. Interaction of voltage and STDP. C-E. Schematic induction protocols (green: presynaptic input, black:
postsynaptic current, blue: evolution of synaptic weight). C. Low-Frequency Potentiation is rescued by depo-
larization [23]. Low frequency (0.1Hz) pre-post spike pairs yield LTP if a 100ms-long depolarized current is
injected around the pairing. D. LTP fails in the previous scenario if an additional brief hyperpolarized pulse
is applied 14-ms before postsynaptic spike so that voltage is brought to rest. E. Hyperpolarization preceding
action potential prevents potentiation. Sjöström et al. [23] show that high frequency (40Hz) pairing leads to
LTP. However, when a constant hyperpolarizing current is applied on top of the short pulses inducing the spikes,
no weight change is measured. F. The simulated postsynaptic voltage u (black) following protocol A. is shown
as well as the temporal averages ū− (magenta) and ū+ (blue). The presynaptic spike time is indicated by the
green arrow. Using the model Eq. 3 this setting results in potentiation. G. Same as F, but following protocol
D. No weight change is measured. H. Same as F., but following protocol E. No weight change is measured.
I. Histogram summarizing the normalized synaptic weight of the simulation (bar) and the experimental data
[23] (dot, blue bar=variance) 0.1Hz pairing (control 1); 0.1Hz pairing with the depolarization (protocol C.);
0.1Hz pairing with the depolarization and brief hyperpolarization (protocol D.); 40Hz pairing (control 2); 40Hz
pairing with the constant hyperpolarization (protocol E.). The parameters are summarized in Table 1B.
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Figure 3: Burst-timing-dependent plasticity. One presynaptic spike is paired with a burst of postsynaptic
spikes. This pairing is repeated 60 times at 0.1Hz. A. Normalized weight is shown as a function of the number
of postsynaptic spikes (1,2,3) at 50Hz. (dots: data from [35], crosses: simulation). The presynaptic spike is
paired +10ms before the first postsynaptic spike (blue) or -10ms after (red). B. Normalized weight as a function
of the frequency between the three postsynaptic action potentials (dot: data, line: simulation; blue: pre-post,
red: post-pre). C. Normalized weight as a function of the timing between the presynaptic spike and the first
postsynaptic spike of a 3-spike burst at 50Hz (dot: data, line: simulation). A hard upper bound has been set
to 250% normalized weight.

Figure 4: Weight evolution in a all-to-all connected network of 10 neurons. A. Rate code: Neurons fire at
different frequencies, neuron 1 at 2Hz, neuron 2 at 4Hz... neuron 10 at 20Hz. The weights (bottom) averaged
over 100s show that neurons with high firing rates develop strong bidirectional connections (light blue: weak
connections (under 2/3 of the maximal value); yellow: strong unidirectional connections (above 2/3 of the
maximal value); brown: strong bidirectional connections). The cluster is schematically represented on top
(”after”). B. Temporal code: Neurons fire successively every 20ms (neuron 1 then 20ms later neuron 2, then
3..). Connections (bottom) are unidirectional with strong connections from presynaptic neuron with index
n (vertical axis) to postsynaptic neuron with index n+1, n+2 and n+3 leading to a ring-like topology (top:
schematic). C. D. Same but with standard STDP rule [17, 26, 21]. Bidirectional connections are impossible.

Figure 5: Plasticity during rate coding. A network of 10 excitatory neurons is connected to 3 inhibitory neurons
and receives feedforward inputs from 500 Poisson spike trains with a Gaussian profile of firing rates. The center
of the Gaussian is shifted randomly every 100ms A. The schematic figure shows the network before and after
the plasticity experiment. B-E. Learning with small amplitudes. Model parameters are taken from table 1B
(visual cortex data) except for the amplitudes ALTP and ALTD which are reduced by a factor 100. B. Mean
feedforward weights (left) and recurrent excitatory weights (right) averaged over 100s. The grey level graph
for the feedforward weights (left) indicates that neurons develop receptive fields that are localized in the input
space. The recurrent weights (right) are classified into: light blue - weak (less than 2/3 of the maximal weight),
yellow - strong (more than 2/3 of the maximal weight) unidirectional, brown - strong reciprocal connections.
The diagonal is white, since self-connections do not exist in the model. C. Same as (B) but for the sake of visual
clarity the index of neurons is reordered so that neurons with similar receptive fields have adjacent numbers,
highlighting that neurons with similar receptive fields (e.g., neurons 1 to 4) have strong bilateral connections.
D. Three snap shots of the recurrent connections taken 5s apart indicating that recurrent connections are stable.
E. Histogram of reciprocal, unidirectional and weak connections in the recurrent network averaged over 100s as
in (B). The total number of weight fluctuations during 100s is 79 (noted on the figure). The histogram shows
an average of 10 repetitions (errorbars are the standard deviation). F-I. Rate code during learning with normal
amplitudes. Same network as before but standard set of parameters (table 1B, visual cortex). F. Receptive
fields are localized; G. Reordering allows to visualize that the strong bidirectional give rise to clusters of neurons.
These clusters are stable when averaged over 100 seconds, but H connections can change from one time step to
the next. I. The percentage of reciprocal connections is high, but because of fluctuations (fluc) more than 1000
transitions between strong unidirectional to strong bidirectional or back occur during 100 seconds.
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Figure 6: Temporal coding paradigm. The setting is the same as in Fig. 5 (parameters from table 1B, visual
cortex) but the input patterns are moved successively every 20ms, corresponding to a step-wise motion of the
Gaussian stimulus profile across the input neurons. A. The schematic figure shows the network before and
after the plasticity experiment. B. Receptive fields are localized, but in the recurrent network no reciprocal
connections appear. C. Reordering of neurons shows that the network develops a ring-like structure with strong
unidirectional connections from neuron 8 (vertical axis) to neuron 7 and 6 (horizontal axis); from neuron 7 to
neuron 6, 5, and 4; from neuron 4 to neuron 3, 2, and 1 etc. D. Some of the strong unilateral connections appear
or disappear from one time step to the next, but the ring-like network structure persists, since the lines just
below the diagonal are much more populated than the line above the diagonal. E. Reciprocal connections are
completely absent, but unidirectional connections fluctuate several times between ’weak’ and ’strong’ during
100s.

Figure 7: A small patch of 16x16 pixels is chosen from the whitened natural images benchmark [40]. The patch
is selected randomly and is presented as input to 512 neurons for 200ms. The positive part of the image is
used as the firing rate to generate Poisson spike trains of the 256 ”ON” inputs and the negative one for the
256 ”OFF” inputs. B. The weights after convergence are shown for the ”ON” inputs and the ”OFF” inputs
rearranged on a 16x16 image. The filter is calculated by subtracting the ”OFF” weights from the ”ON” weights.
The filter is localized and bimodal, corresponding to an oriented receptive field.

Table 1: A. Parameters for the neuron model. B. Plasticity rule parameters for the various experiments.
VC stands for Visual Cortex cells (for experimental details see [23], ∗ standard set of parameters), SC for
Somatosensory Cortex cells (see [35]) and HP for Hippocampal cells (see [15]). Bold numbers indicate the free
parameters fitted to experimental data. Other parameters are set in advance to values based on the literature.

6 Methods

6.1 Neuron Model

In contrast to standard models of STDP, the plasticity model presented in this paper involves the postsynaptic

membrane potential u(t). Hence, predicting the weight change in a given experimental paradigm requires a

neuron model that describes the temporal evolution of u(t). For this purpose we chose the adaptive Exponential

Integrate-and-Fire (AdEx) model [53] with an additional current describing the depolarizing spike after potential

[54]. The neuron model is described by a voltage equation:

C
d

dt
u = −gL(u− EL) + gLΔT exp

(
u− VT

ΔT

)
− wad + z + I

where C is the membrane capacitance, gL the leak conductance, EL the resting potential and I the stimulating

current. The exponential term describes the activation of a rapid sodium current. The parameter ΔT is called

the slope factor and VT the threshold potential [53]. A hyperpolarizing adaptation current is described by the

variable wad with dynamics

τwad

d

dt
wad = a(u− EL)− wad,

where τwad
is the time constant of the adaption of the neuron. Upon firing the variable u is reset to a fixed

value Vreset whereas wad is increased by an amount b. The main difference to the Izhikevich model [55] is that
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the voltage is exponential rather than quadratic allowing a better fit to data [54]. The spike afterpotential of

the cells used in typical STDP experiments [23] have a long depolarizing spike after potential. We therefore

add an additional current z which is set to a value Isp immediately after a spike occurs and decays otherwise

with a time constant τz.

τz
d

dt
z = −z,

Finally, refractoriness is shown in pyramidal cells [54] and therefore is modeled with the adaptive threshold VT .

Therefore VT is set to VTmax
after a spike and decays to VTrest

with a time constant τVT
as measured in [54], i.e.

τVT

d

dt
VT = −(VT − VTrest

).

Parameters for the neuron model are taken from [53] for the AdEx, τz is set to 40ms in agreement with [23, 54]

and kept fixed throughout all simulations (see table 1A).

6.2 Plasticity Model

Since synaptic depression and potentiation take place through different pathways [33] our model exhibits separate

additive contributions to the plasticity rule, one for LTD and another one for LTP.

For the LTD part, we assume that presynaptic spike arrival at synapse i induces depression of the synaptic

weight wi by an amount −ALTD [u−(t) − θ−]+ that is proportional to the average postsynaptic depolarization

u−. The brackets [ ]+ indicate rectification, i.e. any value ū− < θ− does not lead to a change and implement

experimental findings showing that postsynaptic depolarization should exceed a certain value θ− to establish

depression of the synapse [14] (see Fig. 1H). The quantity u−(t) is an exponential low-pass filtered version of

the postsynaptic membrane potential u(t) with a time constant τ−:

τ−
d

dt
u−(t) = −u−(t) + u(t).

The variable ū− is an abstract variable which could, for instance, reflect the level of calcium concentration [24]

or the release of endocannabinoids [56], though such an interpretation is not necessary for our rule. Since the

presynaptic spike train is described as a series of short pulses at time tni where i is the index of the synapse and

n an index that counts the spike, Xi(t) =
∑

n δ(t− tni ), depression is modeled as the following update rule, see

also Fig. 1:

d

dt
w−

i = −ALTD(¯̄u) Xi(t) [u−(t)− θ−]+ if wi > wmin, (1)

where ALTD(¯̄u) is an amplitude parameter that is under the control of homeostatic processes [34]. For slice

experiment the parameter has a fixed value extracted from experiment. For network simulations, we make it

depend on the mean depolarization ¯̄u of the postsynaptic neuron, averaged over a time scale of 1 second. Eq. 1
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is a simple method to implement homeostasis; other methods such as weight rescaling would also be possible [34].

For the LTP part, we assume that each presynaptic spike at the synapse wi increases the trace x̄i(t) of some

biophysical quantity, which decays exponentially with a time constant τx in the absence of presynaptic spikes,

similar to previous work [17, 32]. The temporal evolution of x̄i(t) is described by:

τx
d

dt
x̄i(t) = −x̄i(t) + Xi(t),

where Xi is the spike train defined above. The quantity x̄i(t) could for example represent the amount of

glutamate bound to postsynaptic receptors [32] or the number of NMDA receptors in an activated state. The

potentiation of wi is modeled by the following expression, which is proportional to the trace x̄i(t) (see also

Fig. 1):

d

dt
w+

i = +ALTP x̄i(t) [u(t)− θ+]+ [u+(t)− θ−]+ if wi < wmax. (2)

Here, ALTP is a free amplitude parameter fitted to the data and u+(t) is another low-pass filtered version of

u(t) similar to u−(t) but with a shorter time constant τ+ around 10ms. Thus positive weight changes can occur

if the momentary voltage u(t) surpasses a threshold θ+ and, at the same time the average value u+(t) is above θ−.

The final rule used in the simulation is described by the equation

d

dt
wi = −ALTD(¯̄u) Xi(t) [u−(t)− θ−]+ + ALTP x̄i(t) [u(t)− θ+]+ [u+(t)− θ−]+, (3)

combined with hard bounds 0 ≤ wi ≤ wmax. For network simulation, ALTD(¯̄u) = ALTD
¯̄u2

u2
ref

where u2
ref is a

reference value.

6.3 Parameters and Data Fitting

For the plasticity experiments in slices, we take ¯̄u = uref as fixed and fit the parameters ALTD. The total number

of parameters of the plasticity model is then 7. For all data sets, except the one taken from [15], the threshold

θ− is set to the resting potential and θ+ to the firing threshold of the AdEx model, i. e. θ− = −70.6mV

and θ+ = −45.3mV. The remaining five parameters τx, τ−, τ+, ALTD and ALTP are fitted to each data set

individually by the following procedure. We calculate the theoretically predicted weight change Δwth,j
i by

integrating (analytically or numerically) Eq. (3), for a given experimental protocol j, as a function of the

free parameters. We then estimate the free parameters by minimizing the mean-square error E between the

theoretical calculations and the experimental data Δwexp,j
i :

E =
∑

j

(
Δwth,j

i −Δwexp,j
i

)2

.
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For the data set in hippocampus [15], we also fit the two parameters θ− and θ+ since completely different

preparations and cell type were used. Moreover for this data set, the time constant τx is taken from physiological

measurements given in [13] and fixed to the values of 16ms. The parameters for the various experiments are

summarized in table 1B.

6.4 Protocols and mathematical methods

Voltage clamp experiment. (Fig. 1H) The postsynaptic membrane potential was switched in the simulations

to a constant value uclamp chosen from -80mV to 0mV while presynaptic fibers were stimulated with either 25

(blue line) or 100 pulses (red line) at 50Hz. Due to voltage clamping, the actual value of the voltage u itself and

the low-pass filtered versions ū are constant and equal to uclamp. Hence, the synaptic plasticity rule becomes

d
dtwi = −ALTD Xi(t) [uclamp − θ−]+ + ALTP x̄i(t) [(uclamp − θ−)(uclamp − θ+)]+.

Frequency dependence experiment. (Fig. 2B) Presynaptic spikes in the simulation were paired with

postsynaptic spikes that were either advanced by +10ms or delayed by -10ms with respect to the presynaptic

spike. This pairing was repeated 5 times with different frequencies ranging from 0.1 to 50Hz. These 5 pairings

were repeated 15 times at 0.1Hz. However, the 5 pairing at 0.1Hz were repeated only 10 times to mimic the

experimental protocol [23].

Burst-timing-dependent plasticity. (Fig. 3A) The presynaptic spike is paired Δt =+10ms before (or Δt =-

10ms after) 1, 2 or 3 postsynaptic spikes. The frequency of the burst is 50Hz. The neuron receives 60 pairings at

a frequency of 0.1Hz. Fig. 3B: The presynaptic spike is paired with a burst of 3 action potentials (Δt =+10ms

and -10ms), while the burst frequency varies from 20 to 100Hz. Fig. 3C: A presynaptic spike is paired with a

burst of 3 postsynaptic action potentials with burst frequency of 50Hz. The time Δt between the presynaptic

spike and the first postsynaptic action potential varies from −80 to 40 ms. For a detailed description of the

experiments see [35].

Poisson input for functional scenarios.(Fig. 4-7) Poisson inputs are used in all the following experiments.

They are generated by a stochastic process where the spike is elicited with a stochastic intensity ν.

Relation between connectivity and coding: Toy model. (Fig. 4) Weights of ten all-to-all connected

neurons are initialized at 1, bounded between 0 and 3. Weights evolve with the voltage-based rule with

homeostasis (Eq. 3) for 100s. The model is compared to a canonical pair-based STDP model written as

d
dtwi = −Apair

LTD Xi ȳ + Apair
LTP x̄i Y , where Y is the postsynaptic spike train defined the same way as the presy-

naptic spike train Xi with a filter of the postsynaptic spikes ȳ similar to x̄i. The parameters are chosen

Apair
LTD = Apair

LTP = 1e−5 for the amplitudes and τx for the time constant of x̄i as well as for the time constant

of the postsynaptic low-pass filter ȳ. Rate code: Neuron 1 fire at 2Hz, neuron 2 at 4Hz... neuron 10 at 20Hz
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following a Poisson statistics, i.e. short current pulses are injected to make the neuron fire with Poisson statis-

tics at this frequency. The neurons have different reference values from u2
ref = 60 to 600mV2. Temporal code:

Neurons fire successively every 20ms, first neuron 1 fires then 20ms later neuron 2 then... 10 then 1 etc, in a

loop. The neurons have a reference value set to u2
ref = 60mV2.

Rate coding in network simulation. (Fig. 5) Five hundred presynaptic Poisson neurons with firing rates

νpre
i (1 ≤ i ≤ 500) are connected to 10 postsynaptic excitatory neurons. The inputs rates νpre

i follow a Gaussian

profile, i. e. νpre
i = A · exp(−(i − μ)2/(2σ2)), with variance σ = 10 and amplitude A = 30Hz. The center μ of

the Gaussian shifts randomly every 100ms between 10 different positions equally distributed. Circular bound-

ary conditions are assumed, i.e. neuron i = 500 is considered as neighbor of i = 1. Synaptic weights of the

feedforward connections are initialized randomly (uniformly in [0.5,2]) and hard bound are set to 0 and 3. The

10 excitatory neurons are all to all recurrently connected with a starting synaptic weight of 0.25 (hard bounds

set to 0 and 0.75). In addition, 3 inhibitory neurons are randomly driven by 8 excitatory neurons and project

on 6 excitatory neurons, also chosen randomly. Those random connections are fixed and have a weight equal

to 1. The reference value is set to u2
ref = 60mV2 and the simulation time to 1000s. Parameters are normally

chosen as in table 1B, visual cortex data, except for Fig. 5 B-E, where ALTP and ALTD where reduced by a

factor 100.

Temporal coding in network simulation. (Fig. 6) Same setting than rate code but the patterns are pre-

sented for 20ms successively (from center position 500, to 450, to 400 etc in a circular manner). The reference

value has been set to u2
ref = 80mV2.

ICA-like computation - Orientation selectivity with natural images. (Fig. 7) Ten natural images have

been taken from the benchmark of Olshausen et al. [40]. A small patch of 16 by 16 pixels from any of the images

is randomly chosen every 200ms. After prewhitening, the inputs for the ”ON” (”OFF”) image are Poisson spike

trains generated by the positive (negative) part of the patch (with respect to a reference grey value reflecting

the ensemble mean) with maximum frequency of 50Hz. The 2x16x16 inputs are connected to one postsynaptic

neuron. The initial weights are set randomly between 0 and 2 and hard bounds are set between 0 and 3. The

connections follow the synaptic rule (Eq. 3), where the reference value is set to u2
ref = 50mV2. Parameters

are chosen as in table 1B (visual cortex data) but ALTP and ALTD where reduced by a factor 10. Every 20 s

an extra normalization is applied to equalize the norm of the ”ON” weights to the one of the ”OFF” weights [31].
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Figure-1(Clopath)
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Figure-3(Clopath)
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Figure-4(Clopath)
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Figure-5(Clopath)
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Figure-6(Clopath)
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Figure-7(Clopath)
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Table-1(Clopath)

A

Parameters Value
C - membrane capacitance 281pF

gL - leak conductance 30nS
EL - resting potential -70.6mV

ΔT - slope factor 2mV
VTrest - threshold potential at rest -50.4mV
τwad

- adaptation time constant 144ms
a - subthreshold adaptation 4nS

b - spike triggered adaptation 80.5pA
Isp - spike current after a spike 400nA
τz - spike current time constant 40ms

τVT
- threshold potential time constant 50ms

VTmax - threshold potential after a spike −30.4mV

B

Exper. θ−(mV ) θ+(mV ) ALTD(mV )−1 ALTP(mV )−2 τx(ms) τ−(ms) τ+(ms)
VC∗ -70.6 -45.3 14e−5 8e−5 15 10 7
SC -70.6 -45.3 21e−5 67e−5 15 8 5
HP −41 −38 38e−5 2e−5 16
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2.2 Appendix 2

Mayr 2008 C. Mayr, J. Partzsch, and R. Schffny, BCM and Membrane Po-
tential: Alternative Ways to Timing Dependent Plasticity, 15th International
Conference on Neural Information Processing (ICONIP 2008), Springer LNCS,
vol. 5506, pp. 137-144, 2009
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Abstract. The Bienenstock-Cooper-Munroe (BCM) rule is one of the
best-established learning formalisms for neural tissue. However, as it is
based on pulse rates, it can not account for recent spike-based experimen-
tal protocols that have led to spike timing dependent plasticity (STDP)
rules. At the same time, STDP is being challenged by experiments ex-
hibiting more complex timing rules (e.g. triplets) as well as simultaneous
rate- and timing dependent plasticity. We derive a formulation of the
BCM rule which is based on the instantaneous postsynaptic membrane
potential as well as the transmission profile of the presynaptic spike.
While this rule is neither directly rate nor timing based, it can replicate
BCM, conventional STDP and spike triplet experimental data, despite
incorporating only two state variables. Moreover, these behaviors can be
replicated with the same set of only four free parameters, avoiding the
overfitting problem of more involved plasticity rules.

1 Introduction

One of the major research areas of neurobiology is long term learning (i.e. plas-
ticity) of synapses in neural tissue [1,2,3,4]. Synapses are the contact points
between neurons, where information from the sending neuron arrives at the so-
called presynaptic side and is transmitted via the synapse as a postsynaptic
current (PSC) pulse to the receiving neuron. The concept of long term plasticity
is used to describe the phenomenon that certain types of pre- and/or postsy-
naptic stimuli can have long lasting effects on the efficacy of this transmission
[2,5,6], i.e. the size of the PSC, ranging from days up to a year. These phenom-
ena are called long term depression (LTD) for diminished synaptic responses
respectively long term potentiation (LTP) for enhanced responses. Long term
plasticity has defied easy modeling, with a host of in vivo and in vitro research
showing diverse expressions of this plasticity [2,3]. Depending on the induction
protocol, spike rates [6,7], different spike patterns [8,9,10], or membrane voltage
control [3,7,10] have been found to elicit changes in plasticity.

� To whom correspondence should be addressed.
�� The first two authors contributed equally to the research described in this

manuscript.

M. Köppen et al. (Eds.): ICONIP 2008, Part I, LNCS 5506, pp. 137–144, 2009.
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Various models have tried to incorporate these findings e.g. in implementa-
tions of the classical rate-based BCM rule [5,11,12] or the newer spike-based
STDP rule [2,13]. Since both rules describe phenomena which have been well
established experimentally as well as theoretically, several models try to achieve
a synthesis of both rules. Deriving BCM from STDP formulations is relatively
easy [14], but those rules cannot explain nonlinear STDP without introducing
secondary state variables [4,9,15]. Trying to reach from BCM to STDP results in
STDP with biologically unrealistic characteristics [11,12]. In contrast, in section
2.1 we derive a model of BCM which exhibits major BCM characteristics like
LTD at low postsynaptic frequency and LTP at high ones, as well as a frequency
threshold (section 3.2). At the same time, this model can be linked analytically
to conventional STDP formulations, so the parameters of our model can be com-
puted from those derived experimentally for STDP (section 2.2). Additionally,
in section 3.3 we show that this model can replicate experimental data on higher
order STDP effects, namely the triplet experiments by Froemke and Dan [9].

2 Methods

2.1 Model

Our plasticity rule is motivated by the original BCM rule formulation [5]. In this
model, the weight m of a synapse changes dependent on presynaptic activity
d(t) and postsynaptic activity c(t):

dm

dt
= φ(c(t) −ΘM ) · d(t) (1)

The activities are instantaneous variables denoting changes of spiking frequency
around a mean value, so that they can take on positive as well as negative values.
φ(.) is an arbitrary function that changes sign at zero, so that the weight m moves
towards d for c > ΘM , whereas it moves in opposite direction for c < ΘM .

Since some of the classical BCM studies [7] as well as newer spike-timing
studies [3,10] have found a dependence of synaptic plasticity on the postsy-
naptic membrane potential, we re-interpret the meaning of the variables in the
BCM rule. We make two observations: First, the presynaptic activity d(t) at a
certain location of a neuron’s dendrite (down to a single synapse) can be read
out via conductance changes in the postsynaptic membrane that are mediated
by presynaptic neurotransmitter release. Often this is modelled by an exponen-
tially decaying synaptic conductance variable (see [16] for an overview). Second,
postsynaptic activity c(t) is directly related to postsynaptic membrane poten-
tial: Below spiking threshold, the more excitatory input a neuron receives, the
higher is its membrane potential. Additionally, the membrane potential involves
a similar temporal asymmetry with respect to postsynaptic spikes as standard
STDP rules: shortly before a postsynaptic spike, the membrane potential usu-
ally is above rest (depolarized), whereas it is below rest (hyperpolarized) shortly
after a spike.
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Motivated by the first observation, we introduce a presynaptic activity vari-
able, which is a low-pass filtered version of the presynaptic spike train:

s(t) = Ŝ · e−
t−t

pre
j

τs , tpre
j ≤ t < tpre

j+1 , (2)

where τs is the decay time constant and Ŝ denotes the amplitude of the response
to a presynaptic pulse.

Following the second observation, we use a simple spike-response model [16]
of the membrane potential as postsynaptic activity, denoted as u(t). This model
consists of a Dirac pulse and an exponential decay to account for hyperpolariza-
tion after a spike:

u(t) = Up · δ(t− tpost
n ) + Urefr · e−

t−t
post
n

τrefr , tpost
n − 0 < t < tpost

n+1 − 0 (3)

In this equation, Up represents the area under the pulse curve, determining
the pulse amplitude. Urefr < 0 is the amplitude of post-spike hyperpolarization
and τrefr is the membrane time constant. Sub-threshold variations of membrane
potential before a spike are neglected for simplicity.

For most experimental protocols, we included an attenuation of the postsynap-
tic spike. This attenuation was implemented by weighting the action potential
amplitude Up with the negative membrane potential:

Up → Up(tpost) = Up · (1− αatt
u(tpost − 0)

Urefr
) (4)

With this formulation, a postsynaptic spike occuring shortly after a previous
one will have amplitude Up · (1− αatt). Note that, due to setting the membrane
voltage to Urefr after each pulse, the pulse amplitude will only depend on the
time course of the membrane voltage since the last action potential.

The resulting voltage-based rule reads as follows:

dm

dt
= (u(t)−Θu) · s(t) , (5)

where Θu represents the threshold between LTP and LTD. This equation is
similar to that of an ion channel with reversal potential Θu, activated by presy-
naptic pulses. Interestingly, similar rules have been synthesized for solving image
processing tasks in VLSI realizations of neural networks [17].

Following our motivation, s should be a conductance, i.e. [s] =A/V=S, and
u should be a potential, i.e. [u] =V, so that [Up] =Vs. Thus, the weight m
has units of a charge: [m] =As. This may be interpreted as the amount of
neurotransmitters released at the synapse. LTP would thus raise the available
neurotransmitter amount, whereas LTD would lower it.

2.2 Explicit Expression and Parameter Fitting

Equation (5) can be integrated to arrive at an explicit expression for the weight
at time t. For determination of the model’s parameters, we will derive such
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Fig. 1. Normalized STDP window of our rule for the parameters of Froemke and Dan
[9] (see Fig. 2), derived analytically (solid line) and via simulations (circles, 60 pairings
at 1Hz, protocol of [9,8])

expressions for a standard pairing protocol (see e.g. [8]). For clarity, we set Θu =
0 and calculate the weight change triggered by a single pair of spikes with timing
difference Δtn = tpost

n − tpre
n . Since the pairings have a low repetition frequency,

the attenuation of Up can be neglected. For pre-post pairings (Δtn > 0) the
following equation for times t > tpost

n holds:

Δmn(t) = Ŝ

(
Up +

Urefr

1
τs

+ 1
τrefr

)
e−

|Δtn|
τs − ŜUrefr

1
τs

+ 1
τrefr

· e−
t−t

pre
n

τs · e−
t−t

post
n

τrefr (6)

Post-pre pairings (Δtn < 0) lead to a similar relationship for times t > tpre
n :

Δmn(t) = Ŝ · Urefr

1
τs

+ 1
τrefr

e−
|Δtn|
τrefr − ŜUrefr

1
τs

+ 1
τrefr

· e−
t−t

pre
n

τs · e−
t−t

post
n

τrefr (7)

For small pairing frequency, i.e. t → ∞, the terms dependent on t diminish
in equations (6) and (7), so that the final weight change Δmn merely depends
on the timing difference Δt. Due to the exponential relationship, our model
can be directly fitted to the exponential time window of standard STDP rules,
parameterized by the amplitudes A+/− and time constants τ+/− for LTP and
LTD, respectively:

Urefr = A− ·
(

1
τs

+
1

τrefr

)
1
Ŝ

τrefr = τ− (8)

Up = (A+ −A−)
1
Ŝ

τs = τ+ (9)

We have set Ŝ = 1nS and added units fAs to the amplitudes A+/− to arrive at
membrane potential variations in the order of biological values.

Our analytical findings are confirmed by simulations of our BCM model with a
low-frequency STDP pairing protocol, see Figure 1. As expected, the agreement
with the exponential time window as derived above is excellent.
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3 Results

3.1 Model Behaviour

Our model employs different mechanisms for LTP and LTD: While LTP results
from sampling of presynaptic activity at postsynaptic spikes, LTD is contin-
uously activated by coincidence of presynaptic activity and membrane hyper-
polarization directly after a postsynaptic spike, see Figure 2A. Amplitudes of
postsynaptic spikes are attenuated if they occur shortly after each other, so that
for high postsynaptic firing rates the amount of LTP per spike is reduced. This
counteracts the reduced amount of LTD per postsynaptic spike that results from
shortened hyperpolarization periods in this regime.

It is important to note that our model parameters, being strongly linked to
biophysical parameters, take on biologically realistic values when they are de-
rived from standard STDP parameters (see section 2.2). The PSC time constant
τs equals the STDP time constant for LTP, which is in the order of 20ms, a value
compatible with NMDA synapse conductance changes [16,13]. The STDP time
constant for LTD equals the membrane time constant τrefr, which was found
to be in the order of 10-40ms [1]. If we scale our membrane model, so that
Urefr = −5mV, we arrive at a value Up = 151μVs for realistic STDP parame-
ters (see Fig. 2B, [9]), corresponding to a (rectangular) pulse of length 2ms and
height 75mV, which are reasonable values for action potentials [1].
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Fig. 2. A: progression of presynaptic activity s, postsynaptic activity u and weight
m for a sample spike train. B: Weight change for different attenuation factors αatt

when stimulating with Poisson spike trains at varying postsynaptic rates. Parameters
for equation (5) as derived from Froemke and Dan [9] (τ+ = 14.8ms, τ− = 33.8ms,
A+ = 1.01, A− = −0.52) via equations (8) and (9).

3.2 Frequency Dependence

In a first experiment, we applied our rule to a protocol recently used by Izhikevich
and Desai [14] to test STDP models on their BCM characteristics. Thereby,
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random Poisson spike trains of length 200s where generated, with the presynaptic
firing rate held constant at 10Hz, but varying postsynaptic firing rate.

Figure 2B shows resulting frequency curves for different degrees of action
potential attenuation. They all show typical BCM behaviour, depending on the
attenuation factor αatt: The amount of LTD as well as the threshold between
LTD and potentation could be increased by raising αatt. This is because the
postsynaptic action potential is the only source of LTP, so that its attenuation
will directly result in a higher amount of LTD.

On the other hand, a positive threshold Θu would add a constant amount of
LTD to the curves in Figure 2B, which shifts the entire curve down instead of
changing its slope as for αatt. This is consistent with experimental findings on
the plasticity-depolarization relationship [10]. Also, due to this shifting property,
the frequency threshold ΘM between LTD and LTP of the original BCM rule is
directly related to the voltage threshold Θu in our model.

3.3 Triplet Protocols

We tested the performance of our model on triplet protocols using the data of
Froemke and Dan [9]. Thereby, either two presynaptic and one postsynaptic or
one presynaptic and two postsynaptic pulses were generated, and weight changes
monitored dependent on the two independent time differences in the protocol.
Such experiments are only poorly replicated by standard STDP models [4]. We
did not fit our model especially to the triplet data, but used the STDP param-
eters measured in their control experiment, as before (see Figure 2B).
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Fig. 3. Triplet experiments. Upper left part: 2 pre-, 1 post-synaptic spike; lower right
part: 1 pre-, 2 post-synaptic spikes; A: experimental data of Froemke and Dan [9]; B:
our basic model, using parameters from Froemke and Dan [9] (see Fig. 2); C: same as
B, but with additional attenuation of postsynaptic action potentials, αatt = 0.8.

Figure 3 shows relative weight changes after application of the spike triplets.
The time differences are measured post-minus-pre, as in [9]. Our basic model
matches the experimental results for most triplets, comparable to the biophysical
model in [13]. Particularly, it reproduces the responses to pre-post-pre pairings
(upper left quarter), but fails to account for the post-pre-post responses.
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We can make our model consistent with the post-pre-post triplets if we add
attenuation of postsynaptic spikes, see Figure 3C: The amount of LTD for the
post-pre-post triplets is adjusted by the attenuation αatt (see arrow), so that our
model can replicate the experimental data of [9] very well.

4 Discussion

In this paper, we have introduced a simple learning rule that is motivated by
the original BCM formulation and membrane potential variations of biological
neurons. Using a simple spike response neuron, we can directly map our model
to standard pair-based STDP rules. Like iterative implementations of STDP, our
model samples presynaptic activity at postsynaptic spikes for LTP. In contrast
to that, postsynaptic hyperpolarization after action potentials is continuously
integrated with presynaptic activity to arrive at a mechanism for LTD.

When replicating experimental data with such models, major challenges have
been the integration of triplets [9] and higher order pairings [10,4] as well as fre-
quency effects [14,15,6]. Several higher-order models with secondary state vari-
ables [15,9,4] have been proposed to reproduce some of these effects. However,
incorporating no secondary state variables, our model can account for BCM ef-
fects, conventional STDP and triplet experiments with only four free parameters.
The generalization capacity of our model can be seen from the fact that all these
effects can be generated with one biologically realistic parameter set, while even
higher order models have to fit several parameter sets to account for different
experimental data [15,13]. In addition, our model is able to link the parameters
of an STDP model to the ones of the neuron model and to BCM parameters.

Our model is also suited for implementation in neuromorphic hardware. Im-
plementing a membrane-based Hebb rule similar to ours requires only low circuit
complexity [17]. Compared to more involved realizations of neurobiological be-
havior, which replicate both STDP and complex membrane dynamics [18], our
model is easier to implement. This is because in those models, the dynamic vari-
ables required by our model are already contained as membrane potential and
synaptic conductance, so that the weight change may be directly derived from
these quantities, requiring no separate circuitry for STDP state variables.

Because in our model, plasticity is directly linked to depolarization, experi-
mental protocols employing this variable [10,3] could be qualitatively replicated,
an advantage that purely spike-based models are lacking. Further analysis will
also try to create a stronger link between the frequency threshold of conven-
tional BCM and our voltage threshold. The metaplasticity of this threshold
[5,11] might be accounted for by variations in resting potential [1,10] caused by
metabolic changes in the dendritic membrane.
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Introduction

Changes in the connection strength between neurons in

response to appropriate stimulation are thought to be the

physiological basis for learning and memory formation [1,2]. A

minimal requirement for proper memory function is that these

changes, once they are induced, persist for a long time. For several

decades, experimentalists have therefore focused on Long-Term

Potentiation (LTP) and Long-Term Depression (LTD) of synapses

in hippocampus [3,4] and cortical areas [5,6]. LTP can be induced

at groups of synapses by strong ‘tetanic’ high-frequency stimula-

tion of the presynaptic pathway [3] while stimulation at lower

frequency leads to LTD Dudek92. Both LTP and LTD can also be

induced at a single synapse or a small number of synaptic contacts

if presynaptic activity is paired with either a depolarization of the

postsynaptic membrane [5,7] or tightly timed postsynaptic spikes

[8,9].

While the induction protocol for LTP and LTD is often as short

as a few seconds, the changes in synaptic efficacy persist for much

longer [9]. In typical slice experiments on LTP [and similarly for

LTD or Spike-Timing Dependent Plasticity (STDP)] the persis-

tence of the change is monitored for 30 minutes to 1 hour.

Accumulating evidence suggests, however, that after this early

phase of LTP (E-LTP) different biochemical processes set in that

are necessary for the further maintenance of potentiated synapses

during the late phase of LTP (L-LTP) [10,11]. For an

understanding of the transition from early to late LTP, the

concept of ‘synaptic tagging and capture’ has become influential

[12,13]. During induction of the early phase of LTP, each

potentiated synapse sets a tag that marks that it has received a

specific afferent signal. A candidate molecule, involved in the tag

signaling LTP induction in apical dendrites of hippocampal

neurons, is the calcium-calmodulin dependent kinase II (CaMKII)

[13]. Newly synthesized plasticity-related proteins are ‘captured’

by the tagged synapse and transform E-LTP into L-LTP that can

be maintained over hours or days. A candidate protein involved in

the maintenance of potentiated hippocampal synapses is the

protein kinase Mf (PKMf) [11,14].

The stabilization and maintenance of potentiated synapses

poses a number of theoretical challenges. First, on the level of

single synapses we must require synaptic strength to remain stable,

despite the fact that AMPA channels in the postsynaptic

membrane are continuously exchanged and recycled [15–17].

Thus the synapse is not ‘frozen’ but part of a dynamic loop.

Second, on the level of neuronal representation in cortical areas,

one finds representations of input features that are stable but at the

same time sufficiently plastic to adjust to new situations [18]. In the

theoretical community, this paradox has been termed the stability-

plasticity dilemma in unsupervised learning [19]. Third, humans

keep the ability to memorize events during adulthood, but can also

remember earlier episodes years back. However, continued

learning of new patterns in theoretical models of associative

memory networks forces the erasure or ‘overwriting’ of old ones,

the so-called palimpsest property [20,21]. In the context of
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continued learning, theoretical arguments show that synaptic

plasticity on multiple time scales cannot prevent, but at most delay

the erasure of memories in the presence of ongoing synaptic

activity [22]. This suggests that additional mechanisms are

necessary to further protect existing memories and ‘gate’ the

learning of new ones.

Despite these challenges for the long-term stability of synapses,

most classical models of synaptic plasticity focus on the induction

and early phase of LTP or LTD and completely ignore the

question of maintenance. Traditional models of associative

memories separate the learning phase from the retrieval phase

[23] and the same holds for standard models of STDP [24–26].

Detailed biophysical models of LTP and LTD describe calcium

dynamics and Calcium/Calmodulin-Dependent Protein Kinase II

(CaMKII) phosphorylation during the induction and early phase

of LTP [27–29]. While these models show that switches built of

CaMKII proteins can be stable for years, they do not address

aspects of tagging leading to heterosynaptic interaction during L-

LTP and L-LTD. Moreover, while CaMKII phosphorylation is

necessary for induction of LTP and mediate tags in the apical

dendrites of hippocampal CA1 neurons [30], it is less clear

whether it is necessary for its maintenance [31]. On the other hand

protein kinase Mf is essential for maintenance of some synapse

types [11,13,14] but the same molecule is potentially relevant for

induction in others [30].

We wondered whether a simple model that connects the process

of LTP induction with that of maintenance would account for

experimental results on tagging and ‘cross-tagging’ [11–13,32]

without specific assumptions about the (partially unknown)

molecular pathways involved in the maintenance process. If so,

the model should allow us to discuss functional consequences that

are generic to the tagging hypothesis independent of the details of

a biophysical implementation in the cell. Even though we believe

that the model principles are more general, we focus on synapses

from the Schaffer-Collaterals onto the CA1 neurons in hippo-

campus as an experimentally well-studied reference system for

synaptic plasticity. Since typical tagging experiments involve the

extracellular stimulation of one or several groups of synapses (rather

than single synapses), our model of early and late LTP/LTD is

developed in the context of a neuron model with hundreds of

synapses. The application of the principles of synaptic consolida-

tion to experiments inducing E-LTP/E-LTD at single synapses is

considered in the discussion section.

Results

We study a model with a large number of synapses i onto a

single postsynaptic neuron. To be specific, we think of a pyramidal

neuron in the CA1 area of hippocampus. Our model combines

features of traditional models for the induction of potentiation [24–

26,33–36] with a simple description of tagging and synthesis of

plasticity related proteins that finally lead to the maintenance of the

induced changes. The section is organized as follows: We first

introduce the essential components of the model step by step

(‘Constructing the Model’). We then test the performance of the

model with a set of stimuli typically used to induce long-term

changes of synapses (‘Testing the Model’).

Constructing the Model
Our model contains three elements, Figure 1. The first one sets

the tag during the induction of E-LTP or E-LTD. A tag is

indicated by a value h = 1 for LTP or l = 1 for LTD. In the absence

of tags we have h = l = 0. The second one describes the process that

triggers the synthesis of plasticity related proteins. The final

component describes the up-regulation of a maintenance-related

process from a low value (z = 0) to a high value (z<1). The

dynamics of this component is intrinsically bistable and leads to a

consolidation of the previously induced change at the labeled

synapses upon interaction with the protein p (‘protein capture’).

The total change Dw of the synaptic strength reported in

experiments contains contributions [13] of the early components

l and h as well as the late component z. Since the model describes a

sequence of three steps ‘Tag-Trigger-Consolidation’ we call it in

the following the TagTriC-Model (Figure 1).

Tag and Induction of LTP/LTD
Results from minimal stimulation protocols which putatively

activate only a single synapse suggest that the induction of LTP is a

switch-like process [7,37]. We therefore model individual synapses

as discrete quantities that can switch, during the induction of LTP,

from an initial ‘non-tagged state’ (N) to a ‘high state’ (H) with a

transition rate rH that depends on the induction protocol.

Similarly, induction of LTD moves the synapse from the initial

non-tagged state (N) to a ‘low state’ (L) at a rate rL. If synapse i is

in the high state, the synaptic variable hi is equal to one. If it is in

the low state, another local variable li is set to one. These local

variables hi and li do not only control the weight of the synapse

during E-LTP and E-LTD, but also serve as ‘tags’ for up- or

down-regulation of the synapse. Tags reset to zero stochastically

with a rate kh and kl, respectively. If both tags are zero, the synapse

is in the non-tagged state N. Since the synapse is either up-

regulated OR down-regulated, at most one of the tags can be non-

zero (Figure 1A).

The stochastic transitions from the initial state N with hi = 0 and

li = 0 to the down-regulated state li = 1 or an upregulated state

hi = 1 depend in a Hebbian manner on presynaptic activity and the

state of the postsynaptic neuron. In the absence of presynaptic

activity, the LTD rate rL vanishes. Presynaptic activity combined

with a time-averaged membrane potential ū above a critical value

qLTD leads in the TagTriC model to a LTD transition rate rL

proportional to [ū(t)2qLTD]. For a transition from the initial state

to the high state, we require in addition that the momentary

membrane potential is above a second threshold qLTP. Hence the

transition rate rH is proportional to [ū(t)2qLTD][u2qLTP]

Author Summary

Humans and animals learn by changing the strength of
connections between neurons, a phenomenon called
synaptic plasticity. These changes can be induced by
rather short stimuli (lasting sometimes only a few seconds)
but should then be stable for months or years in order to
be useful for long-term memory. Experimentalists have
shown that synapses undergo a sequence of steps that
transforms the rapid change during the early phase of
synaptic plasticity into a stable memory trace in the late
phase. In this paper we introduce a model with a small
number of equations that can describe the phenomena of
induction of synaptic changes during the early phase of
synaptic plasticity, the trigger process for protein synthe-
sis, and the final stabilization. The model covers a broad
range of experimental phenomena known as tagging
experiments and makes testable predictions. The ability to
model the stabilization of synapses is crucial to understand
learning and memory processes in animals and humans
and a necessary ingredient for any large-scale model of the
brain.
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Figure 1. The three components of the Tag-Trigger-Consolidation (TagTriC) model. (A) A synapse can be in the non-tagged state N, the
high state H or the low state L. A synapse i in H (or L) has a tag hi = 1 (or li = 1, respectively). Transitions to a tagged state occur with rates rH for
potentiation and rL for depression. The tag hi = 1 is indicated by a red flag in both the flow graph and the schematic drawing below. (B) Synthesis of
plasticity related proteins p (green squares) is triggered if the total number of set tags is larger than a critical number Np. If the trigger threshold Np is
not reached, the protein concentration decays back to zero. (C) The consolidation dynamics can be visualized as downward motion in a potential
surface E(z). The function f(z) (shown to the right) is the derivative of E and characterizes the dynamics dz/dt = f(z). If a tag is set at the synapse (hi = 1)
and protein synthesis has been triggered (p<1), the dynamics can be imagined as downward motion into the right well of the potential E(z). In this
case, z<1 is the only fixed point of the dynamics (magenta circle). In the absence of tags (hi = li = 0, below) the consolidation variable zi of synapse i is
bistable and approaches (direction of flow indicated by arrows) stable fixed points at zi = 0 or zi = 1 (magenta circles). The steps of synaptic tagging
and capture are indicated immediately below the flow diagram. (D) The tagging rates for depression (2rL,(magenta)) and for potentiation rH (blue)
are shown as a function of the clamped voltage under the assumption that a presynaptic spike has arrived less than 1 millisecond before. Note that
for depression we plot the negative rate 2rL rather than rL to emphasize the fact that depression leads to a down-scaling of the synapse. (E) Voltage
dependence of early LTP and LTD. The weight change Dw/w(0) induced by a stimulation of 100 synapses at 2 Hz during 50 s while the postsynaptic
voltage is clamped is shown as a function of voltage. The percent change Dw/ŵ in simulations (circles) of LTP/LTD induction experiments can be
predicted from a theory (solid line) based on the difference in transition rates rH2rL. The simulation reflects the voltage dependence seen in
experiments [5,39]. (F,G) Frequency dependence of early LTP and LTD. Simultaneous stimulation of 100 synapses by 3 trains (separated by 5 min) of
100 pulses at rates ranging 0.03 to 100 Hz shows LTD at low frequencies and LTP at frequencies above 30 Hz. (G) If LTP is blocked in the model, LTD
(pink line) occurs up to high frequencies as in experiments [7]. Blue line: LTP with blocked of LTD.
doi:10.1371/journal.pcbi.1000248.g001
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whenever these threshold conditions are satisfied; see Methods for

details.

Our assumptions regarding the transition rates essentially

summarize the qualitative voltage dependence seen in the

Artola-Bröcher-Singer experiments [5]. Indeed, when 100 synap-

ses in the TagTriC model are stimulated at low frequency during

50 seconds while the membrane voltage is kept fixed at different

values (Figure 1D), the total weight change summed across all

synapses exhibits LTD at low voltage and LTP at high voltage

[38,39]. As expected, the resulting weight changes in the

simulations of Figure 1E reflect the voltage dependence of the

transition rates in Figure 1D.

Trigger for Protein Synthesis
Previously induced LTP or LTD needs to be consolidated in

order to last for more than one hour. Consolidation requires that

protein synthesis is triggered. Experimental evidence indicates that

triggering of protein synthesis needs the presence of neuromod-

ulators such as dopamine (in the apical CA1 region) or other

modulators (in other regions). In typical tagging experiments,

extracellular stimulation co-stimulates dopaminergic input leading

to a phasic dopamine signal [13,40]. In our model, induction of E-

LTP or E-LTD through appropriate stimulation protocols changes

the synaptic efficacy and sets tags at the modified synapses, both

described by the variables hi = 1 or li = 1. Protein synthesis in the

model is triggered (see methods for details) if the total number of

tags Si(hi+li) (which indirectly reflects the phasic dopamine signal)

reaches a threshold Np which depends on the level of background

dopamine (and other neuromodulators). More specifically, Np

decreases with the concentration of background dopamine so that

the presence of dopamine facilitates the trigger process [32].

If the trigger criterion is satisfied, the concentration p of

synthesized plasticity related proteins approaches with rate kp a

value close to one. If the number of tags falls below the threshold

Np, the protein concentration p decays with a time constant tp back

to zero. Further details on the role of the trigger threshold and its

relation to neuromodulators can be found in the discussion section.

Consolidation and Late LTP
The total weight wi of a synapse i depends on the present value

of the tags hi or li as well as on its long-term value zi. The slow

variable zi is a continuous variable with one or two stable states

described by a generic model of bistable switches, that could be

implemented by suitable auto-catalytic processes [16]. While the

concentration p of plasticity related proteins is zero, the variable zi

has two stable states at zi = 0 and zi = 1, respectively. If the protein

concentration takes a value of p<1, one of the stable states

disappears and, depending on the tag that was set, the long term-

value of the synapse can be up- or down-regulated; see methods

and Figure 1C for details.

In order to illustrate the mechanism of induction of L-LTP, let

us suppose that the synapse has been initially close to the state

zi = 0. The dynamics of the synapse can be imagined as downward

motion in a ‘potential’ E. The current stable state of the synapse is

at the bottom of the left well in the potential pictured in Figure 1C.

We assume that during a subsequent LTP induction protocol the

synapse has been tagged with hi = 1 and that the total number of

tags set during the LTP induction protocol surpasses the trigger

threshold Np. If the protein concentration p approaches one, the

potential surface is tilted so that the synapse now moves towards

the remaining minimum at z<1. After decay of the tags, p returns

to zero, and we are back to the original potential, but now with the

synapse trapped in the state z = 1. It can be maintained in this state

for a long time, until another strong tagging event occurs during

which the synapse is tagged with li = 1 as a result of LTD

induction. In this case the potential surface can be tilted towards

the left so that the only equilibrium point is at z = 0. Since

consolidation is typically studied in animals that are more than 20

days old [13], we assume that before the beginning of the

experiment 30 percent of the synapses are already in the

upregulated state z = 1 and the remaining 70 percent in the state

z = 0; see also [7]. Because of the bistable dynamics of

consolidation, only synapses that are initially in the upregulated

state z = 1 can undergo L-LTD and only synapses that start from

z = 0 can undergo L-LTP; compare [7]. Note, however, that tags

for potentiation and depression can be set independently of the

value of z. We may speculate that the variable z is related to the

activity of PKMf [11,14], or to the self-sustained clustering of

AMPA receptors [41], but the exact biochemical signaling chain is

irrelevant for the functional consequences of the model discussed

in the results section. In our model, the bistable dynamics of the z-

variable captures the essence of synaptic persistence despite

molecular turnover [15,16,28] and mobility of AMPA receptors

[41].

Tests of the Model
The TagTriC model has been tested on a series of stimulation

protocols that reflect induction of LTP and LTD as well as the

consolidation of plasticity events.

Induction of Synaptic Changes
A typical LTP induction experiment starts with extracellular

stimulation of a bundle of presynaptic fibers (i.e., the Schaffer

collaterals leading from CA3 to CA1) that activate a large number

(typically hundreds [13]) of presynaptic terminals. With an

extracellular probe electrode placed close to one of the

postsynaptic neurons, a change in synaptic efficacy is measured

via the amplitude (or initial slope) of the evoked postsynaptic

potential, representing the total response summed across all the

stimulated synapses. In our simulations, we mimic these

experiments by simultaneous stimulation of 100 synapses. The

state of the postsynaptic neuron is described by the adaptive

exponential integrate-and-fire model [42] and can be manipulated

by current injection.

In a preliminary set of simulation experiments done with

presynaptic stimulation alone (no manipulation of the postsynaptic

neuron), the TagTriC model exhibits LTD or LTP depending on

the frequency of the presynaptic stimulation (Figure 1F) in

agreement with experimental results [4,43]. Moreover, under the

assumption that LTP has been blocked pharmacologically (rH = 0

in the model), our model shows LTD even for high stimulation

frequencies (Figure 1G). This stems from the fact that LTD and

LTP are represented in the TagTriC model by two independent

pathways (Figure 1A) which are under control condition in

competition with each other, but show up individually if one of the

paths is blocked [43]. Together with the voltage dependence of

Figure 1E, the above simulation results indicate that our model of

LTP and LTD induction can account for a range of experiments

on excitatory synapses in the hippocampal CA1 region, in

particular, voltage and frequency dependence.

Consolidation of Synaptic Changes
In order to study whether consolidation of synaptic changes in

our model follows the time course seen in experiments, we

simulate standard experimental stimulation protocols [12,13]. A

weak tetanus consisting of a stimulation of 100 synapses at 100 Hz

for 0.2 seconds (21 pulses) leads in our model to the induction of

LTP (change by +15 percent) which decays back to baseline over

TagTriC-Model of Early and Late LTP/LTD

PLoS Computational Biology | www.ploscompbiol.org 4 December 2008 | Volume 4 | Issue 12 | e1000248



the time course of two hours (Figure 2A). Thus, after the early

phase of LTP the synapses are not consolidated. A stronger

stimulus consisting of stimulating the same group of hundred

synapses by 100 pulses at 100 Hz (repeated 3 times every

10 minutes) yields stronger LTP that consolidates and remains

elevated (weight change by 2265 percent) for as long as the

simulations are continued (more than 10 hours, only the first

5 hours are shown in Figure 2B). Thus our model exhibits a

transition from early to late LTP if E-LTP is induced by the strong

tetanic stimulation protocol, but not the weak one, consistent with

results in experiments [12,13]. If, however, the weak tetanus at a

first group of 100 synapses is given 30 minutes before or after a

strong tetanus at a second group of 100 synapses, the synapses in

both the weakly and strongly stimulated groups are consolidated

(Figure 2C and 2D). If the weak tetanus in group one is given

120 minutes after the strong tetanus in group two, then

consolidation of the synapses in the weakly stimulated group does

not occur (Figure 2E). Thus our model exhibits a time course of

heterosynaptic interaction between the two groups of synapses as

reported in classical tagging experiments [12,13].

An advantage of a modeling approach is that we can study the

dependence of the heterosynaptic interaction between the two

groups of synapses upon model parameters. A critical parameter in

the model is the trigger threshold Np that needs to be reached in

order to start protein synthesis (Figure 1B). With our standard

choice of parameters, where Np = 40, we can plot the consolidated

weight change Dw/w(0) in the weakly stimulated group (measured

10 hours after the induction) as a function of the time difference

between the stimulation of the group receiving the strong tetanus

and that receiving the weak tetanus. The curve in Figure 2F shows

that for a time difference up to 1 hour there is significant

interaction between the two groups of synapses leading to synaptic

consolidation, whereas for time differences beyond 2 hours this is

no longer the case. If the trigger threshold is increased to Np = 60

(corresponding to less available neuromodulator), then the

maximal time difference that still yields L-LTP in the weakly

stimulated group of synapses is reduced to about 20 minutes

(Figure 2F) whereas a reduction of Np yields an increased time

window of interaction (data not shown). If Np is reduced much

further, the weak tetanus alone will be sufficient to allow a

transition from the early to the late phase of LTP. We speculate

that Np could depend on the age of the animal as well as on the

background level of dopamine or other neuromodulators so as to

enable a tuning of the degree of plasticity (see discussion for

details).

LTD and Cross-Tagging
We consider two experimental protocols known to induce

LTD—a weak low-frequency protocol consisting of 900 pulses at

1 Hz and a strong low-frequency protocol consisting of 900

repetitions at 1 Hz of a short burst of three pulses at 20 Hz. This

strong low-frequency protocol applied to 100 model synapses leads

to a significant level of LTD (reduction of weights to 7064 percent

of initial value) which is consolidated 5 hours later at a level of

8363 percent of initial value. If a group of 100 synapses is

stimulated with the weak low-frequency protocol, an early phase of

LTD is induced that is not consolidated but decays over the time

course of 3 hours (Figure 3A and 3B). However, if the weak low-

frequency stimulation occurs after another group of 100 synapses

had been stimulated by the strong low-frequency protocol, then

the group that has received the weak stimulation shows

consolidated synapses (at 9062 percent 5 hours after stimulus

induction, Figure 3C). Moreover, consolidation of LTD (at 9263

percent 5 hours after stimulus induction) in the group of synapses

receiving the weak low-frequency protocol also occurs if it was

stimulated thirty minutes after the stimulation of a second group of

synapses by a strong tetanus, leading to LTP (Figure 3D). Thus,

the TagTriC model exhibits cross-tagging consistent with

experiments [11,32]. In our model, cross-tagging occurs because

the tags for LTP and LTD (hi and li, respectively) enter in a

symmetric fashion into the trigger criterion for the synthesis of

plasticity-related proteins (see Figure 1 and Methods).

Model Mechanism for Tagging, Cross-Tagging, and
Consolidation

In order to elucidate how the model gives rise to the series of

results discussed in the preceding paragraphs, we have analyzed

the evolution of the model variables during and after induction of

LTP (Figure 4). Critical for consolidation is the synthesis of

plasticity related proteins, characterized by the variable p in the

model. Synthesis is only possible while the total number of tagsPN
i hizli is above the protein triggering threshold Np. For the

strong tetanic stimulus this criterion is met for about 90 minutes

(shaded region in Figure 4A) leading to high levels of plasticity

related proteins. After 90 minutes the concentration of proteins

starts to decay back to baseline. While the level of proteins is

sufficiently elevated the consolidation variable zi of each tagged

synapse moves towards zi<1 since this is the only stable fixed point

of the dynamics (Figure 1C). This leads to a consolidation time of

about 2 hours, enough to switch a large fraction of synapses into

the up-regulated state z<1 (green line, Figure 4A). Hence the

average weight of the stimulated synapses stabilizes at a value

above baseline, indicating L-LTP (Figure 4A, solid line).

If, in a different experiment, 100 synapses are stimulated by the

weak tetanus, the synthesis of plasticity related proteins is only

possible during a few minutes (Figure 4B, red line), which is not

sufficient to switch tagged synapses from z = 0 into the upregulated

state z<1. Hence the weights (Figure 4B, black line) decay

together with the tags (Figure 4B, magenta line) back to baseline

and the transition from early to late LTP does not occur. The

decay of the weights is controlled by the rate kH at which tags

stochastically return to zero. The evolution of the protein

concentration p and the consolidation variable z after a strong

tetanus that leads to 90 minutes of protein synthesis and a weaker

tetanus that only leads to 40 minutes of protein synthesis has been

illustrated in (Figure 5A).

The total amount of available protein that is synthesized

depends in our model on the time that the total number of tags

stays above the protein triggering threshold Np. Even though

always 100 synapses are stimulated in our model, not all receive

tags in each experiment; moreover because of the competition for

potentiation tags (hi = 1) and depression tags (li = 1) during

induction of plasticity, different synapses can receive different tags

in the same experiment. With our strong tetanus protocol, on

average 70 (out of 100) synapses receive a potentiation tag and 30

a depression tag while with the weak tetanus the numbers are 30

and 10, respectively. For the depression protocols, on average 10

synapses receive a potentiation tag and 90 a depression tag under

strong low-frequency stimulation, and typically zero a potentiation

tag and 40 a depression tag under the weak low-frequency

protocol. These numbers vary from one trial to the next so that

sometimes the protein trigger threshold Np = 40 is reached with the

weak protocols and sometimes not. The important aspect is that

even if the threshold is reached for a short time, the duration of

protein synthesis is not long enough to provide a sufficient protein

concentration p for consolidation of the tagged synapses; see

Figure 4B and Figure 5A.
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Since the concentration p of plasticity related proteins is crucial

for the transition from early to late LTP we wondered how a block

of protein synthesis would interfere with the consolidation of

weights in the TagTriC model. Application of a protein synthesis

inhibitor (modeled by setting the rate kp of protein synthesis to

zero) during 1 hour starting thirty minutes before a strong tetanus

is given to a group of 100 synapses that would normally lead to L-

LTP, induced E-LTP but prevented consolidation into L-LTP

(data not shown). However, if the same simulation experiment was

repeated after a second group of synapses had received a strong

tetanic stimulation 35 minutes prior to the application of protein

synthesis blocker, then both groups of synapses showed consoli-

dation of weights (Figure 4D), consistent with experiments [12].

Closer inspection of the lower panel in Figure 4D shows that two

components contribute to consolidation: Firstly, the concentration

of plasticity related proteins (red line) that has increased because of

Figure 2. The model accounts for tagging paradigms. (A) A weak tetanus (21 pulses at 100 Hz) applied at a group of 100 synapses at
t = 10 min (arrow) leads to an increased connection weight (w/w(0), blue line) that decays back to baseline. (B) A strong tetanus (100 pulses at 100 Hz
repeated three times, arrows) leads to late LTP that is sustained for 5 hours (black line). (C) If the weak tetanus (blue arrow) in a first group of synapses
is followed thirty minutes later by a strong tetanus (black arrows) in a second group of synapses, the weights in the first group (blue line) and the
second group (black line) are stabilized above baseline. (D) Stimulating a group of synapses by a weak tetanus (blue arrow) 30 minutes after the end
of the strong tetanic stimulation of a second group also leads to stabilization of the weights in both groups above baseline. (E) If the weak tetanic
stimulation occurs 2 hours after the strong tetanic stimulation of the other group, only synapses in the strongly stimulated group will be stabilized
(black line), but not those in the weakly stimulated group (blue line). (F) Fraction of stabilized weights Dw/w(0) in the weakly stimulated group
measured 10 hours after induction of LTP as a function of the time difference between the weak stimulation and the end of the strong tetanic
stimulation in the second group. Blue line: normal set of parameters (Np = 40). Black line: protein trigger threshold increased to Np = 60. In panels A–E,
lines indicate the result averaged over 10 repetitions of the simulation experiments and bars standard deviation. In panel F, line indicates the result
averaged over 100 repetitions. 90 of the 100 individual trials stayed within the bounds indicated by the error bars.
doi:10.1371/journal.pcbi.1000248.g002
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the first strong tetanic stimulus decreases only slowly back to

baseline enabling the switching of the slow components (variable z,

green line) even in the presence of protein synthesis blocker.

Secondly, even after the end of the application of the blocker, the

total number of tags that has been set by LTP induction is still

above the critical value Np (shaded region in Figure 4D) so that

protein synthesis can be resumed after the end of the blocking

period. In summary, the detailed analysis of the TagTriC model

allows to account for many aspects of tagging experiment in terms

of a limited number of variables.

Discussion

Relation of Models to Experiments
Synaptic plasticity is based on intricate signal transduction

chains involving numerous processing steps and a large number of

different molecules [2,13,17]. Despite the complexity of the

molecular processes, synaptic plasticity has experimentally been

characterized by a small set of distinct phenomena such as short-

term plasticity [44] as well as early and late phases of LTP and

LTD [13].

Existing models of synaptic plasticity have focused on the

description of short-term plasticity [44] and on the induction of

LTP and LTD [24–26,33–36]. The question of maintenance has

received much less attention and was mainly addressed in the

context of bistability of the CaMKII auto-phosphorylation process

[27–29], AMPA receptor aggregation [41], or four identified

kinase pathways [45]. While CaMKII is necessary for induction of

long-term potentiation [46], it is probably too narrow to focus

modeling studies only on a single or a few kinases such as CaMKII

and neglect other proteins and signaling cascades that are involved

in synaptic maintenance [13]. For example, there is strong

evidence that PKMf is involved in synaptic maintenance and

necessary for the late phase of LTP in vitro [11] and in vivo [14].

However, the actual processes are complex and the molecules

involved in setting tags may differ between different parts of the

dendrite. For example PKMf is involved in setting tags during E-

LTP in the basal dendrite, whereas CaMKII (or MAPK for E-

LTD) plays a similar role in apical dendrites [30].

Instead of focusing on specific signaling cascades, the TagTriC

model presented in this papers aims at describing the essential

ingredients of any possible functional model of L-LTP and

tagging. These ingredients include (i) a bistable switch (described

by the dynamics of the zi-variable) for each synapse that

guarantees long-term stability in the presence of molecular turn-

over [16]; (ii) a global triggering signal for protein synthesis

(described by the dynamics of the p variable); a formalism to (iii)

induce early forms of LTP and LTD and (iv) set synaptic tags.

Since we aimed for the simplest possible model, we have identified

the synaptic tags hi and li for potentiation and depression with the

Figure 3. The model accounts for cross-tagging between LTP and LTD. (A) A strong low-frequency stimulus (3 pulses at 20 Hz, repeated 900
times every second) applied to a group of N = 100 synapses induces LTD with mean weights (w/w(0)) stabilized at 8363% of initial value after 5 hours
(black line). (B) A weak low-frequency stimulus (1 pulse repeated 900 times at 1 Hz) induces early LTD, which is not consolidated. (C) If the weak low-
frequency stimulus is applied 30 minutes after a second group of synapses has received the strong low-frequency protocol, the weights in both
groups (blue, weak stimulus; black, strong stimulus) are consolidated at values below baseline. (D) Consolidation of LTD in the group receiving weak
low-frequency stimulation (blue line) also happens if induction occurs 30 minutes after stimulating a second group of synapses with a strong tetanic
protocol (see Figure 2) inducing LTP (black line). Downward arrows indicated the period of weak (blue arrow) or strong (black arrow) low-frequency
protocols. The black upward arrows indicate strong tetanic stimulation. Lines show mean results, averaged over 10 repetitions of the simulation
experiment. Error bars are standard deviation.
doi:10.1371/journal.pcbi.1000248.g003
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synaptic weights during the early phase of LTP and LTD,

respectively, so that points (iii) and (iv) are described by the same

transition of the synapse from an initial non-tagged state to the

high or low state, respectively. Variants of the model where the

weight during the early phase of LTP and LTD is not directly

proportional to the value of the tags are conceivable.

Even though we do not want to identify the synaptic variables hi,

li, zi with specific biochemical signals, a couple of candidate

molecules and signaling chains should be mentioned. The setting

of the tag for LTP under normal physiological conditions involves

NMDA receptor activation and elevated levels of calcium which in

turn trigger a signaling chain involving Calmodulin and CaMKII.

We therefore think that the hi variable (representing both the tag

for LTP induction and the weight increase during the early phase

of LTP) should be related to the activation of CaMKII [13,46].

The molecular interpretation of the tag li for LTD is less clear

[13]. In our model we have taken the tags as discrete quantities

that decay stochastically, but a model with continuous tags that

decrease exponentially gives qualitatively the same results (data not

shown). The reason is that triggering protein synthesis in our

model requires a large number of tags to be set, so that even in the

stochastic model only the mean number of tags is relevant–and the

mean (more precisely, its expectation value) is a continuous

variable. Nevertheless, we prefer the model with discrete values

over the continuous one in view of the switch-like transitions of

synapses after induction of LTP and LTD [7,37]. Maintenance of

enhanced synaptic weights is probably implemented by an

increased number of AMPA receptors in the postsynaptic

membrane. Whether the stability arises from a self-organization

process of receptors [41] or from interaction with persistently

activated CaMKII molecules [46] or from additional kinases such

as PKMf [11,14], is an open problem of experimental

investigation. Similarly, the exact identity of many plasticity

related proteins is still unknown [13]. In our model we assume that

recently synthesized plasticity related proteins are accessible to all

synapses onto the same postsynaptic neuron. However, a

distinction between proteins synthesized in, say, basal dendrites

and that synthesized in apical dendrites would be possible by

Figure 4. Dynamics of the TagTriC Model during different tagging protocols and protein synthesis blocking. The change of the total
synaptic weight (top panels, black line Dw~

PN
i~1 wi tð Þ{wi 0ð Þ=N½ �) has contribution from early LTP (top panels, magenta line representsPN

i~1 hi{ali=Nð Þ) and from late LTP (top panels, green line represents
PN

i~1 b zi{zi 0ð Þð Þ=N). The protein variable p (red line, bottom panels) grows
as long as the average number of tags (

PN
i~1 hizlið Þ=N , blue line) is above the protein synthesis trigger threshold (Np/N, dashed horizontal line). For

better visibility, the regions where the blue line is above the trigger threshold is shaded. (A) A strong tetanus (N = 100 synapses, stimulated by 100
pulses at 100 Hz, repeated three times every ten minutes) leads to a sustained period of about 90 minutes where the number of tagged synapses is
above the protein synthesis triggering threshold (lower panel, blue shaded). During this time the protein synthesis variable p is close to one (red line,
lower panel), causing an increase in the fraction of consolidated weights (green line, top panel). (B) During a weak tetanus (N = 100 synapses,
stimulated by 21 pulses at 100 Hz) the number of tags surpasses the protein triggering threshold only for a short time which does not enable
switching of the z variable (top panel, green line) to the up-regulated state. (C) If the weak tetanus is given 30 minutes after the strong one, the
number of tags set by the strong tetanus is still above the threshold, which allows protein synthesis stabilizing both the group of 100 synapses
receiving the strong tetanus (top panel) and the group of 100 synapses receiving the weak tetanus (middle panel). (D) Protein synthesis is blocked for
1 hour (indicated by black bar at bottom of panel) starting 35 minutes after a first group of 100 synapses has been stimulated by a strong tetanus.
Despite protein synthesis blocking, both the first group of synapses (top panel) and a second group of 100 synapses that received a strong tetanus
during the blocking period (middle panel) develop late LTP because proteins synthesized during the induction of early LTP in the first group decay
only slowly (bottom panel).
doi:10.1371/journal.pcbi.1000248.g004
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replacing the variable p by two or more distinct variables pk with

similar dynamics (but potentially different trigger thresholds Np),

allowing for a compartmentalization of tagging [13].

Experimental cross-tagging results clearly indicate that there are

two different types of synaptic tags, one for LTP and one for LTD

[13,32], which we called hi for LTP and li for LTD, leading to

three different states during tagging (Figure 1A). Since we have

identified the tagging with the early phase of LTP and LTD, our

model of E-LTP and E-LTD also has three different states

(whereas our model of late LTP/LTD has only two states

characterized by zi = 0 and z2 = 1). The three-state model of early

LTP/LTD presented in this paper would predict that all non-

tagged synapses can undergo a transition to E-LTP or E-LTD

depending on the induction protocol–whereas experiments suggest

that about 70 percent of synapses show LTP but not LTD and the

remaining 30 percent LTD but not LTP [7]. Moreover, only those

synapses that are initially weak can be potentiated and only those

that are initially strong can be depressed [7]. This aspect can be

included in our model if we replace the induction rates rH for LTP

by rH(12zi) and rL for LTD by rlzi so LTP is only possible from a

state with zi = 0 and LTD only from an initial state zi = 1 — in

agreement with a two-state model of early LTP/LTD [7]. For the

tagging and induction experiments presented in this paper, the

results do not change significantly when we implement this

extension of the induction model.

Functional Consequences and Predictions
One of the advantages of a simple phenomenological model is

that it should be capable of illustrating the functional consequences

of tagging and L-LTP or L-LTD in a transparent manner. What

are these functional consequences?

A characteristic feature that is made transparent in our model

(and which we expect to be present in any model of tagging) is

that, under typical experimental conditions, the transition from

early to late LTP is only possible if a sizable group of synapses have

undergone E-LTP or E-LTD. Hence, while induction of E-LTP is

a local Hebbian process that is likely to take place at the

postsynaptic site of the synapse (e.g., the dendritic spine), the

transition from the early to the late phase of LTP requires a

minimum number of synapses to be activated by appropriate

stimulation including co-activation of neuromodulatory input so as

to trigger synthesis of plasticity related proteins. A direct

consequence of this is that synapses cannot be considered as

independent. In order to predict whether a synapse memorizes an

item for a long time or forgets it and re-learns some other item, it is

not sufficient to consider a ‘Hebbian’ induction model, where

synaptic changes depend only on the activity of pre- and

postsynaptic neurons. For maintenance, it is not the synapse

which decides individually, but it is the neuron as a whole (or a

large functional compartment sharing the same site of synthesis of

plasticity-related proteins [13,30,47]) which ‘decides’ whether it is

going to store the present information, or not. Hence, classical

[20,21,34] and recent [22] theoretical models which studied

memory maintenance in the presence of ongoing neuronal activity

on the level of single synapses need to be reconsidered, since the

assumption of independent synapses does not hold (Figure 5A and

5B). In particular, our model predicts that, after an ensemble of

identical neurons have received the same stimulus, some neurons

learn (adapt a large fraction of their synapses to the stimulus) and

others don’t (keep all their synapses unchanged). With our choice

of parameters, this happens in the TagTriC model if the number

of synapses that have been tagged during the induction protocol is

between 55 and 70 (Figure 5B). This neuronal, rather than

synaptic, decision about memorizing an input (see also [48]) is

potentially attractive for prototype learning–a standard paradigm

in neuronal clustering and categorization algorithms, e.g., [19]. In

contrast to traditional neuronal clustering models where learned

Figure 5. Theory and predictions. (A) Evolution of the variables p and z during tagging. If protein synthesis is ‘ON’ and the synapse tagged, p and
z move along the black dashed line towards the stable fixed point on the upper right (p<1, z<1) (red filled circle). If protein synthesis stops after
some time (yellow line, after 90 min; orange line, after 40 minutes) but the synapse remains tagged, the dynamics converges towards the fixed point
p = 0, z = 1 (red filled circle) indicating that the synapse is consolidated (yellow and orange trajectories). However, if protein synthesis stops too early
(after 25 min, pink line), or if the synaptic tag is lost too early (after 60 min, magenta line), the synapse is not consolidated and the trajectories
converge towards the non-tagged initial state p = 0, z = 0 (red filled circle). The green dashed vertical line at z = 0.5 indicates the threshold beyond
which a loss of the tag does not affect consolidation; the green solid line indicates the separatrix between the stable fixed points at z = 0 and z = 1.
The minimal duration of protein synthesis to allow any consolidation is given by the intersection of the black dashed line with the separatrix. (B)
Number of consolidated synapses (Nup, vertical axis) as a function of the number of initially tagged synapses (Ntag, horizontal axis) in simulations (red
filled circles) and theory (solid line). Some of the initially tagged synapses fail to be consolidated because either they lose their tag or protein
synthesis stops too early (see A). With a protein synthesis threshold Np = 40 (arrow) we need about 60 initially tagged synapses to achieve any
consolidation (solid line). If the protein synthesis threshold is reduced to Np = 10 (dashed arrow), we need at least 15 tagged synapses to see any
consolidation (dashed line).
doi:10.1371/journal.pcbi.1000248.g005
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memories need to be protected against overwriting by completely

different memory items [19], a model based on tagging would

have an intrinsic vigilance threshold via the trigger threshold Np.

Hence it is resistant to changes at a single synapse.

In our view, the protein synthesis trigger threshold NP is an

important control parameter in the model. The results of Figure 2F

show that an increase of the trigger threshold reduces the maximal

delay after which a weak tetanus leads to L-LTP after a strong

tetanic stimulation in a different group of synapses. With our

normal value of Np = 40 we need around 60 synapses to be initially

tagged in order to retain any memory. If we decrease the trigger

threshold to Np = 10 and keep all other parameters of the model

unchanged, then we need at least a group of 15 synapses tagged

during the induction protocol to get any consolidation since some

of the initially tagged synapses loose their tag too early to get

consolidated (Figure 5B). Only for a very small trigger threshold,

say Np = 1, (which could occur at high concentration of

neuromodulators) synapses become (nearly) independent, since a

tag at a single synapse would be sufficient to trigger the synthesis of

proteins which would then become available at that synapse.

Repeated stimulation of the synapse alone would then be sufficient

to transform E-LTP into L-LTP.

In our opinion, the trigger threshold Np is significantly lower in

the presence of neuromodulators such as, for example, dopamine

(for synapses from Schaffer collaterals onto CA1 pyramidal

neurons) or noradrenaline (for synapses in the dentate gyrus). A

simple model for the dependence of Np on dopamine would be

Np = n0/(DAbg+c0) where n0 is some arbitrary number (say n0 = 1),

c0 a small number (say 0.001) and DA denotes the stationary

‘background’ concentration of dopamine (that is, before the start

of the experiment), normalized to 0,DAbg,1. The phasic

dopamine signal caused by co-stimulation of dopaminergic input

during tagging experiments is assumed to be proportional to the

number of tags
PN

i hizli. The trigger condition
PN

i hizliwNp

becomes then equivalent to the conditionPN
i hizli

� �
DAbgzc0

� �
wn0 which shows a trade-off between

the phasic dopamine signal and the stationary background level of

dopamine. In particular in the presence of a large concentration of

dopamine (DA<1), single synapses can be consolidated. With the

assumption that standard tagging experiments in a large group of

synapses are performed at a low dopamine concentration of

DA = 0.024 before stimulation, we retrieve the value of Np = 40

used in the main part of the results section. The dependence of the

trigger criterion on the number of tags
PN

i hizli takes implicitly

the co-activation of neuromodulatory input during the experi-

mental stimulation protocol into account: the larger the number of

stimulated neurons and the stronger the stimulus, the higher the

probability of co-activation of dopaminergic fibers. Blocking

dopamine receptors amounts in the model to setting both the

background and the phasic dopamine signal to zero. In this case,

protein synthesis is not possible.

Our model of LTP/LTD induction does not only account for

voltage and frequency dependence of LTP/LTD induction, but

also for spike timing dependence. In fact, for a stimulation

paradigm where postsynaptic spikes are induced by short current

pulses of large amplitude either a few milliseconds before or after

presynaptic spike arrival, the model of LTP/LTD induction used

in the TagTriC model becomes formally equivalent to a recent

model of spike-timing dependent plasticity [35] which can be seen

as an extension of classical models of STDP [24–26]. In the case of

stochastic spiking of pre- and postsynaptic neurons our model

shares important features with the Bienenstock-Cooper-Munro

model [33], in particular the quadratic dependence upon the

postsynaptic variables. In addition, our model also accounts for the

voltage dependence of the Artola-Bröcher-Singer model [38].

Thus, the model of LTP/LTD induction shares features with

numerous established theoretical models and covers a large range

of experimental paradigms known to induce LTP or LTD [3–6,8].

Since the subsequent steps of protein synthesis trigger and

stabilization are independent of the way early phase of LTP is

induced, our model predicts that tagging experiments repeated

with different stimulation paradigms, but otherwise identical

experimental preparation and age of animal, should give similar

results as standard tagging protocols. In particular we propose to

stimulate a group of synapses in hippocampal slices by 40–60

extracellular current pulses at 10 Hz while the postsynaptic

neuron is receiving intracellular current injection that triggers

action potential firing either a few milliseconds before or after

presynaptic spike arrival and keeps the membrane potential at a

depolarized level between postsynaptic action potential firing. Our

model predicts that this will induce early LTD or LTP depending

on spike timing and depolarization level that is not maintained

beyond 1 or 2 hours. However, if the same stimulation occurs after

a second group of synapses has received a strong tetanus, then

stabilization of synapses at potentiated or depressed levels should

occur, similar to standard tagging and cross-tagging experiments.

In our opinion, these predictions should not depend on model

details, but hold for a broad class of models that combine a

mathematical description of induction of synaptic plasticity with a

mechanism of consolidation.

Another finding—which is somewhat unexpected and in

contrast to other conceptual models of synaptic tagging and

capture [12,13,47]—is that during a strong tetanic stimulation a

fraction of synapses receives tags for depression (while most, but

not all, receive tags for potentiation). This is due to the fact that

during induction of plasticity, transition to E-LTP and E-LTD act

in parallel [7]. The prediction is that after consolidation (say

2 hours after the strong tetanic stimulation) a small fraction of

synapses would show L-LTD, rather than L-LTP.

An essential ingredient of our model that allows long-term

stability of consolidated synapses is the bistable dynamics of the

variable z. In our opinion, such bistability (or possibly multi-

stability [49] with three or four stable states) is necessary for

synaptic maintenance in the presence of molecular turn-over, as

recognized in earlier theoretical work [15,16,34]. Our model

therefore predicts that L-LTP and L-LTD should have bistable,

switch-like properties. While there is evidence for switch like

transitions during the induction of E-LTP and E-LTD [7,37], the

bistability of the late phase of synaptic plasticity has so far not been

shown. A possible experiment would be to combine a minimal

stimulation protocol (e.g., a weak tetanus) at a single synapse

[7,37] with a medium to strong stimulus at a group of other

synapses (e.g., tetanic stimulus varying between 30 and 100 pulses).

The prediction is that the weight of the single synapse shows an all-

or-none phenomenon with transition probabilities that depend on

the stimulation of the group of other synapses. In particular, as the

number of pulses of the tetanic stimulation is reduced (covering a

continuum from strong to weak tetanic stimulation), the

maintenance in the potentiated state should become less likely

(averages across many experiments decrease) whereas the results of

individual experiments show either full potentiation or none,

which should give rise to a bimodal distribution of normalized

synaptic weights.

Open Questions and Perspectives
A lot of questions remain open and need to be addressed in

future studies. First, can a synapse that has been potentiated in the

past and is maintained after a transition to late LTP undergo a

TagTriC-Model of Early and Late LTP/LTD
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further potentiation step [13]? In our current model this is not

possible since the consolidation variable z has only two stable fixed

points. If we replace the function f(z) depicted in Figure 1 by

another one with more than two stable fixed points, then the

answer to the above question would be positive. Indeed, there

have been suggestions that self-organization of receptors into

stable sub-groups could lead to multiple stable states [49].

Second, induction of LTP or LTD is not only possible by

strong extracellular stimulation of groups of synapses, but also at

single synapses if presynaptic activity is paired with either a

depolarization of the postsynaptic membrane [5,7] or tightly

timed postsynaptic spikes as in STDP experiments [6,8]. How

can it be that the change induced by STDP seems to be

maintained over one hour without visible degradation? [6,7].

Are synapses in these experiments consolidated, and if so what is

the concentration of neuromodulators? In the TagTriC model

with the choice of parameters used in the present paper,

consolidation would not be possible, since the minimum number

of synapses that have undergone E-LTP or LTD is Np = 40 in

order to trigger protein synthesis, but, as explained above, an

increased neuromodulator concentration would make consolida-

tion possible.

Third, what is the role of NMDA receptor activation during

synaptic consolidation? In our present model, protein synthesis is

triggered by appropriate induction protocols, but is independent of

synaptic activity during the consolidation process. However, recent

experimental results suggest that protein synthesis blocker needs

synaptic stimulation during the consolidation period to become

effective [50], suggesting a subtle interplay between protein

synthesis and synaptic activation that cannot be captured by our

model.

Fourth, has each neuron a single protein synthesis unit or is

protein synthesis a local process confined to each dendritic

branch? In the first case, there is a single neuron-wide protein

synthesis trigger threshold [12] and the neuron as a whole

‘decides’ whether early forms of synaptic potentiation and

depression will be consolidated or not. This is the paradigm

posited in the TagTriC model. In the alternative model of local

protein synthesis [13,47], the critical unit for consolidation are

local groups of synapses on the same dendritic branch. Thus, for

the same number of tagged synapses, a local group of synapses

on the same dendritic branch is more likely to undergo

consolidation than a distributed set of tagged synapses, leading

to a form of clustered plasticity [47]. The TagTriC model can

be easily adapted to the case of clustered plasticity by (i)

replacing the point-neuron model by a neuron model with

spatially distributed synapses and (ii) replacing the neuron-wide

trigger equation (see 4 and Figure 1B) by a finite number of

analogous, but dendrite-specific equations.

Fifth, how can tags be reset? Experiments show that a

depotentiating stimulus given 5 minutes after a weak tetanus

erases the trace of E-LTP (resets the tag) whereas depotentiation

10 or 15 minutes after the strong tetanus only transiently

suppresses the E-LTP, making the consolidation of the synapse

by protein capture possible [51]. We have checked in additional

simulations that our present model cannot account for these

experiments. In our opinion, the above tag-reset experiments show

that the synapse has additional hidden states currently not

included in the TagTriC model. Additional states would allow

to (i) separate the measured early LTP during the first 5 minutes

from setting the tag; and (ii) distinguish between depotentiation

and depression of synapses. One interpretation of the tag-reset

experiments [51] is that during the first five minutes the tag is not

yet set whereas early LTP is already visible. The tag would be set

only with a delay of 5–10 minutes. Application of a depotentiating

stimulus more than 10 minutes later would then leave the

potentiation tag intact, but move the synapse to a transiently

depotentiated state.

The final and potentially most interesting question is that of

functional relevance: Can the TagTriC model be used to simulate

reward-based learning in experiments in vivo [13]? The formal

theory of reinforcement learning makes use of an eligibility trace

[52] which can be interpreted as a synapse specific tag. In the

future we want to check whether the TagTriC model can be linked

to reinforcement learning models [53–56] under the assumption

that reward prediction errors are represented by a dopamine

signal [57] which influences the protein synthesis dynamics in our

model. This open link to reward-based learning is of fundamental

functional importance.

Methods

Model of Early LTP/LTD and Tagging
In our model we assume that presynaptic spike arrival needs to

be combined with a depolarization of the postsynaptic membrane

(e.g., [5]) in order to induce a change of the synapse. In voltage

clamp experiments (e.g., [39]) the postsynaptic voltage would be

constant. However, in general the voltage is time-dependent and

described by a variable u(t). In the TagTriC model, we assume that

the low-pass-filtered voltage

u tð Þ~ 1

tlowP

ð?
0

exp {
s

tlowP

� �
u t{s{eð Þds:

needs to be above a critical value qLTD to make a change of the

synapse possible. tlowP is the time constant of the low-pass filter

and e = 1 ms is a short delay twice the width of a spike (see

Table 1). This short delay ensures that ū includes effects of

previous presynaptic inputs and postsynaptic spikes, but not of an

ongoing postsynaptic action potential.

Table 1. Parameter values used throughout all simulations,
except Figure 1E–G where Np = 10 and initial percentage of
zi = 1 was 10%, because these simulations refer to
experiments with younger animals.

Tag Trigger Consolidation

N = 100 kp = 1/(6 min) N = 100

ALTD = 0.01 tp = 60 min c = 0.1

ALTP = 0.014 Np = 40 tz = 6 min

tx = 100 ms b = 2

tLTP
lowP~100 ms Initialisation:

N(zi = 1) = 30

tLTD
lowP~1 s

e= 1 ms

kh = 1/h

kl = 1/(1.5 h)

HLTD = 270.6 mV

HLTP = 250 mV

a = 0.5

Initialisation: li = hi = 0

doi:10.1371/journal.pcbi.1000248.t001
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Combining presynaptic spike arrival at synapse i (represented by

xi) with a depolarization ū of the postsynaptic neuron above a

threshold qLTD we get a rate of LTD

rL~ALTDxi tð Þ u tð Þ{qLTD½ �z ð1Þ

where ALTD.0 is a parameter and [.]+ denotes rectification, i.e.,

[y]+ = y if y.0 and zero otherwise. Here xi tð Þ~
P

f d t{t
f
i

� �
denotes the presynaptic spike train with pulses at time t

f
i and d the

Dirac-delta function. Formally, rL describes the rate of stochastic

transitions from the non-tagged state h = 0, l = 0 to the low state

l = 1, Figure 1. In simulations we work with discrete time steps of

D= 1 ms. Eq. 1 indicates that the probability Pl = 0Rl = 1 of a

transition to the low-state during the time step D vanishes in the

absence of presynaptic spike arrival and takes a value of

Pl = 0Rl = 1 = 12exp(2ALTD[ū(t)2qLTD]+D)<ALTD[ū(t)2qLTD]+D if

a presynaptic spike arrives at the synapse i during the time step D.

Note that the transition from l = 0 to l = 1 is only possible if h = 0

and h remains zero during the transition.

Similarly, a switch from the non-tagged state h = 0, l = 0 to the

high state h = 1 occurs at a rate rH which also depends on

postsynaptic voltage and presynaptic spike arrival. We assume that

each presynaptic spike at synapse i leaves a trace x̄i that decays

exponentially with time constant tx. The exact biophysical nature

of the trace is irrelevant, but could, for example, represent the

amount of glutamate bound to the postsynaptic receptor. The

value of the trace at time t caused by earlier spike arrivals at time

t
f
i is then xi tð Þ~ 1=txð Þ

P
f exp { t{t

f
i

� �.
tx

h i
where the sum

runs over all firing times t
f
i vt. With the trace x̄i we write

rH~ALTPxi tð Þ u tð Þ{qLTD½ �z u tð Þ{qLTP½ �z ð2Þ

which indicates that, in addition to the conditions for LTD

induction we also require the momentary membrane potential u(t) to

be above a second threshold qLTP. This threshold could change on

the time scale of minutes or hours as a function of homeostatic

processes. To summarize, the rate of LTP transition rH is different

from rL in five aspects. First, the constant ALTP is not the same as

ALTD. Second, LTP is caused by the trace x̄i left by presynaptic

spikes, rather than the spikes themselves. This trace-formulation

ensures that presynaptic spikes can interact with later postsynaptic

spikes as in classical models of STDP [24–26]. Third, the time

constant of the low-pass filter in ū is different; fourth, the

momentary voltage needs to be above a threshold qLTP; and fifth,

the total dependence upon the postsynaptic voltage is quadratic,

rather than linear. The quadratic dependence ensures that for

large depolarization LTP dominates over LTD [39]. Tagged

synapses with hi = 1 decay with probability Ph = 1Rh = 0 = kHD back

to the non-tagged state (and analogously, but with rate kL for the

transition li = 1Rli = 0).

In the TagTriC model, the local synaptic values h = 1 for

potentiation or l = 1 for depression act as tags indicating potential

sites for further consolidation, but are also directly proportional to

the weight of the synapse after induction of LTP or LTD. Since in

minimal stimulation experiments LTD leads to a reduction of

about 50 percent of the synaptic efficacy whereas LTP leads to an

increase by up to 100 percent [7], we model the weight change

during the early phase of LTP as Dwi = (hi2ali)ŵ where ŵ is the

weight of the non-tagged synapse and a = 0.5. The total weight

change Dw/ŵ measured shortly after induction of LTP or LTD

with extracellular protocols corresponds to the fraction of synapses

in the high or low states, respectively, hence, if all synapses start

from the non-tagged state the measured weight change is

Dw
.

ŵ~
PN

i~1 hi{alið Þ=N~ShT{aSlT where N is the number

of synapses stimulated by the protocol. The set of parameters of

LTP/LTD induction and tagging is given in table 1.

Trigger
The triggering process is controlled by the dynamics of a variable

p which describes the amount of plasticity related proteins

synthesized in the postsynaptic neuron. Protein synthesis is triggered

and the variable p increases while the concentration of dopamine

exceeds a critical level qp [58]. If the dopamine concentration DA

falls below qp, the protein concentration decays with a time constant

tp. Assuming standard first-order kinetics we have

dp

dt
~kp 1{pð ÞH DA{qp

� �
{

p

tp

ð3Þ

Protein synthesis has a maximum rate dp/dt of kp and saturates if the

amount of protein approaches a value one. H[y] denotes the unit

step function with H[y] = 1 for y.0 and zero otherwise.

Dopamine is present at a low stationary background value. In

addition a phasic dopamine component is induced in standard

tagging experiments in hippocampal slices, because of co-

stimulation of dopaminergic inputs during extracellular stimula-

tion of presynaptic fibers [40]. To describe the time course of the

phasic dopamine component in our model, we assume that the

dopamine is proportional to the total number of tags Si(hi+li)

induced by the stimulation protocol. The stationary background

level of dopamine DAbg is included in the threshold qp = Np(DAbg)

for protein synthesis. Hence Eq. 3 can be rewritten in the form

dp

dt
~kp 1{pð ÞH

X
i

hizlið Þ{Np DAbg

� �" #
{

p

tp

ð4Þ

Note that we have chosen units so that the threshold for protein

synthesis Np can be interpreted as the minimal number of tags

necessary to stimulate protein synthesis. This interpretation is

important for the discussion of the model results, in particular

Figures 4 and 5.

A suitable model for dependence of the protein synthesis

threshold on the background level of dopamine is Np(DAbg) = n0/

(DAbg+c0) where n0 = 1 is a scaling factor, c0 = 0.001 a constant and

0#DAbg#1 is the normalized dopamine concentration. We note

that the trigger condition [Si(hi+li)2Np(DAbg)].0 is then equiva-

lent to the condition (DAbg+0.001)[Si(hi+li)].1. This formulation

shows that there is a trade-off between background levels and

phasic dopamine. Unless stated otherwise we always use in the

simulation a fixed dopamine level DAbg = 0.024 so that Np = 40.

The specific model Np(DAbg) of the dependence upon background

dopamine levels is therefore irrelevant.

We assume that the plasticity related protein p synthesized in the

postsynaptic neuron is diffused in the dendrite of the postsynaptic

neuron and hence available to all the synapses under consider-

ation. Hence, the tags hi and li have indices, since they are synapse-

specific, whereas p in Eq. 4 does not.

Consolidation and Late LTP
The consolidation variable z describes the late phase of LTP

and follows the dynamics

tz

dzi

dt
~f zið Þzc DAð Þ hi{lið Þp: ð5Þ
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The scaling factor c is a function of the dopamine level DA. In the

simulations we always assumed a fixed dopamine level and set

c(DA) = 0.1.

In the absence of plasticity related proteins (p = 0), or if no tags

are set (hi = li = 0), the function f(z) = z(12z)(z20.5) generates a

bistable dynamics with stable fixed points at z = 0 and z = 1 and an

unstable fixed point at z = 0.5 marked by the zero crossings of the

function f, Figure 1C. In the presence of a finite amount of

proteins p.0 and a non-zero tag, the location of the fixed points

changes and for p.0.47, only one of the stable fixed points

remains. The potential shown in Figure 1C is a function E with

dE/dz = 2f(z) so that dz/dt = 2dE/dz. We note that a synapse i can

change its consolidated value only if both a tag (hi = 1 or li = 1) and

protein p.0.47 is present–summarizing the essence of ‘synaptic

tagging and capture’ [12,13].

Synaptic Weight
The synaptic weights have contributions from early and late

LTP and LTD. The total synaptic weight of a synapse i is

wi = ŵ(1+hi2ali+bzi) where ŵ is the value of a non-tagged synapse,

a = 0.5 and b = 2 are parameters, hi and li are binary values

indicating E-LTP and E-LTD, respectively, and zi is the value of

the L-LTP trace of synapse i. Since we model slice experiments in

animals older than 20 days, we assume that 30 percent of the

synapses have undergone previous potentiation and have z = 1

while the remaining 70 percent of synapses are in the state z = 0

[7]. In all simulation experiments we stimulate one or several

groups of N = 100 synapses each. Assuming that no tags have

been set in the recent past (hi = li = 0), the initial value of the

average weight in a group of N synapses is then

w 0ð Þ~ŵ
PN

i~1 1zbzi

h i.
N~1:6ŵ.

Neuron Model
For all simulations in this paper we use the adaptive exponential

integrate-and-fire model [42] as a compact description of neuronal

firing dynamics. Briefly, it consists of two equations. The voltage

equation has an exponential and a linear term as measured in

experiments [59]. The second equation describes adaptation.

Although firing rate adaptation is not important for the present

study, it would be relevant in the context of other stimulation

paradigms. Parameters for the neuron model are as in [42] and are

kept fixed for all simulations presented in this paper. The voltage

threshold Vs of spike initiation by a short current pulse is 25 mV

above the resting potential of 270.6 mV [42]. Synaptic input is

simulated as a short current pulse. The initial connection weight ŵ

was adjusted so that simultaneous activation of 40 or more

synapses triggers spike firing in the postsynaptic neuron. Hence the

amplitude of a single EPSP is about 0.6 mV.

The adaptive exponential integrate-and-fire model is defined in

continuous time. If a spike is triggered by a strong current pulse,

the voltage rises within less than 0.5 millisecond to a value of

20 mV where integration is stopped. The voltage is then reset to

resting level, and integration restarted after a refractory time of

1 ms. In order to enable us to perform simulations of plasticity

experiments with a time step of D= 1 ms, the voltage equation

during the rising slope of the action potential was integrated once

at a much higher resolution (time step 0.02 ms), so as to determine

the exact contribution of each postsynaptic spike to the probability

of LTP induction. Every postsynaptic spike was then treated as an

event in the plasticity simulations that contributed a probability

Ph = 0Rh = 1 of flipping the tag from h = 0 to h = 1 in a time step

D= 1 ms which we can write as Ph = 0Rh = 1 = aDx̄(t)[ū(t)2qLTD]+

with a numerical conversion factor aD = ALTP 5 ms mV derived by

the above procedure; see Eq. 2.

Number of Consolidated Synapses
In Figure 5 we plot the number of synapses that have been

consolidated as a function of the number Ntag of initially tagged

(hi = 1) synapses. Since the number of tags decays exponentially

with rate kH, the expected duration TON
P of protein synthesis is

TON
P ~ 1=kHð Þln Ntag

	
Np

� �
where Np is the protein trigger

threshold. While protein synthesis is ‘ON’ the variables p and z

move along the black dashed line in Figure 5A which crosses after

a time t1 the separatrix (green line in Figure 5A) and at a time t2
the line z = 0.5 (vertical dashed green line). Different cases have to

be distinguished. (i) TON
P vt1, no consolidation takes place (see

pink trajectory), hence Nup = 0. (ii) TON
P wt2, consolidation is

guaranteed for all synapses that are still tagged at time t2, hence

Nup = Ntagexp(2kt2). (iii) In the case of t1vTON
P ƒt2, the time tcross

needed to cross the vertical line z = 0.5 is numerically calculated by

integrating the equations dp/dt = 2p/(tp) and dz/dt = f(z)+c p

starting at t~TON
P at the point p TON

P

� �
,z TON

P

� �
on the black-

dashed line (see orange line in Figure 5A for a sample trajectory).

The number of consolidated synapses is then Nup = Ntagexp(2ktcross).

The solid line in Figure 5B represents Nup as a function of Ntag

calculated for the cases (i)–(iii). With our standard set of parameters,

we have t1<28 min and t2<60 min.
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Abstract

Reward-modulated spike-timing-dependent plasticity (STDP) has recently emerged as a candidate for a learning rule that
could explain how behaviorally relevant adaptive changes in complex networks of spiking neurons could be achieved in a
self-organizing manner through local synaptic plasticity. However, the capabilities and limitations of this learning rule could
so far only be tested through computer simulations. This article provides tools for an analytic treatment of reward-
modulated STDP, which allows us to predict under which conditions reward-modulated STDP will achieve a desired learning
effect. These analytical results imply that neurons can learn through reward-modulated STDP to classify not only spatial but
also temporal firing patterns of presynaptic neurons. They also can learn to respond to specific presynaptic firing patterns
with particular spike patterns. Finally, the resulting learning theory predicts that even difficult credit-assignment problems,
where it is very hard to tell which synaptic weights should be modified in order to increase the global reward for the system,
can be solved in a self-organizing manner through reward-modulated STDP. This yields an explanation for a fundamental
experimental result on biofeedback in monkeys by Fetz and Baker. In this experiment monkeys were rewarded for
increasing the firing rate of a particular neuron in the cortex and were able to solve this extremely difficult credit assignment
problem. Our model for this experiment relies on a combination of reward-modulated STDP with variable spontaneous
firing activity. Hence it also provides a possible functional explanation for trial-to-trial variability, which is characteristic for
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Introduction

Numerous experimental studies (see [1] for a review; [2]

discusses more recent in-vivo results) have shown that the efficacy

of synapses changes in dependence of the time difference

Dt = tpost2tpre between the firing times tpre and tpost of the pre- and

postsynaptic neurons. This effect is called spike-timing-dependent

plasticity (STDP). But a major puzzle for understanding learning

in biological organisms is the relationship between experimentally

well-established rules for STDP on the microscopic level, and

adaptive changes of the behavior of biological organisms on the

macroscopic level. Neuromodulatory systems, which send diffuse

signals related to reinforcements (rewards) and behavioral state to

several large networks of neurons in the brain, have been identified

as likely intermediaries that relate these two levels of plasticity. It is

well-known that the consolidation of changes of synaptic weights

in response to pre- and postsynaptic neuronal activity requires the

presence of such third signals [3,4]. In particular, it has been

demonstrated that dopamine (which is behaviorally related to

novelty and reward prediction [5]) gates plasticity at corticostriatal

synapses [6,7] and within the cortex [8]. It has also been shown

that acetylcholine gates synaptic plasticity in the cortex (see for

example [9] and [10,11] contains a nice review of the literature).

Corresponding spike-based rules for synaptic plasticity of the

form

d

dt
wji tð Þ~cji tð Þd tð Þ ð1Þ

have been proposed in [12] and [13] (see Figure 1 for an

illustration of this learning rule), where wji is the weight of a

synapse from neuron i to neuron j, cji(t) is an eligibility trace of this

synapse which collects weight changes proposed by STDP, and

d(t) = h(t)2h̄ results from a neuromodulatory signal h(t) with mean

value h̄. It was shown in [12] that a number of interesting learning

tasks in large networks of neurons can be accomplished with this

simple rule in Equation 1. It has recently been shown that quite

similar learning rules for spiking neurons arise when one applies

the general framework of distributed reinforcement learning from

[14] to networks of spiking neurons [13,15], or if one maximizes

the likelihood of postsynaptic firing at desired firing times [16].

However no analytical tools have been available, which make it

possible to predict for what learning tasks, and under which

parameter settings, reward-modulated STDP will be successful.

This article provides such analytical tools, and demonstrates their
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applicability and significance through a variety of computer

simulations. In particular, we identify conditions under which

neurons can learn through reward-modulated STDP to classify

temporal presynaptic firing patterns, and to respond with

particular spike patterns.

We also provide a model for the remarkable operant

conditioning experiments of [17] (see also [18,19]). In the simpler

ones of these experiments the spiking activity of single neurons (in

area 4 of the precentral gyrus of monkey cortex) was recorded, the

deviation of the current firing rate of an arbitrarily selected neuron

from its average firing rate was made visible to the monkey

through the displacement of an illuminated meter arm, whose

rightward position corresponded to the threshold for the feeder

discharge. The monkey received food rewards for increasing (or in

alternating trials for decreasing) the firing rate of this neuron. The

monkeys learnt quite reliably (within a few minutes) to change the

firing rate of this neuron in the currently rewarded direction.

Adjacent neurons tended to change their firing rate in the same

direction, but also differential changes of directions of firing rates

of pairs of neurons are reported in [17] (when these differential

changes were rewarded). For example, it was shown in Figure 9 of

[17] (see also Figure 1 in [19]) that pairs of neurons that were

separated by no more than a few hundred microns could be

independently trained to increase or decrease their firing rates.

Obviously the existence of learning mechanisms in the brain which

are able to solve this extremely difficult credit assignment problem

provides an important clue for understanding the organization of

learning in the brain. We examine in this article analytically under

what conditions reward-modulated STDP is able to solve such

learning problem. We test the correctness of analytically derived

predictions through computer simulations of biologically quite

realistic recurrently connected networks of neurons, where an

increase of the firing rate of one arbitrarily selected neuron within

a network of 4000 neurons is reinforced through rewards (which

are sent to all 142813 synapses between excitatory neurons in this

recurrent network). We also provide a model for the more

complex operant conditioning experiments of [17] by showing that

pairs of neurons can be differentially trained through reward-

modulated STDP, where one neuron is rewarded for increasing its

firing rate, and simultaneously another neuron is rewarded for

decreasing its firing rate. More precisely, we increased the reward

signal d(t) which is transmitted to all synapses between excitatory

neurons in the network whenever the first neuron fired, and

decreased this reward signal whenever the second neuron fired

(the resulting composed reward corresponds to the displacement of

the meter arm that was shown to the monkey in these more

complex operant conditioning experiments).

Our theory and computer simulations also show that reward-

modulated STDP can be applied to all synapses within a large

network of neurons for long time periods, without endangering the

stability of the network. In particular this synaptic plasticity rule

keeps the network within the asynchronous irregular firing regime,

which had been described in [20] as a dynamic regime that

resembles spontaneous activity in the cortex. Another interesting

aspect of learning with reward-modulated STDP is that it requires

spontaneous firing and trial-to-trial variability within the networks

of neurons where learning takes place. Hence our learning theory

for this synaptic plasticity rule provides a foundation for a

functional explanation of these characteristic features of cortical

network of neurons that are undesirable from the perspective of

most computational theories.

Results

We first give a precise definition of the learning rule in Equation 1

for reward-modulated STDP. The standard rule for STDP, which

specifies the change W(Dt) of the synaptic weight of an excitatory

synapse in dependence on the time difference Dt = tpost2tpre between

the firing times tpre and tpost of the pre- and postsynaptic neuron, is

Figure 1. Scheme of reward-modulated STDP according to
Equations 1–4. (A) Eligibility function fc(t), which scales the
contribution of a pre/post spike pair (with the second spike at time
0) to the eligibility trace c(t) at time t. (B) Contribution of a pre-before-
post spike pair (in red) and a post-before-pre spike pair (in green) to the
eligibility trace c(t) (in black), which is the sum of the red and green
curves. According to Equation 1 the change of the synaptic weight w is
proportional to the product of c(t) with a reward signal d(t).
doi:10.1371/journal.pcbi.1000180.g001

Author Summary

A major open problem in computational neuroscience is to
explain how learning, i.e., behaviorally relevant modifica-
tions in the central nervous system, can be explained on
the basis of experimental data on synaptic plasticity. Spike-
timing-dependent plasticity (STDP) is a rule for changes in
the strength of an individual synapse that is supported by
experimental data from a variety of species. However, it is
not clear how this synaptic plasticity rule can produce
meaningful modifications in networks of neurons. Only if
one takes into account that consolidation of synaptic
plasticity requires a third signal, such as changes in the
concentration of a neuromodulator (that might, for
example, be related to rewards or expected rewards),
then meaningful changes in the structure of networks of
neurons may occur. We provide in this article an analytical
foundation for such reward-modulated versions of STDP
that predicts when this type of synaptic plasticity can
produce functionally relevant changes in networks of
neurons. In particular we show that seemingly inexplicable
experimental data on biofeedback, where a monkey learnt
to increase the firing rate of an arbitrarily chosen neuron in
the motor cortex, can be explained on the basis of this
new learning theory.

Reward-Modulated STDP
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based on numerous experimental data (see [1]). It is commonly

modeled by a so-called learning curve of the form

W Dtð Þ~ Aze{Dt=tz , if Dt§0

{A eDt=t , if Dtv0

(
, ð2Þ

where the positive constants A+ and A2 scale the strength of

potentiation and depression respectively, and t+ and t2 are positive

time constants defining the width of the positive and negative

learning window. The resulting weight change at time t of synapse ji

for a presynaptic spike train S
pre
i and a postsynaptic spike train S

post
j

is usually modeled [21] by the instantaneous application of this

learning rule to all spike pairings with the second spike at time t

d

dt
wji tð Þ

� �
STDP

~

ð?
0

dr W rð ÞSpost
i tð ÞSpre

i t{rð Þ

z

ð?
0

dr W {rð ÞSpost
j t{rð ÞSpre

i tð Þ:
ð3Þ

The spike train of a neuron i which fires action potentials at times

t
1ð Þ

i , t
2ð Þ

i , t
3ð Þ

i ,… is formalized here by a sum of Dirac delta functions

Si tð Þ~
P

nd t{t
nð Þ

i

� �
.

The model analyzed in this article is based on the assumption

that positive and negative weight changes suggested by STDP for

all pairs of pre- and postsynaptic spikes at synapse ji (according to

the two integrals in Equation 3) are collected in an eligibility trace

cji(t) at the site of the synapse. The contribution to cij(t) of all spike

pairings with the second spike at time t2s is modeled for s.0 by a

function fc(s) (see Figure 1A); the time scale of the eligibility trace is

assumed in this article to be on the order of seconds. Hence the

value of the eligibility trace of synapse ji at time t is given by

cji tð Þ~
ð?

0

dsfc sð Þ d

dt
wji t{sð Þ

� �
STDP

, ð4Þ

see Figure 1B. The actual weight change d
dt

wji tð Þ at time t for

reward-modulated STDP is the product cij(t)?d(t) of the eligibility

trace with the reward signal d(t) as defined by Equation 1. Since

this simple model can in principle lead to unbounded growth of

weights, we assume that weights are clipped at the lower boundary

value 0 and an upper boundary wmax.

The network dynamics of a simulated recurrent network of

spiking neurons where all connections between excitatory neurons

are subject to STDP is quite sensitive to the particular STDP-rule

that is used. Therefore we have carried out our network

simulations not only with the additive STDP-rule in Equation 3,

whose effect can be analyzed theoretically, but also with the more

complex rule proposed in [22] (which was fitted to experimental

data from hippocampal neurons in culture [23]), where the

magnitude of the weight change depends on the current value of

the weight. An implementation of this STDP-rule (with the

parameters proposed in [22]) produced in our network simulations

of the biofeedback experiment (computer simulation 1) as well as

for learning pattern classification (computer simulation 4)

qualitatively the same result as the rule in Equation 3.

Theoretical Analysis of the Resulting Weight Changes
In this section, we derive a learning equation for reward-

modulated STDP. This learning equation relates the change of a

synaptic weight wji over some sufficiently long time interval T to

statistical properties of the joint distribution of the reward signal

d(t) and pre- and postsynaptic firing times, under the assumption

that the weight and correlations between pre- and postsynaptic

spike times are slowly varying in time. We treat spike times as well

as the reward signal d(t) as stochastic variables. This mathematical

framework allows us to derive the expected weight change over

some time interval T (see [21]), with the expectation taken over

realizations of the stochastic input- and output spike trains as well

as stochastic realizations of the reward signal, denoted by the

ensemble average Æ?æE

Swji tzTð Þ{wji tð ÞTE

T
~

1

T
S
ðtzT

t

d

dt
wji t0ð Þdt0TE

~SS
d

dt
wji tð ÞTTTE ,

ð5Þ

where we used the abbreviation Sf tð ÞTT~T{1
Ð tzT

t
f t0ð Þ dt0. If

synaptic plasticity is sufficiently slow, synaptic weights integrate a

large number of small changes. In this case, the weight wji can be

approximated by its average ÆwjiæE (it is ‘‘self-averaging’’, see [21]).

We can thus drop the expectation on the left hand side of

Equation 5 and write it as d
dt

Swji tð ÞTT . Using Equation 1, this

yields (see Methods)

d

dt
Swji tð ÞTT~

ð?
0

dr W rð Þ
ð?

0

ds fc sð ÞSDji t,s,rð Þnji t{s,rð ÞTT

z

ð0

{?
dr W rð Þ

ð?
rj j

ds fc szrð ÞSDji t,s,rð Þnji t{s,rð ÞTT :

ð6Þ

This formula contains the reward correlation for synapse ji

Dji t,s,rð Þ~

Sd tð Þ Neuron j spikes at t{s, and neuron i spikes at t{s{rj TE ,

ð7Þ

which is the average reward at time t given a presynaptic spike at

time t2s2r and a postsynaptic spike at time t2s. The joint firing

rate nji(t,r) = ÆSj(t)Si(t2r)æE describes correlations between spike

timings of neurons j and i, i.e., it is the probability density for

the event that neuron i fires an action potential at time t2r and

neuron j fires an action potential at time t. For synapses subject to

reward-modulated STDP, changes in efficacy are obviously driven

by co-occurrences of spike pairings and rewards within the time

scale of the eligibility trace. Equation 6 clarifies how the expected

weight change depends on how the correlations between the pre-

and postsynaptic neurons correlate with the reward signal.

If one assumes for simplicity that the impact of a spike pair on

the eligibility trace is always triggered by the postsynaptic spike,

one gets a simpler equation (see Methods)

d

dt
Swji tð ÞTT~

ð?
0

ds fc sð Þ
ð?

{?
dr W rð ÞSDji t,s,rð Þnji t{s,rð ÞTT : ð8Þ

The assumption introduces a small error for post-before-pre spike

pairs, because for a reward signal that arrives at some time dr after

the pairing, the weight update will be proportional to fc(dr) instead

of fc(dr+r). The approximation is justified if the temporal average is

performed on a much longer time scale than the time scale of the

learning window, the effect of each pre-post spike pair on the

reward signal is delayed by an amount greater than the time scale

of the learning window, and fc changes slowly compared to the

time scale of the learning window (see Methods for details). For the

Reward-Modulated STDP
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analyzes presented in this article, the simplified Equation 8 is a

good approximation for the learning dynamics. Equation 8 is a

generalized version of the STDP learning equation
d
dt

wji tð Þ~
Ð?
{? dr W rð ÞSnji t{s,rð ÞTT in [21] that includes the

impact of the reward correlation weighted by the eligibility

function. To see the relation between standard STDP and reward-

modulated STDP, consider a constant reward signal d(t) = d0.

Then also the reward correlation is constant and given by

D(t,s,r) = d0. We recover the standard STDP learning equation

scaled by d0 if the eligibility function is an instantaneous delta-

pulse fc(s) = d(s). Furthermore, if the statistics of the reward signal

d(t) is time-independent and independent from the pre- and

postsynaptic spike statistics of some synapse ji, then the reward

correlation is given by Dji(t,s,r) = Æd(t)æE = d0 for some constant d0.

Then, the weight change for synapse ji is
d
dt

Swji tð ÞTT~d0

Ð?
{? dr W rð Þ

Ð?
0

dsfc sð ÞSnji t{s,rð ÞTT . The tem-

poral average of the joint firing rate Ænji(t2s,ræT is thus filtered by

the eligibility trace. We assumed in the preceding analysis that the

temporal average is taken over some long time interval T. If the

time scale of the eligibility trace is much smaller than this time

interval T, then the weight change is approximately
d
dt

Swji tð ÞTT&d0

Ð?
0

dsfc sð Þ
� � Ð?

{? dr W rð ÞSnji t,rð ÞTT , and the

weight wji will change according to standard STDP scaled by a

constant proportional to the mean reward and the integral over

the eligibility function. In the remainder of this article, we will

always use the smooth time-averaged weight change d
dt

Swji tð ÞTT ,

but for brevity, we will drop the angular brackets and simply write
d
dt

wji tð Þ.
The learning Equation 8 provides the mathematical basis for

our following analyses. It allows us to determine synaptic weight

changes if we can describe a learning situation in terms of reward

correlations and correlations between pre- and postsynaptic spikes.

Application to Models for Biofeedback Experiments
We now apply the preceding analysis to the biofeedback

experiment of [17] that were described in the introduction. These

experiments pose the challenge to explain how learning mecha-

nisms in the brain can detect and exploit correlations between

rewards and the firing activity of one or a few neurons within a

large recurrent network of neurons (the credit assignment

problem), without changing the overall function or dynamics of

the circuit.

We show that this phenomenon can in principle be explained by

reward-modulated STDP. In order to do that, we define a model

for the experiment which allows us to formulate an equation for

the reward signal d(t). This enables us to calculate synaptic weight

changes for this particular scenario. We consider as model a

recurrent neural circuit where the spiking activity of one neuron k

is recorded by the experimenter (Experiments where two neurons

are recorded and reinforced were also reported in [17]. We tested

this case in computer simulations (see Figure 2) but did not treat it

explicitly in our theoretical analysis). We assume that in the

monkey brain a reward signal d(t) is produced which depends on

the visual feedback (through an illuminated meter, whose pointer

deflection was dependent on the current firing rate of the

randomly selected neuron k) as well as previously received liquid

rewards, and that this signal d(t) is delivered to all synapses in large

areas of the brain. We can formalize this scenario by defining a

reward signal which depends on the spike rate of the arbitrarily

selected neuron k (see Figure 3A and 3B). More precisely, a reward

pulse of shape er(r) (the reward kernel) is produced with some delay

dr every time the neuron k produces an action potential

d tð Þ~
ð?

0

dr S
post
k t{dr{rð Þer rð Þ: ð9Þ

Note that d(t) = h(t)2h̄ is defined in Equation 1 as a signal with zero

mean. In order to satisfy this constraint, we assume that the reward

kernel er has zero mass, i.e., er~
Ð?

0
dr er rð Þ~0. For the analysis,

we use the linear Poisson neuron model described in Methods.

The mean weight change for synapses to the reinforced neuron k is

then approximately (see Methods)

d

dt
wki tð Þ&ð?

0

ds fc szdrð Þer sð Þ
ð?

{?
dr W rð ÞSnki t{dr{s,rð ÞTT :

ð10Þ

This equation describes STDP with a learning rate proportional toÐ?
0

ds fc szdrð Þer sð Þ. The outcome of the learning session will

strongly depend on this integral and thus on the form of the

reward kernel er. In order to reinforce high firing rates of the

reinforced neuron we have chosen a reward kernel with a positive

bump in the first few hundred milliseconds, and a long negative

tail afterwards. Figure 3C shows the functions fc and er that were

used in our computer model, as well as the product of these two

functions. One sees that the integral over the product is positive

and according to Equation 10 the synapses to the reinforced

neuron are subject to STDP. This does not guarantee an increase

of the firing rate of the reinforced neuron. Instead, the changes of

neuronal firing will depend on the statistics of the inputs. In

particular, the weights of synapses to neuron k will not increase if

that neuron does not fire spontaneously. For uncorrelated Poisson

input spike trains of equal rate, the firing rate of a neuron trained

by STDP stabilizes at some value which depends on the input rate

(see [24,25]). However, in comparison to the low spontaneous

firing rates observed in the biofeedback experiment [17], the stable

firing rate under STDP can be much higher, allowing for a

significant rate increase. It was shown in [17] that also low firing

rates of a single neuron can be reinforced. In order to model this,

we have chosen a reward kernel with a negative bump in the first

few hundred milliseconds, and a long positive tail afterwards, i.e.

we inverted the kernel used above to obtain a negative integralÐ?
0

ds fc szdrð Þer sð Þ. According to Equation 10 this leads to anti-

STDP where not only inputs to the reinforced neuron which have

low correlations with the output are depressed (because of the

negative integral of the learning window), but also those which are

causally correlated with the output. This leads to a quick firing rate

decrease at the reinforced neuron.

The mean weight change of synapses to non-reinforced neurons

j?k is given by

d

dt
wji tð Þ&

ð?
0

ds fc sð Þ
ð?

{?
dr W rð Þ

ð?
0

dr0er r0ð Þ

S
nkj t{dr{r0,s{dr{r0ð Þ

nj t{sð Þ nji t{s,rð ÞTT ,

ð11Þ

where nj(t) = ÆSj(t)æE is the instantaneous firing rate of neuron j at time

t. This equation indicates that a non-reinforced neuron is trained by

STDP with a learning rate proportional to its correlation with the

reinforced neuron given by nkj(t2dr2r9,s2dr2r9)/nj(t2s). In fact, it

was noted in [17] that neurons nearby the reinforced neuron tended

to change their firing rate in the same direction. This observation

might be explained by putative correlations of the recorded neuron

Reward-Modulated STDP
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with nearby neurons. On the other hand, if a neuron j is uncorrelated

with the reinforced neuron k, we can decompose the joint firing rate

into nkj(t2dr2r9,s2dr2r9) = nk(t2dr2r9)nj(t2s). In this case, the

learning rate for synapse ji is approximately zero (see Methods).

This ensures that most neurons in the circuit keep a constant firing

rate, in spite of continuous weight changes according to reward-

modulated STDP.

Altogether we see that the weights of synapses to the reinforced

neuron k can only change if there is spontaneous activity in the

network, so that in particular also this neuron k fires spontane-

ously. On the other hand the spontaneous network activity should

not consist of repeating large-scale spatio-temporal firing patterns,

since that would entail correlations between the firing of neuron k

and other neurons j, and would lead to similar changes of synapses

to these other neurons j. Apart from these requirements on the

spontaneous network activity, the preceding theoretical results

predict that stability of the circuit is preserved, while the neuron

which is causally related to the reward signal is trained by STDP, ifÐ?
0

ds fc szdrð Þer sð Þ is positive.

Computer Simulation 1: Model for Biofeedback
Experiment

We tested these theoretical predictions through computer

simulations of a generic cortical microcircuit receiving a reward

signal which depends on the firing of one arbitrarily chosen

neuron k from the circuit (reinforced neuron). The circuit was

composed of 4000 LIF neurons, with 3200 being excitatory and

800 inhibitory, interconnected randomly by 228954 conductance

based synapses with short term dynamics (All computer simula-

tions were also carried out as a control with static current based

synapses, see Methods and Suppl.). In addition to the explicitly

modeled synaptic connections, conductance noise (generated by

Figure 2. Differential reinforcement of two neurons (within a simulated network of 4000 neurons, the two rewarded neurons are
denoted as A and B), corresponding to the experimental results shown in Figure 9 of [17] and Figure 1 of [19]. (A) The spike response
of 100 randomly chosen neurons at the beginning of the simulation (20 sec–23 sec, left plot), and at the middle of simulation just before the
switching of the reward policy (597 sec–600 sec, right plot). The firing times of the first reinforced neuron A are marked by blue crosses and those of
the second reinforced neuron B are marked by green crosses. (B) The dashed vertical line marks the switch of the reinforcements at t = 10 min. The
firing rate of neuron A (blue line) increases while it is positively reinforced in the first half of the simulation and decreases in the second half when its
spiking is negatively reinforced. The firing rate of the neuron B (green line) decreases during the negative reinforcement in the first half and increases
during the positive reinforcement in the second half of the simulation. The average firing rate of 20 other randomly chosen neurons (dashed line)
remains unchanged. (C) Evolution of the average weight of excitatory synapses to the rewarded neurons A and B (blue and green lines, respectively),
and of the average weight of 1744 randomly chosen excitatory synapses to other neurons in the circuit (dashed line).
doi:10.1371/journal.pcbi.1000180.g002
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an Ornstein-Uhlenbeck process) was injected into each neuron

according to data from [26], in order to model synaptic

background activity of neocortical neurons in-vivo (More precise-

ly, for 50% of the excitatory neurons the amplitude of the noise

injection was reduced to 20%, and instead their connection

probabilities from other excitatory neurons were chosen to be

larger, see Methods and Figure S1 and Figure S2 for details. The

reinforced neuron had to be chosen from the latter population,

since reward-modulated STDP does not work properly if the

postsynaptic neuron fires too often because of directly injected

noise). This background noise elicited spontaneous firing in the

circuit at about 4.6 Hz. Reward-modulated STDP was applied

continuously to all synapses which had excitatory presynaptic and

postsynaptic neurons, and all these synapses received the same

reward signal. The reward signal was modeled according to

Equation 9. Figure 3C shows one reward pulse caused by a single

postsynaptic spike at time t = 0 with the parameters used in the

experiment. For several postsynaptic spikes, the amplitude of the

reward signal follows the firing rate of the reinforced neuron, see

Figure 3B.

This model was simulated for 20 minutes of biological time.

Figure 4A, 4B, and 4D show that the firing rate of the reinforced

neuron increases within a few minutes (like in the experiment of

[17]), while the firing rates of the other neurons remain largely

unchanged. The increase of weights to the reinforced neuron

shown in Figure 4C can be explained by the correlations between

its presynaptic and postsynaptic spikes shown in panel E. This

panel shows that pre-before-post spike pairings (black curve) are in

general more frequent than post-before-pre spike pairings. The

reinforced neuron increases its rate from around 4 Hz to 12 Hz,

which is comparable to the measured firing rates in [15] before

and after learning.

In Figure 9 of [17] and Figure 1 of [19] the results of another

experiment were reported where the activity of two adjacent

neurons was recorded, and high firing rates of the first neuron and

low firing rates of the second neuron were reinforced simulta-

neously. This kind of differential reinforcement resulted in an

increase and decrease of the firing rates of the two neurons

correspondingly. We implemented this type of reinforcement by

letting the reward signal in our model depend on the spikes of the

two randomly chosen neurons (we refer to these neurons as neuron

A and neuron B), i.e. d tð Þ~dA
z tð ÞzdB

{ tð Þ, where dA
z tð Þ is the

component that positively rewards spikes of neuron A, and dB
{ tð Þ

negatively rewards spikes of neuron B. Both parts of the reward

signal, dA
z tð Þ and dB

{ tð Þ, were defined as in Equation 9 for the

corresponding neuron. For dA
z tð Þ we used the reward kernel er as

defined in Equation 29, whereas for dB
{ tð Þ we used er2 = 2er (note

that the integral over er2 is still zero). At the middle of the

simulation (simulation time t = 10 min), we changed the direction

of the reinforcements by negatively rewarding the firing of neuron

A and positively rewarding the firing of neuron B (i.e.,

d tð Þ~dA
{ tð ÞzdB

z tð Þ). The results are summarized in Figure 2.

With a reward signal modeled in this way, we were able to

independently increase and decrease the firing rates of the two

neurons according to the reinforcements, while the firing rates of

the other neurons remained unchanged. Changing the type of

reinforcement during the simulation from positive to negative for

neuron A and from negative to positive for neuron B resulted in a

corresponding shift in their firing rate change in the direction of

the reinforcement.

The dynamics of a network where STDP is applied to all

synapses between excitatory neurons is quite sensitive to the

specific choice of the STDP-rule. The preceding theoretical

analysis (see Equations 10 and 11) predicts that reward-modulated

STDP affects in the long run only those excitatory synapses where

the firing of the postsynaptic neuron is correlated with the reward

signal. In other words: the reward signal gates the effect of STDP

in a recurrent network, and thereby can keep the network within a

Figure 3. Setup of the model for the experiment by Fetz and Baker [17]. (A) Schema of the model: The activity of a single neuron in the
circuit determines the amount of reward delivered to all synapses between excitatory neurons in the circuit. (B) The reward signal d(t) in response to a
spike train (shown at the top) of the arbitrarily selected neuron (which was selected from a recurrently connected circuit consisting of 4000 neurons).
The level of the reward signal d(t) follows the firing rate of the spike train. (C) The eligibility function fc(s) (black curve, left axis), the reward kernel er(s)
delayed by 200 ms (red curve, right axis), and the product of these two functions (blue curve, right axis) as used in our computer experiment. The
integral of fc(s+dr)er(s) is positive, as required according to Equation 10 in order to achieve a positive learning rate for the synapses to the selected
neuron.
doi:10.1371/journal.pcbi.1000180.g003
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given dynamic regime. This prediction is confirmed qualitatively

by the two panels of Figure 4A, which show that even after all

excitatory synapses in the recurrent network have been subject to

20 minutes (in simulated biological time) of reward-modulated

STDP, the network stays within the asynchronous irregular firing

regime. It is also confirmed quantitatively through Figure 5. These

figures show results for the simple additive version of STDP

(according to Equation 3). Very similar results (see Figure S3 and

Figure S4) arise from an application of the more complex STDP-

rule proposed in [22] where the weight-change depends on the

current weight value.

Rewarding Spike-Times
The preceding model for the biofeedback experiment of Fetz

and Baker focused on learning of firing rates. In order to explore

the capabilities and limitations of reward-modulated STDP in

Figure 4. Simulation of the experiment by Fetz and Baker [17] for the case where an arbitrarily selected neuron triggers global
rewards when it increases its firing rate. (A) Spike response of 100 randomly chosen neurons within the recurrent network of 4000 neurons at
the beginning of the simulation (20 sec–23 sec, left plot), and at the end of the simulation (the last 3 seconds, right plot). The firing times of the
reinforced neuron are marked by blue crosses. (B) The firing rate of the positively rewarded neuron (blue line) increases, while the average firing rate
of 20 other randomly chosen neurons (dashed line) remains unchanged. (C) Evolution of the average weight of excitatory synapses to the reinforced
neuron (blue line), and of the average weight of 1663 randomly chosen excitatory synapses to other neurons in the circuit (dashed line). (D) Spike
trains of the reinforced neuron before and after learning. (E) Histogram of the time-differences between presynaptic and postsynaptic spikes (bin size
0.5 ms), averaged over all excitatory synapses to the reinforced neuron. The black curve represents the histogram values for positive time differences
(when the presynaptic spike precedes the postsynaptic spike), and the red curve represents the histogram for negative time differences.
doi:10.1371/journal.pcbi.1000180.g004
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contexts where the temporal structure of spike trains matters, we

investigated another reinforcement learning scenario where a

neuron should learn to respond with particular temporal spike

patterns. We first apply analytical methods to derive conditions

under which a neuron subject to reward-modulated STDP can

achieve this.

In this model, the reward signal d(t) is given in dependence on

how well the output spike train S
post
j of a neuron j matches some

rather arbitrary spike train S* (which might for example represent

spike output from some other brain structure during a develop-

mental phase). S* is produced by a neuron m* that receives the

same n input spike trains S1,…,Sn as the trained neuron j, with

some arbitrarily chosen weights w
1
~ w

1
1, . . . ,w

1
n

� �T
, w

1
i [ 0,wmaxf g.

But in addition the neuron m* receives n92n further spike trains

Sn+1,…,Sn9 with weights w
1
nz1, . . . ,w

1
n0~wmax. The setup is

illustrated in Figure 6A. It provides a generic reinforcement

learning scenario, when a quite arbitrary (and not perfectly

realizable) spike output is reinforced, but simultaneously the

performance of the learner can be evaluated clearly according to

how well its weights wj1,…,wjn match those of the neuron m* for

those n input spike trains which both of them have in common.

The reward d(t) at time t depends in this task on both the timing of

action potentials of the trained neuron and spike times in the

target spike train S*

d tð Þ~
ð?

{?
dr k rð ÞSpost

j t{drð ÞS1
t{dr{rð Þ, ð12Þ

where the function k(r) with k~
Ð?
{? ds k sð Þw0 describes how the

reward signal depends on the time difference r between a

Figure 5. Evolution of the dynamics of a recurrent network of 4000 LIF neurons during application of reward-modulated STDP. (A)
Distribution of the synaptic weights of excitatory synapses to 50 randomly chosen non-reinforced neurons, plotted for 4 different periods of
simulated biological time during the simulation. The weights are averaged over 10 samples within these periods. The colors of the curves and the
corresponding intervals are as follows: red (300–360 sec), green (600–660 sec), blue (900–960 sec), magenta (1140–1200 sec). (B) The distribution of
average firing rates of the non-reinforced excitatory neurons in the circuit, plotted for the same time periods as in (A). The colors of the curves are the
same as in (A). The distribution of the firing rates of the neurons in the circuit remains unchanged during the simulation, which covers 20 minutes of
biological time. (C) Cross-correlogram of the spiking activity in the circuit, averaged over 200 pairs of non-reinforced neurons and over 60 s, with a
bin size of 0.2 ms, for the period between 300 and 360 seconds of simulated biological time. It is calculated as the cross-covariance divided by the
square root of the product of variances. (D) As in (C), but between seconds 1140 and 1200. (Separate plots of (B), (C), and (D) for two types of
excitatory neurons that received different amounts of noise currents are given in Figure S1 and Figure S2.)
doi:10.1371/journal.pcbi.1000180.g005
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postsynaptic spike and a target spike, and dr.0 is the delay of the

reward.

Our theoretical analysis (see Methods) predicts that under the

assumption of constant-rate uncorrelated Poisson input statistics

this reinforcement learning task can be solved by reward-

modulated STDP for arbitrary initial weights if three constraints

are fulfilled:

{n
post
min WwwmaxW e ð13Þ

ð?
{?

dr W rð Þe rð Þek rð Þ§{npost
maxW

ð?
0

dr e rð Þek rð Þ ð14Þ

ð?
{?

dr W rð Þek rð Þw{Wk
n
1
npost

max

wmax

�ffc

fc drð Þ
z

n
1

wmax

zn
1
znpost

max

� �
ð15Þ

The following parameters occur in these equations: n* is the output

rate of neuron m*, n
post
min is the minimal output rate, npost

max is the

maximal output rate of the trained neuron, f c~
Ð?

0
dr fc rð Þ is the

integral over the eligibility trace, W~
Ð?
{? dr W rð Þ is the integral

over the STDP learning curve (see Equation 2),

ek rð Þ~
Ð?
{? dr0 k r0ð Þe r{r0ð Þ is the convolution of the reward

kernel with the shape of the postsynaptic potential (PSP) e(s), and

W e~
Ð?
{? dr e rð ÞW rð Þ is the integral over the PSP weighted by the

learning window.

If these inequalities are fulfilled and input rates are larger than

zero, then the weight vector of the trained neuron converges on

average from any initial weight vector to w* (i.e., it mimics the

weight distribution of neuron m* for those n inputs which both

have in common). To get an intuitive understanding of these

inequalities, we first examine the idea behind Constraint 13. This

constraint assures that weights of synapses i with w
1
i ~0 decay to

zero in expectation. First note that input spikes from a spike train

Si with w
1
i ~0 have no influence on the target spike train S*. In the

linear Poisson neuron model, this leads to weight changes similar

to STDP which can be described by two terms. First, all synapses

are subject to depression stemming from the negative part of the

learning curve W and random pre-post spike pairs. This weight

change is bounded from below by anpre
i npost

min W for some positive

constant a. On the other hand, the positive influence of input

spikes on postsynaptic firing leads to potentiation of the synapse

bounded from above by an
pre
i wmaxW e. Hence the weight decays to

zero if {an
pre
i n

post
min Wwan

pre
i wmaxW e, leading to Inequality 13. For

synapses i with w
1
i ~wmax, there is an additional drive, since each

presynaptic spike increases the probability of a closely following

spike in the target spike train S*. Therefore, the probability of a

delayed reward signal after a presynaptic spike is larger. This

additional drive leads to positive weight changes if Inequalities 14

and 15 are fulfilled (see Methods).

Note that also for the learning of spike times spontaneous spikes

(which might be regarded as ‘‘noise’’) are important, since they

may lead to reward signals that can be exploited by the learning

rule. It is obvious that in reward-modulated STDP, a silent neuron

cannot recover from its silent state, since there will be no spikes

which can drive STDP. But in addition, Condition 13 shows that

in this learning scenario, the minimal output rate npost
min —which

increases with increasing noise—has to be larger than some

positive constant, such that depression is strong enough to weaken

synapses if needed. On the other hand, if the noise is too strong

also synapses i with wi = wmax will be depressed and may not

converge correctly. This can happen when the increased noise

leads to a maximal postsynaptic rate npost
max such that Constraints 14

and 15 are not satisfied anymore.

Conditions 13–15 also reveal how parameters of the model

influence the applicability of this setup. For example, the eligibility

trace enters the equations only in the form of its integral and its

value at the reward delay in Equation 15. In fact, the exact shape

of the eligibility trace is not important. The important property of

an ideal eligibility trace is that it is high at the reward delay and

low at other times as expressed by the fraction in Condition 15.

Interestingly, the formulas also show that one has quite some

freedom in choosing the form of the STDP window, as long as the

reward kernel ek is adjusted accordingly. For example, instead of a

standard STDP learning window W with W(r)$0 for r.0 and

Figure 6. Setup for reinforcement learning of spike times. (A) Architecture. The trained neuron receives n input spike trains. The neuron m*
receives the same inputs plus additional inputs not accessible to the trained neuron. The reward is determined by the timing differences between the
action potentials of the trained neuron and the neuron m*. (B) A reward kernel with optimal offset from the origin of tk = 26.6 ms. The optimal offset
for this kernel was calculated with respect to the parameters from computer simulation 1 in Table 1. Reward is positive if the neuron spikes around
the target spike or somewhat later, and negative if the neuron spikes much too early.
doi:10.1371/journal.pcbi.1000180.g006
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W(r)#0 for r,0 and a corresponding reward kernel k, one can use

a reversed learning window W9 defined by W9(r);W(2r) and a

reward kernel k9 such that ek9(r) = ek(2r). If Condition 15 is

satisfied for W and k, then it is also satisfied for W9 and k9 (and in

most cases also Condition 14 will be satisfied). This reflects the fact

that in reward modulated STDP the learning window defines the

weight changes in combination with the reward signal.

For a given STDP learning window, the analysis reveals what

reward kernels k are suitable for this learning setup. From

Condition 15, we can deduce that the integral over k should be

small (but positive), whereas the integral
Ð?
{? dr W rð Þek rð Þ should

be large. Hence, for a standard STDP learning window W with

W(r)$0 for r.0 and W(r)#0 for r,0, the convolution ek(r) of the

reward kernel with the PSP should be positive for r.0 and

negative for r,0. In the computer simulation we used a simple

kernel depicted in Figure 6B, which satisfies the aforementioned

constraints. It consists of two double-exponential functions, one

positive and one negative, with a zero crossing at some offset tk
from the origin. The optimal offset tk is always negative and in the

order of several milliseconds for usual PSP-shapes e. We conclude

that for successful learning in this scenario, a positive reward

should be produced if the neuron spikes around the target spike or

somewhat later, and a negative reward should be produced if the

neuron spikes much too early.

Computer Simulation 2: Learning Spike Times
In order to explore this learning scenario in a biologically more

realistic setting, we trained a LIF neuron with conductance based

synapses exhibiting short term facilitation and depression. The

trained neuron and the neuron m* which produced the target spike

train S* both received inputs from 100 input neurons emitting spikes

from a constant rate Poisson process of 15 Hz. The synapses to the

trained neuron were subject to reward-modulated STDP. The

weights of neuron m* were set to w
1
i ~wmax for 0#i,50 and w

1
i ~0

for 50#i,100. In order to simulate a non-realizable target response,

neuron m* received 10 additional synaptic inputs (with weights set to

wmax/2). During the simulations we observed a firing rate of 18.2 Hz

for the trained neuron, and 25.2 Hz for the neuron m*. The

simulations were run for 2 hours simulated biological time.

We performed 5 repetitions of the experiment, each time with

different randomly generated inputs and different initial weight

values for the trained neuron. In each of the 5 runs, the average

synaptic weights of synapses with w
1
i ~wmax and w

1
i ~0

approached their target values, as shown in Figure 7A. In order

to test how closely the trained neuron reproduces the target spike

train S* after learning, we performed additional simulations where

the same spike input was applied to the trained neuron before and

after the learning. Then we compared the output of the trained

neuron before and after learning with the output S* of neuron m*.

Figure 7B shows that the trained neuron approximates the part of

S* which is accessible to it quite well. Figure 7C–F provide more

detailed analyses of the evolution of weights during learning. The

computer simulations confirmed the theoretical prediction that the

neuron can learn well through reward-modulated STDP only if a

certain level of noise is injected into the neuron (see preceding

discussion and Figure S6).

Both the theoretical results and these computer simulations

demonstrate that a neuron can learn quite well through reward-

modulated STDP to respond with specific spike patterns.

Computer Simulation 3: Testing the Analytically Derived
Conditions

Equations 13–15 predict under which relationships between the

parameters involved the learning of particular spike responses

through reward-modulated STDP will be successful. We have

tested these predictions by selecting 6 arbitrary settings of these

parameters, which are listed in Table 1. In 4 cases (marked by light

gray shading in Figure 8) these conditions were not met (either for

the learning of weights with target value wmax, or for the learning of

weights with target value 0. Figure 8 shows that the derived

learning result is not achieved in exactly these 4 cases. On the

other hand, the theoretically predicted weight changes (black bar)

predict in all cases the actual weight changes (gray bar) that occur

for the chosen simulation times (listed in the last column of Table 1)

remarkably well.

Pattern Discrimination with Reward-Modulated STDP
We examine here the question whether a neuron can learn

through reward-modulated STDP to discriminate between two

spike patterns P and N of its presynaptic neurons, by responding

with more spikes to pattern P than to pattern N. Our analysis is

based on the assumption that there exist internal rewards d(t) that

could guide such pattern discrimination. This reward based

learning architecture is biologically more plausible than an

architecture with a supervisor which provides for each input

pattern a target output and thereby directly produces the desired

firing behavior of the neuron (since the question becomes then

how the supervisor has learnt to produce the desired spike

outputs).

We consider a neuron that receives input from n presynaptic

neurons. A pattern X consists of n spike trains, each of time length

T, one for each presynaptic neuron. There are two patterns, P and

N, which are presented in alternation to the neuron, with some

reset time between presentations. For notational simplicity, we

assume that each of the n presynaptic spike trains consists of

exactly one spike. Hence, each pattern can be defined by a list of

spike times: P~ tP
1 , . . . ,tP

n

� �
, N~ tN

1 , . . . ,tN
n

� �
, where tX

i is the

time when presynaptic neuron i spikes for pattern XM{P,N}. A

generalization to the easier case of learning to discriminate spatio-

temporal presynaptic firing patterns (where some presynaptic

neurons produce different numbers of spikes in different patterns)

is straightforward, however the main characteristics of the learning

dynamics are better accessible in this conceptually simpler setup. It

had already been shown in [12] that neurons can learn through

reward-modulated STDP to discriminate between different spatial

presynaptic firing patterns. But in the light of the analysis of [27] it

is still open whether neurons can learn with simple forms of

reward-modulated STDP, such as the one considered in this

article, to discriminate temporal presynaptic firing patterns.

We assume that the reward signal d(t) rewards—after some

delay dr—action potentials of the trained neuron if pattern P was

presented, and punishes action potentials of the neuron if pattern

N was presented. More precisely, we assume that

d tð Þ~

aP
Ð?

0
dr er rð ÞSpost t{dr{rð Þ,

if a pattern P was presented

aN
Ð?

0
dr er rð ÞSpost t{dr{rð Þ,

if a pattern N was presented

8>>><
>>>:

ð16Þ

with some reward kernel er and constants aN,0,aP. The goal of

this learning task is to produce many output spikes for pattern P,

and few or no spikes for pattern N.

The main result of our analysis is an estimate of the expected

weight change of synapse i of the trained neuron for the

presentation of pattern P, followed after a sufficiently long time

T9 by a presentation of pattern N

Reward-Modulated STDP
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Dwi~

ðT 0

0

dt S
dwi tð Þ

dt
TE Pj zS

dwi tð Þ
dt

TE Nj

� �
,

where Æ?æE|X is the expectation over the ensemble given that

pattern X was presented. This weight change can be estimated as

(see Methods)

Dwi~

ð?
{?

drW rð Þ nP tP
i zr
� �

AP
i znN tN

i zr
� �

AN
i

� �
, ð17Þ

Figure 7. Results for reinforcement learning of exact spike times through reward-modulated STDP. (A) Synaptic weight changes of the
trained LIF neuron, for 5 different runs of the experiment. The curves show the average of the synaptic weights that should converge to w

1
i ~0

(dashed lines), and the average of the synaptic weights that should converge to w
1
i ~wmax (solid lines) with different colors for each simulation run.

(B) Comparison of the output of the trained neuron before (top trace) and after learning (bottom trace). The same input spike trains and the same
noise inputs were used before and after training for 2 hours. The second trace from above shows those spike times S* which are rewarded, the third
trace shows the realizable part of S* (i.e. those spikes which the trained neuron could potentially learn to reproduce, since the neuron m* produces
them without its 10 extra spike inputs). The close match between the third and fourth trace shows that the trained neuron performs very well. (C)
Evolution of the spike correlation between the spike train of the trained neuron and the realizable part of the target spike train S*. (D) The angle
between the weight vector w of the trained neuron and the weight vector w* of the neuron m* during the simulation, in radians. (E) Synaptic weights
at the beginning of the simulation are marked with 6, and at the end of the simulation with N, for each plastic synapse of the trained neuron. (F)
Evolution of the synaptic weights w/wmax during the simulation (we had chosen w

1
i ~wmax for i,50, w

1
i ~0 for i$50).

doi:10.1371/journal.pcbi.1000180.g007
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where nX(t) is the postsynaptic rate at time t for pattern X, and the

constants AX
i for XM{P,N} are given by

AX
i ~

aX

ð?
0

dr0er r0ð Þ fc drzr0ð Þz
ðT 0

0

dtfc t{tX
i

� �
nX t{dr{r0ð Þ

" #
:
ð18Þ

As we will see shortly, an interesting learning effect is achieved if

AP
i is positive and AN

i is negative. Since fc(r) is non-negative, a

natural way to achieve this is to choose a positive reward kernel

er(r)$0 for r.0 and er(r) = 0 for r,0 (also, fc(r) and er(r) must not be

identical to zero for all r).

We use Equation 17 to provide insight on when and how the

classification of temporal spike patterns can be learnt with reward-

modulated STDP. Assume for the moment that AN
i ~{AP

i . We

first note that it is impossible to achieve through any synaptic

plasticity rule that the time integral over the membrane potential

of the trained neuron has after training a larger value for input

pattern P than for input pattern N. The reason is that each

presynaptic neuron emits the same number of spikes in both

patterns (namely one spike). This simple fact implies that it is

impossible to train a linear Poisson neuron (with any learning

method) to respond to pattern P with more spikes than to pattern

N. But Equation 17 implies that reward-modulated STDP

increases the variance of the membrane potential for pattern P,

and reduces the variance for pattern N. This can be seen as

follows. Because of the specific form of the STDP learning curve

W(r), which is positive for (small) positive r, negative for (small)

negative r, and zero for large r, Dwi~
Ð?
{? drW rð ÞnP tP

i zr
� �

AP
i

has a potentiating effect on synapse i if the postsynaptic rate for

pattern P is larger (because of a higher membrane potential)

shortly after the presynaptic spike at this synapse i than before that

spike. This tends to further increase the membrane potential after

that spike. On the other hand, since AN
i is negative, the same

situation for pattern N has a depressing effect on synapse i, which

Figure 8. Test of the validity of the analytically derived conditions 13–15 on the relationship between parameters for successful
learning with reward-modulated STDP. Predicted average weight changes (black bars) calculated from Equation 22 match in sign and
magnitude the actual average weight changes (gray bars) in computer simulations, for 6 different experiments with different parameter settings (see
Table 1). (A) Weight changes for synapses with w

1
i ~wmax. (B) Weight changes for synapses with w

1
i ~0. Four cases where constraints 13–15 are not

fulfilled are shaded in light gray. In all of these four cases the weights move into the opposite direction, i.e., a direction that decreases rewards.
doi:10.1371/journal.pcbi.1000180.g008

Table 1. Parameter values used for computer simulation 3 (see Figure 8).

Ex. te [ms] wmax upost
min [Hz] A+ 106 A2/A+ t+ [ms] Ak

+, Ak
2 tk

2 [ms] tsim [h]

1 10 0.012 10 16.62 1.05 20 3.34, 23.12 20 5

2 7 0.020 5 11.08 1.02 15 4.58, 24.17 16 10

3 20 0.010 6 5.54 1.10 25 1.50, 21.39 40 19

4 7 0.020 5 11.08 1.07 25 4.67, 24.17 16 13

5 10 0.015 6 20.77 1.10 25 3.75, 23.12 20 2

6 25 0.005 3 13.85 1.01 25 3.34, 23.12 20 18

doi:10.1371/journal.pcbi.1000180.t001
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counteracts the increased membrane potential after the presyn-

aptic spike. Dually, if the postsynaptic rate shortly after the

presynaptic spike at synapse i is lower than shortly before that

spike, the effect on synapse i is depressing for pattern P. This leads

to a further decrease of the membrane potential after that spike. In

the same situation for pattern N, the effect is potentiating, again

counteracting the variation of the membrane potential. The total

effect on the postsynaptic membrane potential is that the

fluctuations for pattern P are increased, while the membrane

potential for pattern N is flattened.

For the LIF neuron model, and most reasonable other non-

linear spiking neuron models, as well as for biological neurons in-

vivo and in-vitro [28–30], larger fluctuations of the membrane

potential lead to more action potentials. As a result, reward-

modulated STDP tends to increase the number of spikes for

pattern P for these neuron models, while it tends to decrease the

number of spikes for pattern N, thereby enabling a discrimination

of these purely temporal presynaptic spike patterns.

Computer Simulation 4: Learning Pattern Classification
We tested these theoretical predictions through computer

simulations of a LIF neuron with conductance based synapses

exhibiting short-term depression and facilitation. Both patterns, P

and N, had 200 input channels, with 1 spike per channel (hence

this is the extreme where all information lies in the timing of

presynaptic spikes). The spike times were drawn from an uniform

distribution over a time interval of 500 ms, which was the duration

of the patterns. We performed 1000 training trials where the

patterns P and N were presented to the neuron in alternation. To

introduce exploration for this reinforcement learning task, the

neuron had injected 20% of the Ornstein-Uhlenbeck process

conductance noise (see Methods for further details).

The theoretical analysis predicted that the membrane potential

will have after learning a higher variance for pattern P, and a

lower variance for pattern N. When in our simulation of a LIF

neuron the firing of the neuron was switched off (by setting the

firing threshold potential too high) we could observe the

membrane potential fluctuations undisturbed by the reset

mechanism after each spike (see Figure 9C and 9D). The variance

of the membrane potential did in fact increase for pattern P from

2.49 (mV)2 to 5.43 (mV)2 (Figure 9C), and decrease for pattern N

(Figure 9D), from 2.34 (mV)2 to 1.33 (mV)2. The corresponding

plots with the firing threshold included are given in panels E and

F, showing an increased member of spikes of the LIF neuron for

pattern P, and a decreased number of spikes for pattern N.

Furthermore, as Figure 9A and 9B show, the increased variance of

the membrane potential for the positively reinforced pattern P led

to a stable temporal firing pattern in response to pattern P.

We repeated the experiment 6 times, each time with different

randomly generated patterns P and N, and different random initial

synaptic weights of the neuron. The results in Figure 9G and 9H

show that the learning of temporal pattern discrimination through

reward-modulated STDP does not depend on the temporal patterns

that are chosen, nor on the initial values of synaptic weights.

Computer Simulation 5: Training a Readout Neuron with
Reward-Modulated STDP To Recognize Isolated Spoken
Digits

A longstanding open problem is how a biologically realistic

neuron model can be trained in a biologically plausible manner to

extract information from a generic cortical microcircuit. Previous

work [31–35] has shown that quite a bit of salient information

about recent and past inputs to the microcircuit can be extracted

by a non-spiking linear readout neuron (i.e., a perceptron) that is

trained by linear regression or margin maximization methods.

Here we examine to what extent a LIF readout neuron with

conductance based synapses (subject to biologically realistic short

term synaptic plasticity) can learn through reward-modulated

STDP to extract from the response of a simulated cortical

microcircuit (consisting of 540 LIF neurons), see Figure 10A, the

information which spoken digit (transformed into spike trains by a

standard cochlea model) is injected into the circuit. In comparison

with the preceding task in simulation 4, this task is easier because

the presynaptic firing patterns that need to be discriminated differ

in temporal and spatial aspects (see Figure 10B; Figure S10 and

S11 show the spike trains that were injected into the circuit). But

this task is on the other hand more difficult, because the circuit

response (which creates the presynaptic firing pattern for the

readout neuron) differs also significantly for two utterances of the

same digit (Figure 10C), and even for two trials for the same

utterance (Figure 10D) because of the intrinsic noise in the circuit

(which was modeled according to [26] to reflect in-vivo conditions

during cortical UP-states). The results shown in Figure 10E–H

demonstrate that nevertheless this learning experiment was

successful. On the other hand we were not able to achieve in

this way speaker-independent word recognition, which had been

achieved in [31] with a linear readout. Hence further work will be

needed in order to clarify whether biologically more realistic

models for readout neurons can be trained through reinforcement

learning to reach the classification capabilities of perceptrons that

are trained through supervised learning.

Methods

We first describe the simple neuron model that we used for the

theoretical analysis, and then provide derivations of the equations

that were discussed in the preceding section. After that we describe

the models for neurons, synapses, and synaptic background

activity (‘‘noise’’) that we used in the computer simulations.

Finally we provide technical details to each of the 5 computer

simulations that we discussed in the preceding section.

Linear Poisson Neuron Model
In our theoretical analysis, we use a linear Poisson neuron

model whose output spike train S
post
j tð Þ is a realization of a

Poisson process with the underlying instantaneous firing rate

Rj(t). The effect of a spike of presynaptic neuron i at time t9 on

the membrane potential of neuron j is modeled by an increase in

the instantaneous firing rate by an amount wji(t9)e(t2t9), where e
is a response kernel which models the time course of a

postsynaptic potential (PSP) elicited by an input spike. Since

STDP according to [12] has been experimentally confirmed

only for excitatory synapses, we will consider plasticity only for

excitatory connections and assume that wji$0 for all i and

e(s)$0 for all s. Because the synaptic response is scaled by the

synaptic weights, we can assume without loss of generality that

the response kernel is normalized to
Ð?

0
ds e sð Þ~1. In this linear

model, the contributions of all inputs are summed up linearly:

Rj tð Þ~
Xn

i~1

ð?
0

ds wji t{sð Þe sð ÞSi t{sð Þ, ð19Þ

where S1,…,Sn are the n presynaptic spike trains. Since the

instantaneous firing rate R(t) is analogous to the membrane

potential of other neuron models, we occasionally refer to R(t) as

the ‘‘membrane potential’’ of the neuron.

Reward-Modulated STDP
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Figure 9. Training a LIF neuron to classify purely temporal presynaptic firing patterns: a positive reward is given for firing of the neuron
in response to a temporal presynaptic firing pattern P, and a negative reward for firing in response to another temporal pattern N. (A)
The spike response of the neuron for individual trials, during 500 training trials when pattern P is presented. Only the spikes from every 4-th trial are
plotted. (B) As in (A), but in response to pattern N. (C) The membrane potential Vm(t) of the neuron during a trial where pattern P is presented, before
(blue curve) and after training (red curve), with the firing threshold removed. The variance of the membrane potential increases during learning, as
predicted by the theory. (D) As in (C), but for pattern N. The variance of the membrane potential for pattern N decreases during learning, as predicted
by the theory. (E) The membrane potential Vm(t) of the neuron (including action potentials) during a trial where pattern P is presented before (blue
curve) and after training (red curve). The number of spikes increases. (F) As in (E), but for trials where pattern N is given as input. The number of spikes
decreases. (G) Average number of output spikes per trial before learning, in response to pattern P (gray bars) and pattern N (black bars), for 6
experiments with different randomly generated patterns P and N, and different random initial synaptic weights of the neuron. (H) As in (G), for the
same experiments, but after learning. The average number of spikes per trial increases after training for pattern P, and decreases for pattern N.
doi:10.1371/journal.pcbi.1000180.g009
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Figure 10. A LIF neuron is trained through reward-modulated STDP to discriminate as a ‘‘readout neuron’’ responses of generic
cortical microcircuits to utterances of different spoken digits. (A) Circuit response to an utterance of digit ‘‘one’’ (spike trains of 200 out of
540 neurons in the circuit are shown). The response within the time period from 100 to 200 ms (marked in gray) is used as a reference in the
subsequent 3 panels. (B) The circuit response from (A) (black) for the period between 100 and 200 ms, and the circuit response to an utterance of
digit ‘‘two’’ (red). (C) The circuit spike response from (A) (black) and a circuit response for another utterance of digit ‘‘one’’ (red), also shown for the
period between 100 and 200 ms. (D) The circuit spike response from (A) (black), and another circuit response to the same utterance in another trial
(red). The responses differ due to the presence of noise in the circuit. (E) Spike response of the LIF readout neuron for different trials during learning,
for trials where utterances of digit ‘‘two’’ (left plot) and digit ‘‘one’’ (right plot) are presented as circuit inputs. The spikes from each 4th trial are
plotted. (F) Average number of spikes in the response of the readout during training, in response to digit ‘‘one’’ (blue) and digit ‘‘two’’ (green). The
number of spikes were averaged over 40 trials. (G) The membrane potential Vm(t) of the neuron during a trial where an input pattern corresponding
to an utterance of digit ‘‘two’’ is presented, before (blue curve) and after training (red curve), with the firing threshold removed. (H) As in (G), but for
an input pattern corresponding to an utterance of digit ‘‘one’’. The variance of the membrane potential increases during learning for utterances of the
rewarded digit, and decreases for the non-rewarded digit.
doi:10.1371/journal.pcbi.1000180.g010
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Learning Equations
In the following, we denote by SxTE Sj post

k
tð Þ,Spre

i
t0ð Þ the ensemble

average of a random variable x given that neuron k spikes at time t

and neuron i spikes at time t9. We will also sometimes indicate the

variables Y1,Y2,… over which the average of x is taken by writing

SxTY1,Y2,... ...j .

Derivation of Equation 6. Using Equations 5, 1, and 4, we

obtain the expected weight change between time t and t+T

Swji tzTð Þ{wji tð ÞTE

T
~ð?

0

dsfc sð Þ
ð?

0

drW rð ÞSSd tð ÞSpost
j t{sð ÞSpre

i t{s{rð ÞTTTEz

ð?
0

ds fc sð Þ
ð0

{?
dr W rð ÞSSd tð ÞSpost

j t{szrð ÞSpre
i t{sð ÞTTTE

~

ð?
0

dr W rð Þ
ð?

0

ds fc sð ÞSSd tð ÞSpost
j t{sð ÞSpre

i t{s{rð ÞTETTz

ð0

{?
dr W rð Þ

ð?
rj j

ds fc szrð ÞSSd tð ÞSpost
j t{sð ÞSpre

i t{s{rð ÞTETT

~

ð?
0

dr W rð Þ
ð?

0

ds fc sð ÞSDji t,s,rð Þnji t{s,rð ÞTTz

ð0

{?
dr W rð Þ

ð?
rj j

ds fc szrð ÞSDji t,s,rð Þnji t{s,rð ÞTT ,

with Dji(t,s,r) = Æd(t)|Neuron j spikes at t2s, and neuron i spikes at

t2s2ræE, and the joint firing rate nji(t,r) = ÆSj(t)Si(t2r)æE describes

correlations between spike timings of neurons j and i. The joint

firing rate nji(t2s,r) depends on the weight at time t2s. If the

learning rate defined by the magnitude of W(r) is small, the

synaptic weights can be assumed constant on the time scale of T.

Thus, the time scales of neuronal dynamics are separated from

the slow time scale of learning. For slow learning, synaptic

weights integrate a large number of small changes. We can then

expect that averaged quantities enter the learning dynamics. In

this case, we can argue that fluctuations of a weight wji about its

mean are negligible and it can well be approximated by its

average ÆwjiæE (it is ‘‘self-averaging’’, see [21,36]). To ensure that

average quantities enter the learning dynamics, many

presynaptic and postsynaptic spikes as well as many

independently delivered rewards at varying delays have to

occur within T. Hence, in general, the time scale of single spike

occurrences and the time scale of the eligibility trace is required

to be much smaller than the time scale of learning. If time scales

can be separated, we can drop the expectation on the left hand

side of the last equation and write

Swji tzTð Þ{wji tð ÞTE

T
~

wji tzTð Þ{wji tð Þ
T

~
1

T

ðtzT

t

d

dt
wji t0ð Þdt0~

d

dt
Swji tð ÞTT :

We thus obtain Equation 6:

d

dt
Swji tð ÞTT~

ð?
0

dr W rð Þ
ð?

0

ds fc sð ÞSDji t,s,rð Þnji t{s,rð ÞTT

z

ð0

{?
dr W rð Þ

ð?
rj j

ds fc szrð ÞSDji t,s,rð Þnji t{s,rð ÞTT :

Simplification of Equation 6. In order to simplify this

equation, we first observe that W(r) is vanishing for large |r|.

Hence we can approximate the integral over the learning

window by a bounded integral
Ð?
{? dr W rð Þ&

Ð TW

{TW
dr W rð Þ for

some TW.0 and TW%T. In the analyzes of this article, we

consider the case where reward is delivered with a relatively

large temporal delay. To be more precise, we assume that a pre-

post spike pair has an effect on the reward signal only after some

minimal delay dr and that we can write Dji t,s,rð Þ~
d0zD

pre,post
ji t,s,rð Þ for some baseline reward d0 and a part

which depends on the timing of pre-post spike pairs with

D
pre,post
ji t,s,rð Þ~0 for s,dr and dr.TW. We can then

approximate the second term of Equation 6:

ð0

{?
dr W rð Þ

ð?
rj j

ds fc szrð ÞSDji t,s,rð Þnji t{s,rð ÞTT

&
ð0

{TW

dr W rð Þ
ð?

rj j
ds fc szrð ÞS d0zD

pre,post
ji t,s,rð Þ

� �
nji t{s,rð ÞTT

&
ð0

{TW

dr W rð Þ
ð?

0

ds fc sð Þd0Snji t{s,rð ÞTT

�

z

ð?
rj j

ds fc szrð ÞSD
pre,post
ji t,s,rð Þnji t{s,rð ÞTT

#

because Ænji(t2s2r,r)æT<Ænji(t2s,r)æT for rM[2TW,TW] and

TW%T. Since D
pre,post
ji t,s,rð Þ~0 for s#TW, the second term in

the brackets is equivalent to
Ð?

0
ds fc szrð ÞSD

pre,post
ji t,s,rð Þ

nji t{s,rð ÞTT which in turn is approximately given byÐ?
0

ds fc sð ÞSD
pre,post
ji t,s,rð Þnji t{s,rð ÞTT if we assume that

fc(s+r)<fc(s) for s$dr and |r|,TW. We can thus approximate

the second term of Equation 6 as

ð0

{?
dr W rð Þ

ð?
rj j

ds fc szrð ÞSDji t,s,rð Þnji t{s,rð ÞTT

&
ð0

{TW

dr W rð Þ
ð?

0

ds fc sð Þd0Snji t{s,rð ÞTT

�

z

ð?
0

ds fc sð ÞSD
pre,post
ji t,s,rð Þnji t{s,rð ÞTT

�

&
ð0

?
dr W rð Þ

ð?
0

ds fc sð ÞSDji t,s,rð Þnji t{s,rð ÞTT :

With this approximation, the first and second term of Equation 6

can be combined in a single integral to obtain Equation 8.

Derivations for the Biofeedback Experiment
We assume that a reward with the functional form er is delivered

for each postsynaptic spike with a delay dr. The reward as time t is

therefore

d tð Þ~
ð?

0

dr S
post
k t{dr{rð Þer rð Þ:

Weight change for the reinforced neuron (derivation of
Equation 10)

The reward correlation for a synapse ki afferent to the

reinforced neuron is

Reward-Modulated STDP
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Dki t,s,rð Þ~Sd tð ÞTE Sj post

k
t{sð Þ,Spre

i
t{s{rð Þ

~

ð?
0

dr0 er r0ð ÞSS
post
k t{dr{r0ð ÞTE S

post

k
t{sð Þ,Spre

i
t{s{rð Þj

~

ð?
0

dr0 er r0ð Þ nk t{dr{r0ð Þzwkie½ szr{dr{r0ð Þzd s{dr{r0ð Þ�

~

ð?
0

dr0er r0ð Þnk t{dr{r0ð Þzwki

ð?
0

dr0 er r0ð Þe szr{dr{r0ð Þzer s{drð Þ:

If we assume that the output firing rate is constant on the time

scale of the reward function, the first term vanishes. We rewrite the

result as

Dki t,s,rð Þ~er s{drð Þzwki

ð?
{?

dr0 er s{drzr0ð Þe r{r0ð Þ:

The mean weight change for weights to the reinforced neuron is

therefore

d

dt
wki tð Þ~

ð?
{?

dr W rð Þ
ð?

0

ds fc sð Þer s{drð ÞSnki t{s,rð ÞTT

	
z

wki

ð?
{?

dr0 e r{r0ð Þ
ð?

0

ds fc sð Þer s{drzr0ð ÞSnki t{s,rð ÞTT



:

ð20Þ

We show that the second term in the brackets is very small

compared to the first term:

wki

ð?
{?

dr0 e r{r0ð Þ
ð?

0

ds fc sð Þer s{drzr0ð ÞSnki t{s,rð ÞTT~

wki

ð?
{?

dr0 e r{r0ð Þ
ð?

0

ds fc s{r0ð Þer s{drð ÞSnki t{s{r0,rð ÞTT&

wki

ð?
{?

dr0 e r{r0ð Þ
ð?

0

ds fc sð Þer s{drð ÞSnki t{s,rð ÞTT :

The last approximation is based on the assumption that

fc(s)<fc(s2r9) and Ænki(t2r9,r)æT<Ænki(t,r)æT for r9M[2TW2Te,TW].

Here, TW is the time scale of the learning window (see above), and

Te is time scale of the PSP, i.e., we have e(s)<0 for s$Te. SinceÐ?
{? dr e rð Þ~1 by definition, we see that this is the first term in the

brackets of Equation 20 scaled by wki. For neurons with many

input synapses we have wki%1. Thus the second term in the

brackets of Equation 20 is small compared to the first term. We

therefore have

d

dt
wki tð Þ&

ð?
0

ds fc szdrð Þer sð Þ
ð?

{?
dr W rð ÞSnki t{dr{s,rð ÞTT :

Weight change for non-reinforced neurons (derivation of
Equation 11)

The reward correlation of a synapse ji to a non-reinforced

neuron j is given by

Dji t,s,rð Þ~Sd tð ÞTE S
post
j

t{sð Þ,Spre
i

t{s{rð Þj

~

ð?
0

dr0 er r0ð ÞSS
post
k t{dr{r0ð ÞTE S

post
j

t{sð Þ,Spre
i

t{s{rð Þj :

We have

SS
post
k t{dr{r0ð ÞTE S

post
jj t{sð Þ,Spre

i
t{s{rð Þ

~
SS

post
k t{dr{r0ð ÞSpost

j t{sð ÞTE S
pre

i
t{s{rð Þj

SS
post
j t{sð ÞTE S

pre
i

t{s{rð Þj

~
nki t{dr{r0,s{dr{r0ð Þzwkiwjie szr{dr{r0ð Þe rð Þ

nj t{sð Þzwjie rð Þ ,

for which we obtain

Dji t,s,rð Þ~ð?
0

dr0 er r0ð Þ nkj t{dr{r0,s{dr{r0ð Þzwkiwjie szr{dr{r0ð Þe rð Þ
nj t{sð Þzwjie rð Þ :

In analogy to the previous derivation, we assume here that the

firing rate nj(t2s) in the denominator results from many PSPs.

Hence, the single PSP wjie(r) is small compared to nj(t2s). Similarly,

we assume that with weights wki, wji%1, the second term in the

nominator is small compared to the joint firing rate

nkj(t2dr2r9,s2dr2r9). We therefore approximate the reward

correlation by

Dji t,s,rð Þ&
ð?

0

dr0 er r0ð Þ nkj t{dr{r0,s{dr{r0ð Þ
nj t{sð Þ :

Hence, the reward correlation of a non-reinforced neuron depends

on the correlation of this neuron with the reinforced neuron. The

mean weight change for a non-reinforced neuron j?k is therefore

d

dt
wji tð Þ&

ð?
0

ds fc sð Þ
ð?

{?
dr W rð Þ

ð?
0

dr0er(r
0)S

nkj t{dr{r0,s{dr{r0ð Þ
nj t{sð Þ nji t{s,rð ÞTT

This equation deserves a remark for the case that nj(t2s) is zero,

since it appears in the denominator of the fraction. Note that in

this case, both nkj(t2dr2r9,s2dr2r9) and nji(t2s,r) are zero. In fact, if

we take the limit nj(t2s)R0, then both of these factors approach

zero at least as fast. Hence, in the limit of nj(t2s)R0, the term in

the angular brackets evaluates to zero. This reflects the fact that

since STDP is driven by pre- and postsynaptic spikes, there is no

weight change if no postsynaptic spikes occur.

For uncorrelated neurons, Equation 11 evaluates to

zero. For uncorrelated neurons k, j, nkj(t2dr2r9,s2dr2r9) can

be factorized into nk(t2dr2r9)nj(t2s), and we obtain

d

dt
wji tð Þ&

ð?
0

ds fc sð Þ
ð?

{?
dr W rð Þ

ð?
0

dr0er r0ð ÞSnk t{dr{r0ð Þnji t{s,rð ÞTT :

This evaluates approximately to zero if the mean output rate of

neuron k is constant on the time scale of the reward kernel.

Analysis of Spike-Timing-Dependent Rewards (Derivation
of Conditions 13–15)

Below, we will indicate the variables Y1,Y2,… over which the

average of x is taken by writing SxTY1,Y2,... ...j . From Equation 12,

we can determine the reward correlation for synapse i

Reward-Modulated STDP
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Dji t,s,rð Þ~
ð?

{?
dr0k r0ð ÞSS

post
j t{drð ÞS1

t{dr{r0ð ÞTE S
post
j

t{sð Þ,Spre
i

t{s{rð Þj

~

ð?
{?

dr0k r0ð Þ n
post
j t{drð Þzd s{drð Þzwji szr{drð Þe szr{drð Þ

h i

n
1

t{dr{r0ð Þzw
1
i e szr{dr{r0ð Þ

h i
, ð21Þ

where n
post
j tð Þ~SS

post
j tð ÞTE denotes the instantaneous firing rate of the

trained neuron at time t, and n*(t) = ÆS*(t)æE denotes the instantaneous

rate of the target spike train at time t. Since weights are changing

very slowly, we have wji(t2s2r)<wji(t). In the following, we will drop

the dependence of wji on t for brevity. For simplicity, we assume that

input rates are stationary and uncorrelated. In this case (since the

weights are changing slowly), also the correlations between inputs

and outputs can be assumed stationary, nji(t,r) = nji(r). With constant

input rates, we can rewrite Equation 21 as

Dji t,s,rð Þ~kn
1
npost

j zkn
1
d s{drð Þzkn

1
wjie szr{drð Þ

zw
1
i

ð?
{?

dr0k r0ð Þe szr{dr{r0ð Þ

npost
j t{drð Þzd s{drð Þzwji szr{drð Þe szr{drð Þ

h i
,

with k~

ð?
{?

ds k(s). We use this results to obtain the temporally

smoothed weight change for synapse ji. With stationary correlations,

we can drop the dependence of nji on t and write nji(t,r) = nji(r).

Furthermore, we define nW
ji rð Þ~nji rð ÞW rð Þ and obtain

d

dt
wji tð Þ~

ð?
{?

dr W rð Þnji rð Þ
ð?

0

ds fc sð ÞSDji t,s,rð ÞTT

~

ð?
{?

dr nW
ji rð Þk n�npost

j f czn�fc drð Þ
h

zn�wji

ð?
0

ds fc sð Þe szr{drð Þ
�

z

ð?
{?

dr nW
ji rð Þw�i npost

ð?
{?

dr0k r0ð Þ
ð?

0

ds fc sð Þe szr{dr{r0ð Þ

z

ð?
{?

dr nW
ji rð Þw�i

ð?
{?

dr0k r0ð Þfc drð Þe r{r0ð Þ

z

ð?
{?

dr nW
ji rð Þw�i

ð?
{?

dr0k r0ð Þwji

ð?
0

ds fc sð Þe szr{drð Þe szr{dr{r0ð Þ:

We assume that the eligibility function fc(dr)<fc(dr+r) if |r| is on the

time scale of a PSP, the learning window, or the reward kernel, and

that dr is large compared to these time scales. Then, we haveð?
{?

dr nW
ji rð Þ

ð?
{?

dr0 k r0ð Þfc drð Þe r{r0ð Þ~fc drð Þ
ð?

{?
dr nW

ji rð Þek rð Þ

where ek rð Þ~
Ð?
{? dr0 k r0ð Þe r{r0ð Þ is the convolution of the reward

kernel with the PSP. Furthermore, we findð?
{?

dr nW
ji rð Þ

ð?
{?

dr0 k r0ð Þ
ð?

0

ds fc sð Þe szr{drð Þe szr{dr{r0ð Þ

&fc drð Þ
ð?

{?
dr nW

ji rð Þ
ð?

{?
dr0 k r0ð Þ

ð?
0

ds e szr{drð Þe szr{dr{r0ð Þ

~fc drð Þ
ð?

{?
dr nW

ji rð Þ
ð?

0

ds e sð Þek sð Þ:

With these simplifications, and the abbreviation nW
ji ~

Ð?
{? dr nW

ji rð Þ we

obtain the weight change at synapse ji

d

dt
wji tð Þ&kn�npost

j nW
ji f czfc drð ÞknW

ji n�zn�wjizw�i n
post
j

h i

zfc drð Þw�i
ð?

{?
drW rð Þnji rð Þek rð Þzfc drð Þwjiw

�
i nW

ji

ð?
{?

dr e rð Þek rð Þ,

where nW
ji ~

Ð?
{? drW rð Þnji rð Þ.

For uncorrelated Poisson input spike trains of rate npre
i and the

linear Poisson neuron model, the input-output correlations are

nji rð Þ~n
pre
i n

post
j zwjin

pre
i e rð Þ. With these correlations, we ob-

tain nW
ji ~npre

i npost
j Wzwjin

pre
i W e where W~

Ð?
{? dr W rð Þ, and

W e~
Ð?
{? dr e rð ÞW rð Þ. The weight change at synapse ji is then

d

dt
wji tð Þ&kf cn�npre

i npost
j npost

j WzwjiW e

h i
zkfc drð Þnpre

i npost
j WzwjiW e

h i
n�zn�wjizw�i npost

j

h i

zfc drð Þw�i npre
i npost

j

ð?
{?

dr W rð Þek rð Þzwji

ð?
{?

dr W rð Þe rð Þek rð Þ
� �

zfc drð Þw�i wjin
pre
i npost

j WzwjiW e

h i ð?
0

dr e rð Þek rð Þ,

ð22Þ

We will now bound the expected weight change for synapses ji

with w
1
i ~wmax and for synapses jk with w

1
k~0. In this way we can

derive conditions for which the expected weight change for the

former synapses is positive, and that for the latter type is negative.

First, we assume that the integral over the reward kernel is

positive. In this case, the weight change given by Equation 22 is

negative for synapses i with w
1
i ~0 if and only if npre

i w0, and

{npost
j WwwjiW e. In the worst case, wji is wmax and npost

j is small.

We have to guarantee some minimal output rate npost
min such that

even if wji = wmax, this inequality is fulfilled. This could be

guaranteed by some noise current. Given such minimal output

rate, we can state the first inequality which guarantees conver-

gence of weights wji with w
1
i ~0

{n
post
min WwwmaxW e:

For synapses ji with w
1
i ~wmax, we obtain two more conditions.

The approximate weight change is given by

d

dt
wji tð Þ 1

n
pre
i

&k n
post
j WzwjiW e

h i

n�npost
j f czfc drð Þn�zfc drð Þn�wjizfc drð Þnpost

j wmax

h i

zfc drð Þwmaxn
post
j

ð?
{?

dr W rð Þek rð Þ

zfc drð Þwmaxwji

ð?
{?

dr W rð Þe rð Þek rð Þ

zfc drð Þwmaxwjin
post
j W

ð?
0

dr e rð Þek rð Þ

zfc drð Þwmaxw2
jiW e

ð?
0

dr e rð Þek rð Þ:

(21)
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The last term in this equation is positive and small. We can ignore

it in our sufficient condition. The second to last term is negative.

We will include in our condition that the third to last term

compensates for this negative term. Hence, the second condition is

ð?
{?

dr W rð Þe rð Þek rð Þ§{n
post
j W

ð?
0

dr e rð Þek rð Þ,

which should be satisfied in most setups. If we assume that this

holds, we obtain

d

dt
wji tð Þ§k n

post
j WzwjiW e

h i
n�npost

j f czfc drð Þn�zfc drð Þn�wjizfc drð Þnpost
j wmax

h i

zfc drð Þwmaxn
post
j

ð?
{?

dr W rð Þek rð Þ:

which should be positive. We obtain the following inequality

ð?
{?

dr W rð Þek rð Þw{Wk
n
1
n

post
j

wmax

f c

fc drð Þ
z

n
1

wmax

zn
1
znpost

" #
:

All three inequalities are summarized in the following:

{npost
min WwwmaxW eð?

{?
dr W rð Þe rð Þek rð Þ§{npost

maxW

ð?
0

dr e rð Þek rð Þ

ð?
{?

dr W rð Þek rð Þw{Wk
n�npost

max

wmax

f c

fc drð Þ
z

n�

wmax

zn�znpost
max

� �
,

where npost
max is the maximal output rate. If these inequalities are

fulfilled and input rates are positive, then the weight vector

converges on average from any initial weight vector to w*. The

second condition is less severe, and should be easily fulfilled in

most setups. If this is the case, the first Condition 13 ensures that

weights with w* = 0 are depressed while the third Condition 15

ensures that weights with w* = wmax are potentiated.

Analysis of the Pattern Discrimination Task (Derivation of
Equation 17)

We assume that a trial consists of the presentation of a single

pattern starting at time t = 0. We compute the weight change for a

single trial given that pattern XM{P,N} was presented with the help

of Equations 1, 3, and 4 as

d

dt
wi tð Þ

����
X

~

ð?
0

dsfc sð Þ
ð?

0

drW rð ÞSpost t{sð Þd t{s{r{tX
i

� ��

z

ð?
0

drW {rð ÞSpost t{s{rð Þd t{s{tX
i

� ��
d tð Þ

~aX

ð?
0

dsfc sð Þ
ð?

0

drW rð ÞSpost t{sð Þd t{s{r{tX
i

� ��

z

ð?
0

drW {rð ÞSpost t{s{rð Þd t{s{tX
i

� �� ð?
0

dr0er r0ð ÞSpost t{dr{r0ð Þ

~aX

ð?
0

drfc t{r{tX
i

� �
W rð Þ

ð?
0

dr0er r0ð ÞSpost rztX
i

� �
Spost t{dr{r0ð Þ

zaX

ð?
0

drfc t{tX
i

� �
W {rð Þ

ð?
0

dr0er r0ð ÞSpost tX
i {r
� �

Spost t{dr{r0ð Þ:

We can compute the average weight change given that pattern X

was presented:

S
d

dt
wi tð ÞTE Xj ~aX

ð?
0

drfc t{r{tX
i

� �

W rð Þ
ð?

0

dr0er r0ð ÞSSpost tX
i zr
� �

Spost t{dr{r0ð ÞTE Xj

zaX

ð?
0

drfc t{tX
i

� �

W {rð Þ
ð?

0

dr0er r0ð ÞSSpost tX
i {r
� �

Spost t{dr{r0ð ÞTE Xj :

If we assume that fc is approximately constant on the time scale of

the learning window W, we can simplify this to

S
d

dt
wi tð ÞTE Xj ~

ð?
{?

drfc t{tX
i

� �
W rð Þð?

0

dr0er r0ð ÞSSpost tX
i zr
� �

Spost t{dr{r0ð ÞTE Xj aX :

For the linear Poisson neuron, we can write the auto-correlation

function as

SSpost tX
i zr

� �
Spost t{dr{r0ð ÞTE Xj ~ nX tX

i zr
� �

nX t{dr{r0ð Þ
�

znX tX
i zr
� �

d tX
i zr{tzdrzr0

� ��
~nX tX

i zr
� �

nX t{dr{r0ð Þz
�

d tX
i zr{tzdrzr0
� ��

,

where nX(t) = ÆSpost(t)æE|X is the ensemble average rate at time t given

that pattern X was presented. If an experiment for a single pattern

runs over the time interval [0,T9], we can compute the total average

weight change DwX
i of a trial given that pattern X was presented as

DwX
i ~

ðT 0

0

dtS
d

dt
wi tð ÞTE Xj

~aX

ð?
{?

drW rð ÞnX tX
i zr

� � ðT 0

0

dtfc t{tX
i

� � ð?
0

dr0er r0ð Þ

nX t{dr{r0ð Þzd tX
i zr{tzdrzr0
� �� �

~aX

ð?
{?

drW rð ÞnX tX
i zr

� � ð?
0

dr0er r0ð Þ

fc rzdrzr0ð Þz
ðT 0

dr

dtfc t{tX
i

� �
nX t{dr{r0ð Þ

" #

&aX

ð?
{?

drW rð ÞnX tX
i zr

� � ð?
0

dr0er r0ð Þ

fc drzr0ð Þz
ðT 0

0

dtfc t{tX
i

� �
nX t{dr{r0ð Þ

" #

ð23Þ

By defining

AX
i ~aX

ð?
0

dr0er r0ð Þ fc drzr0ð Þz
ðT 0

0

dtfc t{tX
i

� �
nX t{dr{r0ð Þ

" #
,

we can write Equation 23 as

Reward-Modulated STDP
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DwX
i ~

ð?
{?

drW rð ÞnX tX
i zr
� �

AX
i :

We assume that eligibility traces and reward signals have settled to

zero before a new pattern is presented. The expected weight change

for the successive presentation of both patterns is therefore

Dwi~

ð?
{?

drW rð Þ nP tP
i zr

� �
AP

i znN tN
i zr

� �
AN

i

� �
:

The equations can easily be generalized to the case where multiple

input spikes per synapse are allowed and where jitter on the

templates is allowed. However, the main effect of the rule can be

read off the equations given here.

Common Models and Parameters of the Computer
Simulations

We describe here the models and parameter values that were

used in all our computer simulations. We will specify in a

subsequent section the values of other parameters that had to be

chosen differently in individual computer simulations, in depen-

dence of their different setups and requirements of each computer

simulation.

LIF Neuron Model
For the computer simulations LIF neurons with conductance-

based synapses were used. The membrane potential Vm(t) of this

neuron model is given by:

Cm
dVm tð Þ

dt
~{

Vm tð Þ{Vresting

Rm

{
XKe

j~1

ge,j tð Þ Vm tð Þ{Eeð Þ{
XKi

j~1

gi,j Vm tð Þ{Eið Þ{Inoise tð Þ,
ð24Þ

where Cm is the membrane capacitance, Rm is the membrane

resistance, Vresting is the resting potential, and ge,j(t) and gi,j(t) are the

Ke and Ki synaptic conductances from the excitatory and inhibitory

synapses respectively. The constants Ee and Ei are the reversal

potentials of excitatory and inhibitory synapses. Inoise represents the

synaptic background current which the neuron receives (see below

for details).

Whenever the membrane potential reaches a threshold value

Vthresh, the neuron produces a spike, and its membrane potential is

reset to the value of the reset potential Vreset. After a spike, there is a

refractory period of length Trefract, during which the membrane

potential of the neuron remains equal to the value Vm(t) = Vreset.

After the refractory period Vm(t) continues to change according to

Equation 24.

For a given synapse, the dynamics of the synaptic conductance

g(t) is defined by

dg tð Þ
dt

~{
g tð Þ
tsyn

z
X

k

A t kð Þztdelay

� �
d t{t kð Þ{tdelay

� �
, ð25Þ

where A(t) is the amplitude of the postsynaptic response (PSR) to a

single presynaptic spike, which varies over time due to the inherent

short-term dynamics of the synapse, and {t(k)} are the spike times

of the presynaptic neuron. The conductance of the synapse

decreases exponentially with time constant tsyn, and increases

instantaneously by amount of A(t) whenever the presynaptic

neuron spikes.

In all computer simulations we used the following values for the

neuron and synapse parameters. The membrane resistance of the

neurons was Rm = 100 MV, the membrane capacitance

Cm = 0.3 nF, the resting potential, reset potential and the initial

value of the membrane potential had the same value of

Vresting = Vreset = Vm(0) = 270 mV, the threshold potential was set

to Vthresh = 259 mV and the refractory period Trefract = 5 ms. For

the synapses we used a time constant set to tsyn = 5 ms, reversal

potential Ee = 0 mV for the excitatory synapses and Ee = 275 mV

for the inhibitory synapses. All synapses had a synaptic delay of

tdelay = 1 ms.

Short-Term Dynamics of Synapses
We modeled the short-term dynamics of synapses according to

the phenomenological model proposed in [37], where the

amplitude Ak = A(tk+tdelay) of the postsynaptic response for the kth

spike in a spike train with inter-spike intervals D1,D2,…,Dk21 is

calculated with the following equations

Ak~w:uk
:Rk

uk~Uzuk{1 1{Uð Þe{Dk{1=F

Rk~1z Rk{1{uk{1Rk{1{1ð Þe{Dk{1=D,

ð26Þ

with hidden dynamic variables uM[0,1] and RM[0,1] whose initial

values for the 1st spike are u1 = U and R = 1 (see [38] for a

justification of this version of the equations, which corrects a small

error in [37] ). The variable w is the synaptic weight which scales

the amplitudes of postsynaptic responses. If long-term plasticity is

introduced, this variable is a function of time. In the simulations,

for the neurons in the circuits the values for the U, D and F

parameters were drawn from Gaussian distributions with mean

values which depended on whether the type of presynaptic and

postsynaptic neuron of the synapse is excitatory or inhibitory, and

were chosen according to the data reported in [37] and [39]. The

mean values of the Gaussian distributions are given in Table 2,

and the standard deviation was chosen to be 50% of its mean.

Negative values were replaced with values drawn from uniform

distribution with a range between 0 and twice the mean value. For

the simulations involving individual trained neurons, the U, D,

and F parameters of these neurons were set to the values from

Table 2.

We have carried out control experiments with current-based

synapses that were not subject to short-term plasticity (see Figure

S5, Figure S8, and Figure S9; successful control experiments with

static current-based synapses were also carried out for computer

simulation 1, results not shown). We found that the results of all

Table 2. Mean values of the U, D, and F parameters in the
model from [37] for the short-term dynamics of synapses,
depending on the type of the presynaptic and postsynaptic
neuron (excitatory or inhibitory).

Source/Dest. Exc. (U, D, F) Inh. (U, D, F)

Exc. 0.5, 1.1, 0.02 0.25, 0.7, 0.02

Inh. 0.05, 0.125, 1.2 0.32, 0.144, 0.06

These mean values, based on experimental data from [37,39], were used in all
computer simulations.
doi:10.1371/journal.pcbi.1000180.t002

Reward-Modulated STDP

PLoS Computational Biology | www.ploscompbiol.org 20 October 2008 | Volume 4 | Issue 10 | e1000180



our computer simulations also hold for static current-based

synapses.

Model of Background Synaptic Activity
To reproduce the background synaptic input cortical neurons

receive in vivo, the neurons in our models received an additional

noise process as conductance input. The noise process we used is a

point-conductance approximation model, described in [26].

According to [26], this noise process models the effect of a

bombardment by a large number of synaptic inputs in vivo, which

causes membrane potential depolarization, referred to as ‘‘high

conductance’’ state. Furthermore, it was shown that it captures the

spectral and amplitude characteristics of the input conductances of

a detailed biophysical model of a neocortical pyramidal cell that

was matched to intracellular recordings in cat parietal cortex in

vivo. The ratio of average contributions of excitatory and

inhibitory background conductances was chosen to be 5 in

accordance to experimental studies during sensory responses (see

[40–42]). In this model, the noisy synaptic current Inoise in

Equation 24 is a sum of two currents:

Inoise tð Þ~ge tð Þ Vm tð Þ{Eeð Þzgi tð Þ Vm tð Þ{Eið Þ, ð27Þ

where ge(t) and gi(t) are time-dependent excitatory and inhibitory

conductances. The values of the respective reversal potentials were

Ee = 0 mV and Ei = 275 mV. The conductances ge(t) and gi(t) were

modeled according to [26] as a one-variable stochastic process

similar to an Ornstein-Uhlenbeck process:

dge tð Þ
dt

~{
1

te

ge tð Þ{ge0½ �z
ffiffiffiffiffiffi
De

p
x1 tð Þ

dgi tð Þ
dt

~{
1

ti

gi tð Þ{gi0½ �z
ffiffiffiffiffi
Di

p
x2 tð Þ,

with mean ge0 = 0.012 mS, noise-diffusion constant De = 0.003 mS

and time constant te = 2.7 ms for the excitatory conductance, and

mean gi0 = 0.057 mS, noise-diffusion constant Di = 0.0066 mS, and

time constant ti = 10.5 ms for the inhibitory conductance. x1(t) and

x2(t) are Gaussian white noise of zero mean and unit standard

deviation.

Since these processes are Gaussian stochastic processes, they can

be numerically integrated by an exact update rule:

ge tzDð Þ~ge0z ge tð Þ{ge0½ �e{D
tezAeN1 0,1ð Þ

gi tzDð Þ~gi0z gi tð Þ{gi0½ �e{D
ti zAiN2 0,1ð Þ,

where N1(0,1) and N2(0,1) are normal random numbers (zero

mean, unit standard deviation) and Ae, Ai are amplitude

coefficients given by:

Ae~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dete

2
1{e

{2D
te

h ir

Ai~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Diti

2
1{e

{2D
ti

h ir
:

Reward-Modulated STDP
For the computer simulations we used the following parameters

for the STDP window function W(r): A+ = 0.01wmax, A2/A+ = 1.05,

t+ = t2 = 30 ms. wmax denotes the hard bound of the synaptic

weight of the particular plastic synapse. Note that the parameter

A+ can be given arbitrary value in this plasticity rule, since it can be

scaled together with the reward signal, i.e. multiplying the reward

signal by some constant and dividing A+ by the same constant

results in identical time evolution of the weight changes. We have

set A+ to be 1% of the maximum synaptic weight.

We used the a-function to model the eligibility trace kernel fc(t)

fc tð Þ~
t
te

e
t

te , if tw0

0 , otherwise
,

(
ð28Þ

where the time constant te was set to te = 0.4 s in all computer

simulations.

For computer simulations 1 and 4 we performed control

experiments (see Figure S3, Figure S4, and Figure S7) with the

weight-dependent synaptic update rule proposed in [22], instead

of the purely additive rule in Equation 3. We used the parameters

proposed in [22], i.e. m = 0.4, a = 0.11, t+ = t2 = 20 ms. The w0

parameter was calculated according to the formula:

w0~
1
2

wmaxa1=1{m where wmax is the maximum synaptic weight

of the synapse. 1
2

wmax is equal to the initial synaptic weight for the

circuit neurons, or to the mean of the distribution of the initial

weights for the trained neurons.

Initial Weights of Trained Neurons
The synaptic weights of excitatory synapses to the trained

neurons in experiments 2–5 were initialized from a Gaussian

distribution with mean wmax/2. The standard deviation was set to

wmax/10 bounded within the range [3wmax/10,7wmax/10].

Software
All computer simulations were carried out with the PCSIM

software package (http://www.lsm.tugraz.at/pcsim). PCSIM is a

parallel simulator for biologically realistic neural networks with a

fast c++ simulation core and a Python interface. It has been

developed by Thomas Natschläger and Dejan Pecevski. The time

step of simulation was set to 0.1 ms.

Details to Individual Computer Simulations
For all computer simulations, both for the cortical microcircuits

and readout neurons, the same parameters values for the neuron

and synapse models and the reward-modulated STDP rule were

used, as specified in the previous section (except in computer

simulation 3, where the goal was to test the theoretical predictions

for different values of the parameters). Each of the computer

simulations in this article modeled a specific task or experimental

finding. Consequently, the dependence of the reward signal on the

behavior of the system had to be modeled in a specific way for

each simulation (a more detailed discussion of the reward signal

can be found in the Discussion section). The parameters for that

are given below in separate subsections which address the

individual simulations. Furthermore, some of the remaining

parameters in the experiments, i.e. the values of the synaptic

weights, the number of synapses of a neuron, number of neurons

in the circuit and the Ornstein-Uhlenbeck (OU) noise levels were

chosen to achieve different goals depending on the particular

experiment. Briefly stated, these values were tuned to achieve a

certain level of firing activity in the neurons, a suitable dynamical

regime of the activity in the circuits, and a specific ratio between

amount of input the neurons receive from the input synapses and

the input generated by the noise process.

Reward-Modulated STDP
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We carried out two types of simulations: simulations of cortical

microcircuits in computer simulations 1 and 5, and training of

readout neurons in computer simulations 2, 3, 4, and 5. In the

following we discuss these two types of simulations in more detail.

Cortical Microcircuits
The values of the initial weights of the excitatory and inhibitory

synapses for the cortical microcircuits are given in Table 3. All

synaptic weights were bounded in the range between 0 and twice

the initial synaptic weight of the synapse.

The cortical microcircuit was composed of 4000 neurons

connected randomly with connection probabilities described in

Details to computer simulation 1. The initial synaptic weights of

the synapses and the levels of OU noise were tuned to achieve a

spontaneous firing rate of about 4.6 Hz, while maintaining an

asynchronous irregular firing activity in the circuit. 50% of all

neurons (randomly chosen, 50% excitatory and 50% inhibitory)

received downscaled OU noise (by a factor 0.2 from the model

reported in [26]), with the subtracted part substituted by additional

synaptic input from the circuit. The input connection probabilities

of these neurons were scaled up, so that the firing rates remain in

the same range as for the other neurons. This was done in order to

observe how the learning mechanisms work when most of the

input conductance in the neuron comes from a larger number of

input synapses which are plastic, rather than from a static noise

process. The reinforced neurons were randomly chosen from this

group of neurons.

We chose a smaller microcircuit, composed of 540 neurons, for

the computer simulation 5 in order to be able to perform a large

number of training trials. The synaptic weights in this smaller

circuit were chosen (see Table 3) to achieve an appropriate level of

firing activity in the circuit that is modulated by the external input.

The circuit neurons had injected an Ornstein-Uhlenbeck (OU)

noise multiplied by 0.4 in order to emulate the background

synaptic activity in neocortical neurons in vivo, and test the

learning in a more biologically realistic settings. This produced

significant trial-to-trial variability in the circuit response (see

Figure 10D). A lower value of the noise level could also be used

without affecting the learning, whereas increasing the amount of

injected noise would slowly deteriorate the information that the

circuit activity maintains about the injected inputs, resulting in a

decline of the learning performance.

Readout Neurons
The maximum values of the synaptic weights of readout

neurons for computer simulations 2, 4, and 5, together with the

number of synapses of the neurons, are given in Table 4.

The neuron in computer simulation 2 had 100 synapses. We

chose 200 synapses for the neuron in computer simulation 4, in

order to improve the learning performance. Such improvement of

the learning performance for larger numbers of synapses is in

accordance with our theoretical analysis (see Equation 17), since

for learning the classification of temporal patterns the temporal

variation of the voltage of the postsynaptic membrane turns out to

be of critical importance (see the discussion after Equation 17).

This temporal variation depends less on the shape of a single EPSP

and more on the temporal pattern of presynaptic firing when the

number of synapses is increased. In computer simulation 5 the

readout neuron received inputs from all 432 excitatory neurons in

the circuit. The synaptic weights were chosen in accordance with

the number of synapses in order to achieve a firing rate suitable for

the particular task, and to balance the synaptic input and the noise

injections in the neurons.

For the pattern discrimination task (computer simulation 4) and

the speech recognition task (computer simulation 5), the amount of

noise had to be chosen to be high enough to achieve sufficient

variation of the membrane potential from trial to trial near the

firing threshold, and low enough so that it would not dominate the

fluctuations of the membrane potential. In the experiment where

the exact spike times were rewarded (computer simulation 2), the

noise had a different role. As described in the Results section, there

the noise effectively controls the amount of depression. If the noise

(and therefore the depression) is too weak, w* = 0 synapses do not

converge to 0. If the noise is too strong, w* = wmax synapses do not

converge to wmax. To achieve the desired learning result, the noise

level should be in a range where it reduces the correlations of the

synapses with w* = 0 so that the depression of STDP will prevail,

but at the same time is not strong enough to do the same for the

other group of synapses with w* = wmax, since they have stronger

pre-before-post correlations. For our simulations, we have set the

noise level to the full amount of OU noise.

Details to Computer Simulation 1: Model for Biofeedback
Experiment

The cortical microcircuit model consisted of 4000 neurons with

twenty percent of the neurons randomly chosen to be inhibitory,

and the others excitatory. The connections between the neurons

were created randomly, with different connectivity probabilities

depending on whether the postsynaptic neuron received the full

amount of OU noise, or downscaled OU noise with an additional

compensatory synaptic input from the circuit. For neurons in the

latter sub-population, the connection probabilities were pee = 0.02,

pei = 0.02, pie = 0.024 and pii = 0.016 where the ee, ei, ie, ii indices

designate the type of the presynaptic and postsynaptic neurons

(e = excitatory or i = inhibitory). For the other neurons the

corresponding connection probabilities were downscaled by 0.4.

The resulting firing rates and correlations for both types of

excitatory neurons are plotted in Figure S1 and Figure S2.

The shape of the reward kernel er(t) was chosen as a difference of

two a-functions

Table 3. Specific parameter values for the cortical
microcircuits in computer simulation 1 and 5.

Simulation
No. Neurons pee, pei, pie, pii

wexc(0)
[nS]

winh

[nS] COU

1 4000 0.02,0.02,0.024,0.016 10.7 211.6 1.0, 0.2

5 540 0.1 0.784 5.1 0.4

pconn is the connection probability, wexc(0) and winh(0) are the initial synaptic
weights for the excitatory and inhibitory synapses respectively, and COU is the
scaling factor for the Ornstein-Uhlenbeck noise injected in the neurons.
doi:10.1371/journal.pcbi.1000180.t003

Table 4. Specific parameter values for the trained (readout)
neurons in computer simulation 2, 4, and 5.

Simulation No. Num. Synapses wmax [nS] COU

2 100 11.9 1.0

4 200 5.73 0.2

5 432 2.02 0.2

wmax is the upper hard bound of the synaptic weights of the synapses. COU is
the scaling factor for the Ornstein-Uhlenbeck noise injected in the neurons.
doi:10.1371/journal.pcbi.1000180.t004
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one positive a-pulse with a peak at 0.4 sec after the corresponding

spike, and one long-tailed negative a-pulse which makes sure that

the integral over the reward kernel is zero. The parameters for the

reward kernel were Az
r ~1:379, A{

r ~0:27, tz
r ~0:2 s, t{

r ~1 s, and

dr = 0.2 s, which produced a peak value of the reward pulse 0.4 s

after the spike that caused it.

Details to Computer Simulation 2: Learning Spike Times
We used the following function for the reward kernel k(r)

k rð Þ~
Ak

z e
{t{tk

tk
1 {e

{t{tk
tk
2

	 

, if t{tk§0

{Ak
{ e

{t{tk
tk
1 {e

{t{tk
tk
2

	 

, otherwise

8>>><
>>>:

ð30Þ

where Ak
z and Ak

{ are positive scaling constants, tk
1 and tk

2 define

the shape of the two double-exponential functions the kernel is

composed of, and tk defines the offset of the zero-crossing from the

origin. The parameter values used in our simulations were

Ak
z~0:1457, Ak

{~{0:1442, tk
1~30 ms, tk

2~4 ms and tk = 21 ms.

The reward delay was equal to dr = 0.4 s.

Details to Computer Simulation 3: Testing the
Analytically Derived Conditions

We used a linear Poisson neuron model as in the theoretical

analysis with static synapses and exponentially decaying postsyn-

aptic responses e sð Þ~e {s=teð Þte. The neuron had 100 excitatory

synapses, except in experiment #6, where we used 200 synapses.

In all experiments the target neuron received additional 10

excitatory synapses with weights set to wmax. The input spike trains

were Poisson processes with a constant rate of rpre = 6 Hz, except in

experiment # 6 where the rate was rpre = 3 Hz. The weights of the

target neuron were set to w
1
i ~wmax for 0#i,50 and w

1
i ~0 for

50#i,100.

The time constants of the reward kernel were tk
2~4 ms, whereas

tk
1 had different values in different experiments (reported in

table 1). The value of tk was always set to an optimal value such

that the ek 0ð Þ~
Ð?

0
k {sð Þe sð Þ~0. The time constant t2 of the

negative part of the STDP window function W(r) was set to t+. The

reward signal was delayed by td = 0.4 s. The simulations were

performed for varying durations of simulated biological time (see

the tsim-column in Table 1).

Details to Computer Simulation 4: Learning Pattern
Classification

We used the reward signal from Equation 16, with an a-

function for the reward kernel er rð Þ~ e
t te{t=t, and the reward

delay dr set to 300 ms. The amplitudes of the positive and negative

pulses were aP = 2aN = 1.435 and the time constant of the reward

kernel was t = 100 ms.

Details to Computer Simulation 5: Training a Readout
Neuron with Reward-Modulated STDP To Recognize
Isolated Spoken Digits

Spike representations of speech utterances. The speech

utterances were preprocessed by the cochlea model described in

[43], which captures the filtering properties of the cochlea and hair

cells in the human inner ear. The resulting analog signals were

encoded by spikes with the BSA spike encoding algorithm

described in [44]. We used the same preprocessing to generate

the spikes as in [45]. The spike representations had a duration of

about 400 ms and 20 input channels. The input channels were

connected topographically to the cortical microcircuit model. The

neurons in the circuit were split into 20 disjunct subsets of 27

neurons, and each input channel was connected to the 27 neurons

in its corresponding subsets. The readout neuron was trained with

20 different spike inputs to the circuit, where 10 of them resulted

from utterances of digit ‘‘one’’, and the other 10 resulted from

utterances of digit ‘‘two’’ by the same speaker.

Training procedure. We performed 2000 training trials,

where for each trial a spike representation of a randomly chosen

utterance out of 10 utterances for one digit was injected into the

circuit. The digit changed from trial to trial. Whenever the readout

neuron spiked during the presentation of an utterance of digit

‘‘two’’, a positive pulse was generated in the reward signal, and

accordingly, for utterances of digit ‘‘one’’, a negative pulse in the

reward was generated. We used the reward signal from

Equation 16. The amplitudes of the positive and negative pulses

were aP = 2aN = 0.883. The time constant of the reward kernel

er(r) was t = 100 ms. The pulses in the reward were delayed

dr = 300 ms from the spikes that caused them.

Cortical microcircuit details. The cortical microcircuit

model consisted of 540 neurons with twenty percent of the

neurons randomly chosen to be inhibitory, and the others

excitatory. The recurrent connections in the circuit were created

randomly with a connection probability of 0.1. Long-term

plasticity was not modeled in the circuit synapses.

The synapses for the connections from the input neurons to the

circuit neurons were static, current based with axon conduction

delay of 1 ms, and exponentially decaying PSR with time constant

te = 3 ms and amplitude winput = 0.715 nA.

Discussion

We have presented in this article analytical tools which make it

possible to predict under which conditions reward-modulated

STDP will achieve a given learning goal in a network of neurons.

These conditions specify relationships between parameters and

auxiliary functions (learning curves for STDP, eligibility traces,

reward signals etc.) that are involved in the specification of the

reward-modulated STDP learning rule. Although our analytical

results are based on some simplifying assumptions, we have shown

that they predict quite well the outcomes of computer simulations

of quite complex models for cortical networks of neurons.

We have applied this learning theory for reward-modulated

STDP to a number of biologically relevant learning tasks. We have

shown that the biofeedback result of Fetz and Baker [17] can in

principle be explained on the basis of reward-modulated STDP.

The underlying credit assignment problem was extremely difficult,

since the monkey brain had no direct information about the

identity of the neuron whose firing rate was relevant for receiving

rewards. This credit assignment problem is even more difficult

from the perspective of a single synapse, and hence for the

application of a local synaptic plasticity rule such as reward-

modulated STDP. However our theoretical analysis (see

Equations 10 and 11) has shown that the longterm evolution of

synaptic weights depended only on the correlation of pairs of pre-

and postsynaptic spikes with the reward signal. Therefore the

firing rate of the rewarded neuron increased (for a computer

simulation of a recurrent network consisting of 4000 conductance

based LIF neurons with realistic background noise typical for in-

vivo conditions, and 228954 synapses that exhibited data-based
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short term synaptic plasticity) within a few minutes of simulated

biological time, like in the experimental data of [17], whereas the

firing rates of the other neurons remained invariant (see Figure 4B).

We were also able to model differential reinforcement of two

neurons in this way (Figure 2). These computer simulations

demonstrated a remarkable stability of the network dynamics (see

Figures 2A, 4A, and 5) in spite of the fact that all excitatory

synapses were continuously subjected to reward-modulated STDP.

In particular, the circuit remained in the asynchronous irregular

firing regime, that resembles spontaneous firing activity in the

cortex [9]. Other STDP-rules (without reward modulation) that

maintain this firing regime have previously been exhibited in [22].

It was also reported in [17], and further examined in [46], that

bursts of the reinforced neurons were often accompanied by

activations of specific muscles in the biofeedback experiment by

Fetz and Baker. But the relationship between bursts of the

recorded neurons in precentral motor cortex and muscle

activations was reported to be quite complex and often dropped

out after continued reinforcement of the neuron alone. Further-

more in [46] it was shown that all neurons tested in that study

could be dissociated from their correlated muscle activity by

differentially reinforcing simultaneous suppression of EMG

activity. These results suggest that the solution of the credit

assignment problem by the monkeys (to stronger activate that

neuron out of billions of neurons in their precentral gyrus that was

reinforced) may have been supported by large scale exploration

strategies that were associated with muscle activations. But the

previously mentioned results on differential reinforcements of two

nearby neurons suggest that this large scale exploration strategy

had to be complemented by exploration on a finer spatial scale

that is difficult to explain on the basis of muscle activations (see

[19] for a detailed discussion).

Whereas this learning task focused on firing rates, we have also

shown (see Figure 7) that neurons can learn via reward-modulated

STDP to respond to inputs with particular spike trains, i.e.,

particular temporal output patterns. It has been pointed out in

[27] that this is a particularly difficult learning task for reward-

modulated STDP, and it was shown there that it can be

accomplished with a modified STDP rule and more complex

reward prediction signals without delays. We have complemented

the results of [27] by deriving specific conditions (Equations 13–

15) under which this learning task can be solved by the standard

version of reward-modulated STDP. Extensive computer simula-

tions have shown that these analytically derived conditions for a

simpler neuron model predict also for a LIF neuron with

conductance based synapses whether it is able to solve this

learning task. Figure 8 shows that this learning theory for reward-

modulated STDP is also able to predict quite well how fast a neuron

can learn to produce a desired temporal output pattern. An

interesting aspect of [27] is that there also the utility of third signals

that provide information about changes in the expectation of

reward was explored. We have considered in this article only

learning scenarios where reward prediction is not possible. A

logical next step will be to extend our learning theory for reward-

modulated STDP to scenarios from classical reinforcement

learning theory that include reward prediction.

We have also addressed the question to what extent neurons can

learn via reward-modulated STDP to respond with different firing

rates to different spatio-temporal presynaptic firing patterns. It had

already been shown in [12] that this learning rule enables neurons

to classify spatial firing patterns. We have complemented this work

by deriving an analytic expression for the expected weight change

in this learning scenario (see Equation 17), which clarifies to what

extent a neuron can learn by reward-modulated STDP to

distinguish differences in the temporal structure of presynaptic

firing patterns. This theoretical analysis showed that in the

extreme case, where all incoming information is encoded in the

relative timing of presynaptic spikes, reward-modulated STDP is

not able to produce a higher average membrane potential for

selected presynaptic firing patterns, even if that would be

rewarded. But it is able to increase the variance of the membrane

potential, and thereby also the number of spikes of any neuron

model that has (unlike the simple linear Poisson neuron) a firing

threshold. The simulation results in Figure 9 confirm that in this

way a LIF neuron can learn with the standard version of reward-

modulated STDP to discriminate even purely temporal presyn-

aptic firing patterns, by producing more spikes in response to one

of these patterns.

A surprising feature is, that although the neuron was rewarded

here only for responding with a higher firing rate to one

presynaptic firing pattern P, it automatically started to respond

to this pattern P with a specific temporal spike pattern, that

advanced in time during training (see Figure 9A).

Finally, we have shown that a spiking neuron can be trained by

reward-modulated STDP to read out information from a

simulated cortical microcircuit (see Figure 10). This is insofar of

interest, as previous work [31,34,47] had shown that models of

generic cortical microcircuits have inherent capabilities to serve as

preprocessors for such readout neurons, by combining in diverse

linear and nonlinear ways information that was contained in

different time segments of spike inputs to the circuit (‘‘liquid

computing model’’). The classification of spoken words (that were

first transformed into spike trains) had been introduced as a

common benchmark task for the evaluation of different approach-

es towards computing with spiking neurons [31–33,45,48]. But so

far all approaches that were based on learning (rather than on

clever constructions) had to rely on supervised training of a simple

linear readout. This gave rise to the question whether also

biologically more realistic models for readout neurons can be

trained through a biologically more plausible learning scenario to

classify spoken words. The results of Figure 10 may be interpreted

as a tentative positive answer to this question. We have

demonstrated that LIF neurons with conductance based synapses

(that are subject to biologically realistic short term plasticity) can

learn without a supervisor through reward-modulated STDP to

classify spoken digits. In contrast to the result of Figure 9, the

output code that emerged here was a rate code. This can be

explained through the significant in-class variance of circuit

responses to different utterances of the same word (see Figure 10C

and 10D). Although the LIF neuron learnt here without a

supervisor to respond with different firing rates to utterances of

different words by the same speaker (whereas the rate output was

very similar for both words at the beginning of learning, see

Figure 10E), the classification capability of these neurons has not

yet reached the level of linear readouts that are trained by a

supervisor (for example, speaker independent word classification

could not yet be achieved in this way). Further work is needed to

test whether the classification capability of LIF readout neurons

can be improved through additional preprocessing in the cortical

microcircuit model, through a suitable variation of the reward-

modulated STDP rule, or through a different learning scenario

(mimicking for example preceding developmental learning that

also modifies the presynaptic circuit).

The new learning theory for reward-modulated STDP will also

be useful for biological experiments that aim at the clarification of

details of the biological implementation of synaptic plasticity in

different parts of the brain, since it allows to make predictions

which types and time courses of signals would be optimal for a
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particular range of learning tasks. For each of the previously

discussed learning tasks, the theoretical analysis provided condi-

tions on the structure of the reward signal d(t) which guaranteed

successful learning. For example, in the biofeedback learning

scenario (Figure 4), every action potential of the reinforced neuron

led—after some delay—to a change of the reward signal d(t). The

shape of this change was defined by the reward kernel e(r). Our

analysis revealed that this reward kernel can be chosen rather

arbitrarily as long as the integral over the kernel is zero, and the

integral over the product of the kernel and the eligibility function is

positive. For another learning scenario, where the goal was that

the output spike train S
post
j of some neuron j approximates the

spike timings of some target spike train S* (Figure 7), the reward

signal has to depend on both, S
post
j and S*. The dependence of the

reward signal on these spike timings was defined by a reward

kernel k(r). Our analysis showed that the reward kernel has to be

chosen for this task so that the synapses receive positive rewards if

the postsynaptic neuron fires close to the time of a spike in the

target spike train S* or somewhat later, and negative rewards when

an output spike occurs in the order of ten milliseconds too early. In

the pattern discrimination task of Figure 9 each postsynaptic

action potential was followed—after some delay—by a change of

the reward signal which depended on the pattern presented. Our

theoretical analysis predicted that this learning task can be solved if

the integrals AP
i and AN

i defined by Equation 18 are such that

AP
i w0 and AN

i &{AP
i . Again, this constraints are fulfilled for a

large class of reward kernels, and a natural choice is to use a non-

negative reward kernel er. There are currently no data available on

the shape of reward kernels in biological neural systems. The

previous sketched theoretical analysis makes specific prediction for

the shape of reward kernels (depending on the type of learning task

in which a biological neural system is involved) which can

potentially be tested through biological experiments.

An interesting general aspect of the learning theory that we have

presented in this article is that it requires substantial trial-to-trial

variability in the neural circuit, which is often viewed as ‘‘noise’’ of

imperfect biological implementations of theoretically ideal circuits

of neurons. This learning theory for reward-modulated STDP

suggests that the main functional role of noise is to maintain a

suitable level of spontaneous firing (since if a neuron does not fire,

it cannot find out whether this will be rewarded), which should

vary from trial to trial in order to explore which firing patterns are

rewarded (It had been shown in [31,34,47] that such highly

variable circuit activity is compatible with a stable performance of

linear readouts). On the other hand if a neuron fires primarily on

the basis of a noise current that is directly injected into that

neuron, and not on the basis of presynaptic activity, then STDP

does not have the required effect on the synaptic connections to

this neuron (see Figure S6). This perspective opens the door for

subsequent studies that compare for concrete biological learning

tasks the theoretically derived optimal amount and distribution of

trial-to-trial variability with corresponding experimental data.

Related Work
The theoretical analysis of this model is directly applicable to

the learning rule considered in [12]. There, the network behavior

of reward-modulated STDP was also studied some situations

different from the ones in this article. The computer simulations of

[12] operate apparently in a different dynamic regime, where

LTD dominates LTP in the STDP-rule, and most weights (except

those that are actively increased through reward-modulated

STDP) have values close to 0 (see Figure 1b and 1d in [12], and

compare with Figure 5 in this article). This setup is likely to require

for successful learning a larger dominance of pre-before-post over

post-before-pre pairs than the one shown in Figure 4E. Further-

more, whereas a very low spontaneous firing rate of 1 Hz was

required in [12], computer simulation 1 shows that reinforcement

learning is also feasible at spontaneous firing rates which

correspond to those reported in [17] (the preceding theoretical

analysis had already suggested that the success of the model does

not depend on particularly low firing rates). The articles [15] and

[13] investigate variations of reward-modulated STDP rules that

do not employ learning curves for STDP that are based on

experimental data, but modified curves that arise in the context of

a very interesting top-down theoretical approach (distributed

reinforcement learning [14]). The authors of [16] arrive at similar

learning rules in a supervised scenario which can be reinterpreted

in the context of reinforcement learning. We expect that a similar

theory as we have presented in this article for the more commonly

discussed version of STDP can also be applied to their modified

STDP rules, thereby making it possible to predict under which

conditions their learning rules will succeed. Another reward based

learning rule for spiking neurons was recently presented in [49].

This rule exploits correlations of a reward signal with noisy

perturbations of the neuronal membrane conductance in order to

optimize some objective function. One crucial assumption of this

approach is that the synaptic plasticity mechanism ‘‘knows’’ which

contributions to the membrane potential arise from synaptic

inputs, and which contributions are due to internal noise. Such

explicit knowledge of the noise signal is not needed in the reward-

modulated STDP rule of [12], which we have considered in this

article. The price one has to pay for this potential gain in

biological realism is a reduced generality of the learning

capabilities. While the learning rule in [49] approximates gradient

ascent on the objective function, this cannot be stated for reward-

modulated STDP at present. Timing-based pattern discrimination

with a spiking neuron, as discussed in the section ‘‘Pattern

discrimination with reward-modulated STDP’’ of this article, was

recently tackled in [50]. The authors proposed the tempotron

learning rule, which increases the peak membrane voltage for one

class of input patterns (if no spike occurred in response to the input

pattern) while decreasing the peak membrane voltage for another

class of input patterns (if a spike occurred in response to the

pattern). The main difference between this learning rule and

reward-modulated STDP is that the tempotron learning rule is

sensitive to the peak membrane voltage, whereas reward-

modulated STDP is sensitive to local fluctuations of the membrane

voltage. Since the time of the maximal membrane voltage has to

be determined for each pattern by the synaptic plasticity

mechanism, the basic tempotron rule is perhaps not biologically

realistic. Therefore, an approximate and potentially biologically

more realistic learning rule was proposed in [50], where plasticity

following error trials is induced at synapse i only if the voltage

within the postsynaptic integration time after their activation

exceeds a plasticity threshold k. One potential problem of this rule

is the plasticity threshold k, since a good choice of this parameter

strongly depends on the mean membrane voltage after input

spikes. This problem is circumvented by reward-modulated

STDP, which considers instead the local change in the membrane

voltage. Further work is needed to compare the advantages and

disadvantages of these different approaches.

Conclusion
Reward-modulated STDP is a very promising candidate for a

synaptic plasticity rule that is able to orchestrate local synaptic

modifications in such a way that particular functional properties of

larger networks of neurons can be achieved and maintained (we

refer to [12] and [27] for discussion of potential biological

Reward-Modulated STDP
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implementations of this plasticity rule). We have provided in this

article analytical tools which make it possible to evaluate this rule

and variations of this rule not just through computer simulations,

but through theoretical analysis. In particular we have shown that

successful learning is only possible if certain relationships hold

between the parameters that are involved. Some of these predicted

relationships can be tested through biological experiments.

Provided that these relationships are satisfied, reward-modulated

STDP turns out to be a powerful rule that can achieve self-

organization of synaptic weights in large recurrent networks of

neurons. In particular, it enables us to explain seemingly inexplicable

experimental data on biofeedback in monkeys. In addition reward-

modulated STDP enables neurons to distinguish complex firing

patterns of presynaptic neurons, even for data-based standard forms

of STDP, and without the need for a supervisor that tells the neuron

when it should spike. Furthermore reward-modulated STDP

requires substantial spontaneous activity and trial-to-trial variability

in order to support successful learning, thereby providing a

functional explanation for these ubiquitous features of cortical

networks of neurons. In fact, not only spontaneous activity but also

STDP itself may be seen in this context as a mechanism that supports

the exploration of different firing chains within a recurrent network,

until a solution is found that is rewarded because it supports a

successful computational function of the network.

Supporting Information

Figure S1 Variations of Figure 5B–D for those excitatory

neurons which receive the full amount of Ornstein-Uhlenbeck

noise. (B) The distribution of the firing rates of these neurons

remains unchanged during the simulation. The colors of the

curves and the corresponding intervals are as follows: red (300–

360 sec), green (600–660 sec), blue (900–960 sec), magenta (1140–

1200 sec). (C) Cross-correlogram of the spiking activity of these

neurons, averaged over 200 pairs of neurons and over 60 s, with a

bin size of 0.2 ms, for the period between 300 and 360 seconds of

simulation time. It is calculated as the cross-covariance divided by

the square root of the product of variances. (D) As in (C), but for

the last 60 seconds of the simulation. The correlation statistics in

the circuit is stable during learning.

Found at: doi:10.1371/journal.pcbi.1000180.s001 (0.06 MB PDF)

Figure S2 Variations of Figure 5B–D for those excitatory

neurons which receive a reduced amount of Ornstein-Uhlenbeck

noise, but receive more synaptic inputs from other neurons. (B)

The distribution of the firing rates of these neurons remains

unchanged during the simulation. The colors of the curves and the

corresponding intervals are as follows: red (300–360 sec), green

(600–660 sec), blue (900–960 sec), magenta (1140–1200 sec). (C)

Cross-correlogram of the spiking activity in the circuit, averaged

over 200 pairs of these neurons and over 60 s, with a bin size of

0.2 ms, for the period between 300 and 360 seconds of simulation

time. It is calculated as the cross-covariance divided by the square

root of the product of variances. (D) As in (C), but for the last

60 seconds of the simulation. The correlation statistics in the

circuit is stable during learning.

Found at: doi:10.1371/journal.pcbi.1000180.s002 (0.06 MB PDF)

Figure S3 Variation of Figure 4 from computer simulation 1

with results from a simulation where the weight-dependent version

of STDP proposed in [22] was used. This STDP rule is defined by

the following equations: Dwz~lw
1{m
0 wme{ Dtj j=tz and

Dw{~lawe{ Dtj j=t{ . We used the parameters proposed in [36],

i.e. m = 0.4, a = 0.11, t+ = t2 = 20 ms, l = 0.1 and w0 = 272.6 pS.

The w0 parameter was calculated according to the formula:

w0~
1
2

wmaxa
1

1{m where wmax is the maximum synaptic weight of the

synapse. The amplitude parameters Az
r , A{

r for the reward kernel

were set to Az
r ~1:104 and A{

r ~0:221. All other parameter

values were the same as in computer simulation 1.

Found at: doi:10.1371/journal.pcbi.1000180.s003 (0.09 MB PDF)

Figure S4 Variation of Figure 5 for the weight-dependent STDP

rule from [22] (as in Figure S3).

Found at: doi:10.1371/journal.pcbi.1000180.s004 (0.06 MB PDF)

Figure S5 Variation of Figure 7 (i.e., of computer simulation 2)

for a simulation where we used current-based synapses without

short-term plasticity. The post-synaptic response had an

exponentially decaying form e sð Þ~e{s=te


te, with te = 5 ms.

The value of the maximum synaptic weight was wmax = 32.9 pA.

All other parameter values were the same as in computer

simulation 2.

Found at: doi:10.1371/journal.pcbi.1000180.s005 (0.17 MB PDF)

Figure S6 Dependence of the learning performance on the noise

level in computer simulation 2. The angular error (defined as the

angle between the weight vector w of the trained neuron at the

end of the simulation and the weight vector w* of the neuron m*) is

taken as measure for the learning performance, and plotted for 9

simulations with different noise levels that are given on the X axis

(in term of multiples of the noise level chosen for Figure 7). All

other parameters values were the same as in computer simulation

2. The figure shows that the learning performance declines both

for too little and for too much noise.

Found at: doi:10.1371/journal.pcbi.1000180.s006 (0.02 MB PDF)

Figure S7 Variation of Figure 9 (i.e., of computer simulation 4)

with the weight-dependent STDP rule proposed in [22]. This rule

is defined by the following equations: Dwz~lw
1{m
0 wme{ Dtj j=tz

and Dw{~lawe{ Dtj j=t{ . We used the parameters proposed in

[22], i.e. m = 0.4, a = 0.11, t+ = t2 = 20 ms, l = 0.1 and w0 =

72.4 pS. The w0 parameter was calculated according to the

formula: w0~
1
2

wmaxa
1

1{m where wmax is the maximum synaptic

weight of the synapse. The amplitude parameters of the reward

kernel were set to aP = 2aN = 1.401. All other parameter values

were the same as in computer simulation 4. The variance of the

membrane potential increased for pattern P from 2.35 (mV)2 to

3.66 (mV)2 (C), and decreased for pattern N (D), from 2.27 (mV)2

to 1.54 (mV)2.

Found at: doi:10.1371/journal.pcbi.1000180.s007 (0.31 MB PDF)

Figure S8 Variation of Figure 9 for a simulation where we used

current-based synapses without short-term plasticity. The post-

synaptic response had an exponentially decaying form

e sð Þ~e{s=te


te, with te = 5 ms. The value of the maximum

synaptic weight was wmax = 106.2 pA All other parameter values

were the same as in computer simulation 4. The variance of the

membrane potential increased for pattern P from 2.84 (mV)2 to

5.89 (mV)2 (C), and decreased for pattern N (D), from 2.57 (mV)2

to 1.22 (mV)2.

Found at: doi:10.1371/journal.pcbi.1000180.s008 (0.31 MB PDF)

Figure S9 Variation of Figure 10 (i.e., of computer simulation 5)

for a simulation where we used current-based synapses without

short-term plasticity. The post-synaptic response had an exponen-

tially decaying form e sð Þ~e{s=te


te, with te = 5 ms. The synaptic

weights of the excitatory and inhibitory synapses in the cortical

microcircuit were set to wexc = 65.4 pA and winh = 238 pA respec-

tively. The maximum synaptic weight of the synapses to the

readout neuron was wmax = 54.3 pA. All other parameter values

were the same as in computer simulation 5.

Found at: doi:10.1371/journal.pcbi.1000180.s009 (0.27 MB PDF)
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Figure S10 Spike encodings of 10 utterances of digit ‘‘one’’ by

one speaker with the Lyon cochlea model [43], which were used as

circuit inputs for computer simulation 5.

Found at: doi:10.1371/journal.pcbi.1000180.s010 (0.05 MB PDF)

Figure S11 Spike encodings of 10 utterances of digit ‘‘two’’ by

one speaker with the Lyon cochlea model [43], which were used as

circuit inputs for computer simulation 5.

Found at: doi:10.1371/journal.pcbi.1000180.s011 (0.05 MB PDF)
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40. Borg-Graham LJ, Monier C, Frégnac Y (1998) Visual input evokes transient and
strong shunting inhibition in visual cortical neurons. Nature 393: 369–373.

41. Hirsch JA, Alonso JM, Reid RC, Martinez LM (1998) Synaptic integration in
striate cortical simple cells. J Neurosci 18: 9517–9528.

42. Anderson J, Lampl I, Reichova I, Carandini M, Ferster D (2000) Stimulus

dependence of two-state fluctuations of membrane potential in cat visual cortex.
Nature Neurosci 3: 617–621.

43. Lyon R (1982) A computational model of filtering, detection, and compression in
the cochlea. In: Proceedings of IEEE International Conference on ICASSP. pp

1282–1285.
44. Schrauwen B, Campenhout JV (2003) BSA, a fast and accurate spike train

encoding scheme. In: Proceedings of the International Joint Conference on

Neural Networks. Volume 4. pp 2825–2830.
45. Verstraeten D, Schrauwen B, Stroobandt D, Campenhout JV (2005) Isolated

word recognition with the liquid state machine: a case study. Inf Process Lett 95:
521–528.

46. Fetz EE, Finocchio DV (1975) Correlations between activity of motor cortex

cells and arm muscles during operantly conditioned response patterns. Exp
Brain Res 23: 217–240.
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Hebbian learning in cortical networks during development and adulthood relies on the presence 
of a mechanism to detect correlation between the presynaptic and the postsynaptic spiking 
activity. Recently, the calcium concentration in spines was experimentally shown to be a 
correlation sensitive signal with the necessary properties: it is confi ned to the spine volume, it 
depends on the relative timing of pre- and postsynaptic action potentials, and it is independent 
of the spine’s location along the dendrite. NMDA receptors are a candidate mediator for the 
correlation dependent calcium signal. Here, we present a quantitative model of correlation 
detection in synapses based on the calcium infl ux through NMDA receptors under realistic 
conditions of irregular pre- and postsynaptic spiking activity with pairwise correlation. Our 
analytical framework captures the interaction of the learning rule and the correlation dynamics 
of the neurons. We fi nd that a simple thresholding mechanism can act as a sensitive and reliable 
correlation detector at physiological fi ring rates. Furthermore, the mechanism is sensitive 
to correlation among afferent synapses by cooperation and competition. In our model this 
mechanism controls synapse formation and elimination. We explain how synapse elimination 
leads to fi ring rate homeostasis and show that the connectivity structure is shaped by the 
correlations between neighboring inputs.

Keywords: structural plasticity, correlation detection, synaptic death, synaptogenesis, silent synapses, STDP, Calcium 

calmodulin dependent kinase II (CaMKII), synaptic cooperativity

mechanism, which restores the typical synapse density. In support 
of this hypothesis, not only in the developing cortex, but also in 
adult monkeys in vivo, synaptic boutons emerge and disappear with 
rates of 7 per cent per week (Stettler et al., 2006).

The functional role of synapse formation and elimination is 
not well understood, but theoretical studies have exposed the ben-
efi ts of the capability of structural remodeling (Chklovskii et al., 
2004; Stepanyants et al., 2002). Due to the fact that the number 
of potential presynaptic partners of a neuron easily exceeds the 
actual number at any point in time by an order of magnitude, 
each synapse carries three to four bits of structural information. 
In the framework of spiking associative memories this benefi cial 
functional role of structural plasticity can be exploited to increase 
the memory capacity (Knoblauch, 2006; Knoblauch et al., 2007). 
Therefore, synaptic formation and elimination is a candidate proc-
ess for long term information storage in cortical networks during 
development and adulthood alike.

The microscopic mechanisms leading to the formation of new 
synapses and to the elimination of existing ones have not yet been 
completely revealed. However, there is some evidence, that newly 
formed synapses are created in an intermediate, silent state (Cohen-
Cory, 2002; Kalisman et al., 2005). These frequently encountered 
silent synapses lack AMPA receptors but have NMDA receptors 
(Atwood and Wojtowicz, 2004). They bear a high potential for 
remodeling the neural circuit, since they can easily be converted into 

INTRODUCTION
The connectivity structure of the cortex was found to be surpris-
ingly dynamic in vitro and in vivo (Bonhoeffer and Yuste, 2002). 
Synapse formation and elimination exhibit a marked dependence 
on spiking activity, where higher activity promotes synapse for-
mation (Le Be and Markram, 2006). Based on geometric consid-
erations, Stepanyants et al. (2002), Chklovskii et al. (2004) and 
Stepanyants et al. (2007) suggest as a basic design principle of the 
cortex the potential of any pair of neurons to form a connection on 
small length scales of a few hundred micrometers together with an 
activity dependent selection mechanism. This idea is supported by 
direct observation of spines approaching presynaptic partners in a 
promiscuous manner (Kalisman et al., 2005). Of these structurally 
possible (potential) synapses, only a small fraction (0.12–0.34) is 
actually realized (Stepanyants et al., 2002), and transitions from 
potential to actual synapses are observed in vitro at rates of up 
to 1.2 per cent per hour during increased spiking activity (Le Be 
and Markram, 2006). These newly formed, immature synapses are 
weaker than mature ones. Synapse pruning mostly affects weak, but 
already mature synapses. The relation of synaptic strength to syn-
apse formation and synaptic death indicates that long term poten-
tiation (LTP) and synapse formation may be controlled by similar 
mechanisms and the same may hold for long term depression (LTD) 
and synapse pruning. The observation of increased connectivity 
after prolonged spiking activity also prompts for a synapse pruning 
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active synapses. The most probable mechanism is the translocation 
of AMPA receptors into the postsynaptic density (PSD). This is also 
observed (Cohen-Cory, 2002; Shi et al., 1999) during LTP for which 
NMDA receptor activation is a necessary precondition.

There is strong indication that synapse formation and synapse 
pruning are controlled in a similar way as LTP and LTD (Lüscher 
et al., 2000). Furthermore, Le Be and Markram (2006) found that the 
same antagonists prevent LTP and synapse formation, and conclude 
that the underlying mechanisms may be similar. Calcium entering 
the postsynaptic site through NMDA receptors is a probable mes-
senger causing synapse maturation (Atwood and Wojtowicz, 2004). 
For the induction of LTP and LTD, which in parts come about by 
modulating the number of postsynaptic AMPA receptors, Cormier 
et al. (2001) showed that both depend in a threshold like fashion 
on the intracellular calcium peak amplitude: higher amplitudes 
lead to LTP and lower ones to LTD.

Spike pairing experiments showed the calcium signal in spines 
to depend on the correlated activation of the pre- and postsynaptic 
site: Nevian and Sakmann (2004, 2006) found a marked depend-
ency on the relative timing and independence on the position of 
the spine along the dendrite, making the NMDA receptor medi-
ated calcium level in a spine an attractive candidate substrate to 
convey information about the correlation between presynaptic and 
postsynaptic activity.

For the calcium signal in a spine to control synaptic maturation 
or synaptic death it must activate a downstream signaling cascade. 
Calcium/calmodulin dependent kinase II (CaMKII) is a calcium 
activated kinase, which is crucial for the LTP of a synapse. In its 
activated state it can phosphorylate several structures among them 
AMPA receptors which respond with increased conductivity. There 
is also evidence, that CaMKII is involved in the insertion process 
of new AMPA receptors into the PSD. This causes LTP or turns a 
silent synapse (only having NMDA receptors) into an active one 
having AMPA and NMDA receptors. There is recent evidence from 
detailed biophysical modeling studies (Graupner and Brunel, 2007) 
that the activity dependent calcium infl ux can activate CaMKII in 
a bistable fashion and hereby explain spike timing dependent syn-
aptic plasticity (STDP). For a recent review of phenomenological 
models of STDP see Morrison et al. (2008).

CaMKII forms holoenzymes of two ring molecules consisting 
of six subunits each. A subunit can either be active or inactive. 
Transitions between the inactive and the active state are triggered 
by calcium signals of different amplitudes. Short and weak cal-
cium signals typically lead to activation of a single subunit by 
binding calcium or calmodulin to it. After the calcium level has 
dropped, unbinding of calcium and hence deactivation occurs 
within 0.1–0.2 s. At larger calcium concentrations an active subunit 
of the molecule (to which calcium is already bound) can phos-
phorylate the neighboring subunit. This only requires one addi-
tional calcium molecule to bind to the second subunit to expose 
its phosphorylation site. So phosphorylation can propagate along 
the ring and the molecule remains active even after calcium has 
returned to the resting level. At resting calcium concentrations, 
protein phosphatase 1 (PP1) can dephosphorylate an active subu-
nit, but a neighboring active site can immediately rephosphorylate 
it again. This regenerating effect explains the long time scales of 
several minutes for the deactivation of groups of active CaMKII 

molecules. Even longer time scales of hours of persistent activity 
are found at resting calcium concentrations in the special chemical 
environment of the PSD, where the concentration of PP1 is low 
compared to the number of CaMKII subunits. For a comprehen-
sive review see Lisman et al. (2002). Detailed biophysical simula-
tions (Miller et al., 2005) have confi rmed bistability between an 
active and an inactive state of whole populations of approximately 
20 holoenzymes. This effect is due to saturation of the phosphatase 
in the active state. The study found life times of both states in 
the range of 100 years. The time scale of the attractor dynamics 
is on the order of tens of minutes, but for strong fl uctuations 
of the calcium signal the bistability vanishes. Calcium can not 
only activate CaMKII (either directly or via calmodulin), but also 
protein phosphatases like calcineurin and protein phosphatase 1, 
which dephosphorylate CaMKII. These phosphatases have a higher 
affi nity to calcium than CaMKII. Therefore, they become active at 
lower calcium concentrations and counteract the phosphorylation 
of CaMKII. This is in agreement with the fi nding that LTD in CA1 
dendrites can be induced if the calcium concentration is below 
180 nM, while LTP requires it to exceed 540 nM (Cormier et al., 
2001). For a review see Cavazzini et al. (2005).

To our knowledge, previous models for structural plasticity 
either used simplifi ed neuron models (Butz et al., 2008; Dammasch 
et al., 1986) or plasticity rules depending on the fi ring rate alone 
and not taking into account formation and death of individual syn-
apses (van Ooyen et al., 1995). Consequently correlation dependent 
structure formation is outside the scope of these works. In this 
modeling study, we investigate how the biologically known path-
ways outlined above interplay to achieve a mechanism capable of 
detecting correlation between the presynaptic and the postsynaptic 
spiking activity. We focus on the calcium control hypothesis: the 
calcium signal mediated by NMDA receptors is the beginning of 
the signaling cascade. The main features of NMDA receptors enter-
ing our model are: (1) Their fast binding to glutamate followed 
by slow unbinding. (2) The quasi-instantaneous removal of the 
magnesium block upon postsynaptic depolarization to open the 
channel. In these assumptions, our model is similar to previous 
work by Shouval et al. (2002) on a mathematical model to explain 
spike timing dependent plasticity (STDP) based on the properties 
of NMDA receptors and the calcium control hypothesis. In contrast 
to their work, we assume the postsynaptic depolarization by the 
backpropagating action potential (bpAP) to be a short event.

The next stage of the signaling pathway in our model is a calcium 
controlled bistable effector molecule, like e.g. CaMKII. The impor-
tant properties for our model are: (1) The long time constants of 
sustained activation of each individual molecule by high calcium 
concentrations (bistability). We are interested in the regime, where 
calcium fl uctuations dominate the activation dynamics and the 
slower attractor dynamics causing bistability of the whole popula-
tion of molecules is negligible. (2) The ability of the kinase to infl u-
ence synaptic plasticity via AMPA receptor insertion. We assume 
a minimum amount of the kinase to be necessary for promoting 
synapses from silent to functional and we assume that there a mini-
mal amount of active kinase is required to prevent synapse death. 
(3) Two disjoint ranges of calcium concentration that control the 
transitions between the inactive and the active state of each mol-
ecule. (4) The relatively low number of molecules, which makes a 
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statistical description essential. We derive a model for correlation 
detection based on this pathway and investigate its dynamics under 
realistic conditions of irregular spike trains. We show that the model 
represents a viable mechanism to sense correlation between the 
pre- and postsynaptic activity. Controlling synaptic pruning, it can 
implement a fi ring rate homeostasis. Cohen-Cory (2002) already 
suspected, that activity-dependent remodeling selectively stabilizes 
coactive incoming synapses and destabilizes others. We demon-
strate that such cooperation and competition between synapses 
naturally emerges from the microscopic model and that a neuron 
can learn the correlations between neighboring inputs.

In the section “Spike Time Dependence of Postsynaptic Calcium 
Concentration” we explain the origin of spike timing dependence of 
the postsynaptic calcium concentration, mention the main fi ndings 
of recent imaging experiments, and develop a model for the peak 
amplitude of the postsynaptic calcium signal. We show it to quali-
tatively reproduce the experimental fi ndings. In the section “Ca2+ 
Transients Caused by Correlated Irregular Spiking” we show that 
for irregular spiking activity this model predicts a distinct depend-
ency of the observed postsynaptic calcium signal on the correlation 
between the presynaptic and the postsynaptic spiking events. The 
section titled “A Counter for Correlated Events” derives a biologically 
motivated model of a mechanism to “count” correlated events and 
therefore to assess the degree of correlation between the presynaptic 
and the postsynaptic activity. The section titled “Rate Homeostasis 
by Synaptic Pruning” shows that controlling synaptic pruning by this 
correlation measure can act as a rate regulation for the postsynaptic 
neuron at low rates. In the section “Cooperation and Competition 
by Spatial Input Correlation” we demonstrate that cooperation and 
competition between synapses depends on the correlation between 
neighboring inputs and that a synaptic pruning process manifests 
these input correlations in the resulting network structure. The last 
section discusses our results.

All simulations were carried out with the NEST simulation soft-
ware (Gewaltig and Diesmann, 2007) using the  computationally 

effi cient implementation of synaptic maturation and death pro-
vided in the section “Algorithmic Implementation of Synapse 
Maturation and Synapse Death” in Appendix. Preliminary results 
have been presented in abstract form (Helias et al., 2007).

SPIKE TIME DEPENDENCE OF POSTSYNAPTIC CALCIUM 
CONCENTRATION
In this section we show, that the calcium peak amplitude in a spine 
in good approximation depends exponentially on the temporal 
 difference of the presynaptic and the postsynaptic spiking and that 
the calcium infl ux is largest, if the presynaptic cell fi res shortly before 
the postsynaptic cell. This makes the calcium signal an appropriate 
candidate carrier of information on causal correlation.

Figure 1A illustrates the situation at a synapse subject to a spike 
pairing protocol. The principal mechanism causing the dependence of 
the postsynaptic calcium signal can readily be understood. With each 
presynaptic spike a small amount of glutamate is released, increasing 
the glutamate concentration ρ

glu
 at time t

glu
. Glutamate binds to a 

fraction of the postsynaptic NMDA receptors. There is experimental 
evidence (Mainen et al., 1999) that only a fraction n(t) of the NMDA 
receptors bind to glutamate. n(t) reaches its maximum n

0
 after a rise 

time of τ
rise,nmda

 � 5 − 10 ms. We choose this maximum obtained for 
a single presynaptic release to be the unit of n. After the glutamate 
concentration ρ

glu
(t) has decayed back to its resting value, the receptors 

unbind and n(t) decays back to 0. As long as the postsynaptic spine 
is not depolarized, the NMDA receptors are blocked by magnesium 
and thus have a low conductance (Jahr and Stevens, 1990a,b). Arrival 
of a postsynaptic back-propagating action potential (called bpAP in 
the following) depolarizes the spine (indicated as V

spine
 in Figure 1A), 

removes this block and Ca2+ can fl ow into the spine. The amount of 
NMDA receptors opening at time t

BP
 therefore equals

n(t
BP

) = n(t
BP

 − t
glu

).

This is illustrated in Figure 1B. Thus the NMDA receptor medi-
ated conductivity depends on the relative timing Δt

syn
 = t

BP
 − t

glu
. 
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FIGURE 1 | (A) Sketch of an experiment measuring the calcium concentration in 
spines during a spike pairing protocol. The calcium concentration inside the 
spine is measured while varying the temporal difference Δtsyn between the 
onset tglu of the glutamate concentration and the arrival of a postsynaptic bpAP 
tBP at the spine. (B) Rise in glutamate concentration at tglu in the synaptic cleft 
causes NMDA receptors in the spine to bind to glutamate. The fraction n (t) of 

glutamate bound NMDARs jumps to its maximum (n0 = 1 for simplicity) after 
time τrise,nmda. As long as the spine is not depolarized, the NMDA pore is blocked 
by Mg2+. A postsynaptic spikes causes a bpAP to arrive at the spine at tBP and to 
unblock the currently glutamate bound NMDA receptors n(tBP), so Ca2+ can enter 
the spine. The total amount of Ca2+ infl ux q is proportional to n(tBP) and therefore 
depends on the relative timing Δtsyn.
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This model assumes  instantaneous removal of the Mg2+ block. 
However, the detailed mechanism is more complicated. Removal 
of the Mg2+ block can happen at several time scales; a very fast one 
of �100 μs (Jahr and Stevens, 1990b) and several recently found 
longer time scales of a few 100 ms (Kampa et al., 2004). The longer 
time scales were found to effectively narrow the time window of 
substantial NMDA conductance (Kampa et al., 2004). Here, we do 
not intend to capture the NMDA receptor kinetics in full detail, 
but rather to construct a functional yet quantitative model where 
the experimental results constrain the model parameters. Calcium 
imaging studies on spines (Nevian and Sakmann, 2004) show, that 
the timing dependence of the Ca2+ peak amplitude can be fi tted for 
positive Δt

syn
 to a function with a rise time of τ

rise,nmda
 followed by a 

exponential decay with a single time constant of τ
nmda

. These studies 
typically measure the timing Δt = t

post
 − t

pre 
between the spiking in 

the presynaptic neuron’s soma t
pre

 and the spiking in the postsynap-
tic neuron’s soma t

post
 (see Morrison et al., 2008, for the defi nition 

of delays in models of synaptic plasticity). With d
BP

 being the delay 
for a bpAP and d

glu
 being the delay between presynaptic spike and 

glutamate release, the timing difference at the synapse is

Δ = −

+ −

= Δ + −

t t t

t d t d

t d d

syn BP glu

post BP pre glu

BP glu

= +( )

.

In this work, we neglect the continuous binding process and 
instead assume that the number n of glutamate bound NMDA recep-
tors jumps to a positive value after the rise time τ

rise,nmda
, like

n t n H t t
t t

( ) ( ) ,= − −
−

− − ,
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glu rise nmda

nmdaτ
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where H(t) denotes the Heaviside function. Assuming the bpAP to 
be a point event, the total Ca2+ infl ux into the spine
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depends exponentially on the timing Δt where i
Ca

 = q
0
δ(t − t

BP
) is 

the calcium current through a single open NMDA channel during 
a bpAP. Our expression for q defi nes the effective rise time τ

rise
 and 

suggests to measure q in units of q
0
n

0
, i.e. we set q

0
n

0
 = 1. Nevian 

and Sakmann (2004) measured an effective rise time τ
rise

 = 10 ms 
and an exponential decay with a time constant τ

nmda
 = 32 ms.

The postsynaptic depolarization due to the AMPA receptor 
activation only causes a small NMDA conductivity, as shown in 
measurements of the NMDA conductivity for voltage patterns 
caused by spike pairing experiments (Kampa et al., 2004) and also 
directly by observing that the calcium transient in spines in spike 
pairing experiments is not decreased signifi cantly by blocking 
AMPA receptors (Nevian and Sakmann, 2004). In our model, we 
neglect the infl uence of AMPA mediated depolarizations on the 
calcium signal.

Assuming the bpAP to be a point event is obviously an approxi-
mation. As well as the assumption, that the glutamate binding state 
jumps from 0 to 1 at t = t

glu
 + τ

rise,nmda
 instead of showing a continu-

ous increase on a time scale of 5–10 ms (as found experimentally by 
Kampa et al., 2004). However, for timings Δt

syn
 ≥ τ

rise,nmda
, it is easy 

to see that this does not qualitatively change the total Ca2+ infl ux 
(assuming i

Ca
(t < 0) = 0, because

q t i t t n t t t

i t n t t t t
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As before, q depends exponentially on the relative timing Δt
syn

. 
The exact shape of the bpAP only enters the timing independ-
ent factor q′

0
. For Δt

syn
 < τ

rise,nmda
, the integral depends both on the 

shape of the resulting i
Ca

(t), which in turn depends on the actual 
shape of the bpAP, and on the rising fl ank of the NMDA channel 
activation. A typical trace of i

Ca
(t) has a half duration of �5 ms 

and the rise time of NMDA activation is of the same order of 
magnitude (5–10 ms). Hence, the slope of q(Δt

syn
) in this range is 

large compared to the following exponential decay with τ
nmda

, as 
confi rmed experimentally (Nevian and Sakmann, 2004). The step 
like approximation (Eq. 2) therefore seems adequate. Our choice to 
describe the bpAP to be a point event has the consequence that in 
this spike pairing experiment there is no calcium infl ux for larger 
negative timings Δt

syn
 − τ

rise,nmda
 < 0. Taking into account a fi nite 

short decay time for the postsynaptic depolarization as in Shouval 
et al. (2002) would lead to a small calcium infl ux also for the post-
before presynaptic timing.

The Ca2+ infl ux q leads to a transient signal which in good 
approximation decays in an exponential fashion (Nevian and 
Sakmann, 2004, 2006; Waters et al., 2003) with a decay time of 
20–200 ms (reviewed in Cavazzini et al., 2005). We therefore assume 
the calcium peak amplitude to depend linearly on the amount q of 
calcium infl ux.

Ca2+ TRANSIENTS CAUSED BY CORRELATED IRREGULAR SPIKING
So far we studied the model for the case of a spike pairing protocol, 
where a presynaptic action potential is paired with a postsynaptic 
action potential. In this section we investigate how much informa-
tion about the correlation between presynaptic and postsynaptic 
events is contained in the Ca2+ signal if the spiking activity is irregu-
lar. To this end, we simulate the presynaptic and the postsynap-
tic spiking as Poisson processes with rates ν

i
 and ν

o
, respectively. 

Both processes share a fraction of spikes that appear in the spike 
trains with a fi xed temporal distance Δt. In the following we call 
these events “pair events”. Figure 2A illustrates these processes. The 
strength of the temporal correlation is given by the correlation 
coeffi cient ε, which is the conditional probability of a pair event 
(i.e. seeing the temporally correlated presynaptic partner spike at 
t − Δt), given a postsynaptic spike at time t.
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Let A be the set of presynaptic spike times and B the set of post-
synaptic spike times within a fi nite interval [0, T]. The effects of 
the presynaptic spikes add up linearly in our model. Therefore, the 
number of glutamate bound NMDA receptors found at time t is

n t n
t A t t

t t

( )
{ }

=

−

−

∑
− −

0

pre pre rise

pre rise

nmdae
∈ | < τ

τ

τ

 

(3)

and the total Ca2+ infl ux at the point in time t
post

 of a postsynaptic 
spike is accordingly

q t
t A t t

t t
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pre pre post rise
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∈ | < −

−

∑
− −

τ
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τ aa ,

where we again set q
0
n

0
 to unity. For different realizations of the 

presynaptic and postsynaptic spiking the elements of the set a
A,B

 = 
{q

A
(t

post
) | t

post
 ∈ B} are random variables, since A and B are random 

sets. We therefore need to calculate the probability density function 
of q

A
 and show that it depends on the correlation ε between pre- and 

postsynaptic events. Initially assume ε = 0, i.e. A and B to be two 
independent sets of Poisson points. In this case the points in time t

post
 

at which q
A
(t) is sampled are randomly and uniformly drawn from 

the interval [0, T]. Consequently the elements a ∈ a
A,B

 occur accord-
ing to the probability density function of q

A
(t), where t is a randomly 

and uniformly drawn point in time t ∈ [0, T]. This is the amplitude 
distribution ρ

0
(q) of a shot noise with an exponential kernel and can 

be calculated recursively (Gilbert and Pollak, 1960) as
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e
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Γ rr)

,γ = .0 577215665  (4)

where γ is Euler’s constant. In the case 0 < ε ≤ 1, however, we have 
to distinguish two cases: Given a postsynaptic spike, with prob-
ability 1 − ε this spike is not part of a pair event. The postsynaptic 
event is uncorrelated with respect to the presynaptic events and 
thus samples q(t) at a random point in [0, T] as discussed above. 
So the contribution of this event to the probability density ρ(a) is 
(1 − ε)ρ

0
(a). With probability ε the postsynaptic spike is part of a 

pair event. In this case, we know that there is a presynaptic spike at 
time t

post
 − Δt of which we still see the deterministic contribution 

Δ =
− Δ −a te rise nmda( )/τ τ  to a. Since we assume the presynaptic spikes to 

have Poisson statistics, the existence of the presynaptic spike at 
t

post
 − Δt does not infl uence the statistics of the other presynaptic 

spikes. The latter produce a shot noise background obeying the 
distribution ρ

0
(a′): the probability density to observe the value 

a = a′ + Δa equals the probability density ρ
0
(a′). Hence the con-

tribution in this case is ερ
0
(a − Δa). Considering both types of 

postsynaptic spikes we arrive at

ρ(a) = ερ
0
(a − Δa) + (1 − ε)ρ

0
(a) (5)

with e rise nmdaΔ =
− Δ −a t( )/ .τ τ

Figure 2B illustrates this result. The postsynaptic events belong-
ing to spike pairs (black bars) sample the shot noise signal at high 
values and cause the peak in the histogram around 0.73. Its height 
scales linearly with the correlation coeffi cient ε. The uncorrelated 
gray events cause a background manifested in the histogram by 
the large peak at low values. Its amplitude scales proportional 
to 1 − ε.

In conclusion, the information about correlation between the 
presynaptic and the postsynaptic events enters the probability 
distribution ρ(a) and is therefore exhibited in the amplitude dis-
tribution of Ca2+ transients in the postsynaptic spine: correlated 
postsynaptic events which come in close temporal proximity to a 
presynaptic spike produce a high Ca2+ infl ux.
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FIGURE 2 | (A) Presynaptic glutamate release treated as point events ρglu,pre(t). 
The back-propagating action potentials cause a postsynaptic depolarization 
Vspine(t), taken to be point events as well. Pre- and postsynaptic events occur 
with Poisson statistics at ν = 5 Hz, but both sequences contain a fraction of 
correlated events (black bars), which have a fi xed temporal distance 
Δt = 15 ms from each other. ε = 0.1 is the probability of observing a 
presynaptic partner, given a postsynaptic spike. The gray bars denote 
postsynaptic spikes, which have no correlated partner among the presynaptic 
events. (B) The left plot shows the shot noise (light gray) produced by the 

presynaptic events. A postsynaptic spike tpost samples the shot noise at the 
time of occurrence, a := q(tpost). Postsynaptic spikes that belong to a pair (i.e. 
which are preceded by a presynaptic event Δt before) are indicated by black 
bars. They sample q(t) at high values and thus produce the peak in the 
histogram (right panel) at e rise nmda− Δ −

.
( ) /t τ τ � 0 73 (with τrise = 5 ms). The black dots 

result from a realization of the stochastic process (T = 105 s) using Scientifi c 
Python (Jones et al., 2001), the gray curve illustrates (Eq. 5). The peak 
amplitude is proportional to the correlation coeffi cient ε = 0.1. Uncorrelated 
postsynaptic events cause the peak at low values of a.
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A COUNTER FOR CORRELATED EVENTS
In this section we devise a model of a postsynaptically realized 
counter for correlated events. The model is based on CaMKII, 
the most probable downstream signaling protein. CaMKII is an 
example of a bistable effector protein, whose transitions between 
its active and its inactive state are triggered by distinct calcium 
concentrations. Since the number of CaMKII molecules in a spine is 
low a statistical description is essential. Figure 3A shows a schematic 
drawing of the possible transitions of a single ring molecule in our 
model and their dependence on the calcium concentration: If the 
calcium infl ux exceeds the highest threshold Θ

h
, the number x of 

active CaMKII molecules is increased. We call this a plus-event. If 
the infl ux is between Θ

l
 and Θ

h
, the amount of active molecules 

remains unaffected. This region is often referred to as “no man’s 
land” (Cormier et al., 2001). For a low calcium infl ux between Θ

b
 

and Θ
l
, the number of active molecules decreases. We call this a 

minus-event. If the infl ux is below Θ
b
, the number of active mol-

ecules remains the same. Previous theoretical work (Shouval et al., 
2002) assumes a similar dependence of the synaptic weight change 
on the calcium concentration, but does not take into account the 
intermediate concentration, where no plasticity occurs. After a high 
calcium event, the concentration eventually drops to levels between 
Θ

b
 and Θ

l
, where it can activate the phosphatase and thus deac-

tivates CaMKII molecules. So the increase of active molecules in 
our model caused by a high Ca2+ event is understood to be the net 
effect of activated minus deactivated molecules.

Cormier et al. (2001) measured the thresholds for constant cal-
cium concentrations. It is unclear, whether these values also hold for 
transient calcium infl ux through NMDA receptors. Furthermore, 
for the spike pairing protocol, only relative calcium concentrations 
have been measured. We therefore pursue a more phenomenologi-
cal approach and choose Θ

h
 such that a plus-event occurs, if the 

temporal distance between the presynaptic and the postsynaptic 
event Δt is in the range 0 ≤ Δt = t

post
 − t

pre
 ≤ Δt

+
 = 20 ms, consist-

ent with the potentiation window of STDP (Bi and Poo, 1998). 

Furthermore, Bi and Poo (1998) showed that the transition from 
LTD to LTP occurs in a relatively narrow time window symmetric 
around Δt = 0. Since in the present work we aim at a functional 
model we choose the effective rise time to be τ

rise
 = 0 ms, in order 

for the coincidence window to start at Δt = 0. Θ
h
 is then given by 

Θh
t

=
−Δ +e nmda/ τ  (see Figure 4). Subsequently, we use the absolute 

values of Θ
h
 and Θ

l
 of Cormier et al. (2001) to infer from the ratios 

Θ

Θ

l

h
� 0 75.  and Θb

hΘ
� 0 3.  the appropriate values of Θ

l
 and Θ

b
 for our 

condition.
Note that this choice of thresholds has the consequence for the 

spike pairing protocol that for 0 ≤ Δt ≤ Δt
+
 we obtain activation 

of CaMKII molecules, but we do not obtain deactivation for the 
reversed timing Δt < 0 as suggested by the experimentally observed 
LTD window of STDP. In the section “Sensitivity of Results to 
Model Assumptions” we discuss an extension of our model to 
incorporate the LTD window for negative relative timing and we 
argue that our results are invariant under this modifi cation.

Knowing the probability distribution ρ(a) of the calcium peak 
amplitudes a given a postsynaptic depolarization, we can calculate 
the probability of occurrence p

−
 = P(Θ

b
 ≤ a < Θ

l
 | postsynaptic 

spike) of a minus-event and p
+
 = P(a ≥ Θ

h
 | postsynaptic spike) 

of a plus-event. In order to detect pairs of correlated pre- and 
postsynaptic events, their relative timing must satisfy Δt ≤ Δt

+
. 

This is equivalent to the condition Δ :=
−Δa t

he nmda/ τ
≥ Θ , meaning, 

that correlated events cause an infl ux larger than Θ
h
 (compare 

Figure 3B).
Using Eqs. 5 and 4 for the probability of a plus-event we arrive at
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FIGURE 3 | (A) CaMKII molecules exhibit bistability: An inactive state and a 
highly phosphorylated, active state. Transitions between the two states are 
triggered by Ca2+ infl ux. If the infl ux exceeds a threshold Θh, the molecule 
switches from inactive to active. Low Ca2+ infl ux between Θb and Θl deactivates 
the molecule. (B) At each postsynaptic spike, Ca2+ can enter the spine and can 
change the amount x of active CaMKII molecules. The probability density function 

ρ(a) of the Ca2+ infl ux at the points in time of a postsynaptic spike a = q(tpost) 
determines the direction of the effect on x (same data as in Figure 2B). According 
to this effect, it can be divided into different regions: For Θb ≤ a < Θl; the number 
of active molecules is reduced. This event occurs with probability p

−
 (Eq. 7). For 

a ≥ Θh the number is increased, occurring which probability p
+
 (Eq. 6). In the 

regions between Θl and Θh and below Θb there is no infl uence on x.
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= + −1 1( ) .ε

C

r h
r

Θ
 

(6)

Here r and C are given as in Eq. 4. An analogous calculation, which 
is valid under the same assumption Θ

b
 < Θ

l
 < Θ

h
 ≤ Δa yields

p a a

a a a a a

b

l

b

l

b

l

−

=

=

= − + − Δ

∫

∫ ∫

( ) ( )

( ) ( ) ( )
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Θ

Θ
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l
r

b
rC
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⎛
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⎞

⎠
⎟= − −( ) .1 ε

 
(7)

Each PSD of a spine contains a number of CaMKII molecules, 
which was found to be N = 80 in a typical PSD on average (Chen 
et al., 2005). We are only interested in the behavior of the two sta-
ble states of a molecule: On long time scales, a molecule can only 
be in the fully activated or in the completely inactive state. Let the 
number of active molecules be x and assume that the postsynaptic 
neuron spikes with a rate ν

o
. Then x is a random variable and we are 

interested in the equilibrium distribution and its dependence on the 
correlation between the presynaptic and postsynaptic spike train. 
Each postsynaptic spike may lead to a plus-event with probability 
p

+
(ε). In such an event, each of the N − x inactive molecules can 

become active. In our model, this transition happens independ-
ently for each particle with probability p. Given x active molecules, 
the number of molecules per time being activated is ν

o 
p

+ 
p(N − x). 

Analogously, the number of molecules per time being deactivated 
is ν

o 
p

−
qx. Here, q is the probability of a minus-event to deactivate a 

particular molecules. This scenario is sketched in Figure 5. In equi-
librium, both currents must compensate, leading to the expected 
number of active molecules

x N
p p

p p p q
eq =

+

+

+ −

.
 

(8)

Thus 〈x〉
eq

 depends on the relative probabilities p
+
(ε) for a plus-

event and p
−
(ε) for a minus-event given by Eqs. 6 and 7. Figure 5B 

shows the probability distribution for the number of active mol-
ecules for an ensemble of synapses, where the presynaptic and the 
postsynaptic activity are correlated Poisson processes. The higher 

the correlation coeffi cient ε between presynaptic and postsynaptic 
activity is, the more the distribution is shifted to the right. For a 
derivation of the fi rst and second moment of the probability dis-
tribution see section “Probability Distribution for the Number of 
Active CaMKII Molecules” in Appendix.

The amount of active CaMKII molecules is the signal that can 
trigger downstream processes in the postsynaptic spine. Synapse 
maturation caused by insertion of new AMPA receptors into the 
PSD is such a process. In our model we assume that the process 
requires the presence of a certain minimal amount X

m
 of active 

CaMKII molecules. The probability of a synapse to maturate is 
therefore the probability that the number x of active molecules 
exceeds the threshold X

m
. In a premature synapse, the initial Ca2+ 

concentration is low and hence the amount of active CaMKII is low 
as well. We would like to know the mean time needed by the signal 
x, starting at x = 0, to cross the threshold X

m
 for the fi rst time. This is 

the mean fi rst passage time problem. We approximate the mean fi rst 
passage rate by the decay rate of the slowest decaying eigenvector of 
the CaMKII distribution in the section “Mean First Passage Time 
Problem for the Number of CaMKII Molecules” in Appendix. This 
solution is plotted for different thresholds in Figure 6.

We treat synapse pruning analogously. In a mature synapse the 
initial amount of active CaMKII is already beyond the threshold 
X

m
. Due to pre- and postsynaptic activity, the amount x of active 

CaMKII may decrease or increase, depending on the rates and 
the pre- and postsynaptic correlation. If eventually x falls below the 
minimal amount X

d
, the synapse dies. We choose X

d
 < X

m
 for two 

reasons. First, once the amount of CaMKII is high, autophospho-
rylation will act regeneratively (Miller et al., 2005), making the 
decrease of x harder. We do not model this dynamics explicitly, 
but rather incorporate its effect in our choice of X

d
 < X

m
. Secondly, 

experiments by Le Be and Markram (2006) suggest, that there is a 
“period of grace” for newly formed synapses during which they are 
not pruned, preventing many synapses to be created and destructed 
in vain. Our choice is a possible implementation.

RATE HOMEOSTASIS BY SYNAPTIC PRUNING
In this section we employ the correlation detection mechanism to 
control synaptic pruning and demonstrate its capability to regulate 
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FIGURE 4 | (A) Spike pairs with timing differences Δt ≤ Δt
+
 = 20 ms produce 

plus-events. This determines the threshold Θh
t

=
−Δ +e nmda/ .τ  (B) Dependence of 

s p
p p( ) ( )

( ) ( )ε
ε

ε ε
= +

+ −+
 on the presynaptic rate νi for two different correlation coeffi cients 

ε = 0 (black) and for ε = 0.3 (gray). The maximum spike rate νi,max at which the 
detector can discriminate these two correlation coeffi cients results from the 
condition that s(ε) > s(0) for all νi ≤ νi,max.
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spike rate towards a state of low rate. Before doing so we  generalize 
the correlation model studied in previous sections to the more 
realistic scenario of a temporally extended correlation between the 
presynaptic and the postsynaptic activity.

The correlation detection depends on the probabilities p
+
 for a 

plus-event (high Ca2+ infl ux) and p
−
 for a minus-event (low Ca2+ 

infl ux). A plus-event happens, whenever the infl ux a is in the range 
a ≥ Θ

h
. In order to compute p

+
 and analogously p

−
 we need to specify 

the pair correlation function C
io
(t

1
, t

2
) between the presynaptic and 

the postsynaptic spike train. Generally, the correlation function is 
defi ned as

C t t
t t t t t t t t

tt
io

pre postPr
( ) lim

( [ ] [ ])
.1 2

0

1 1 2 2

2
, =

∈ , + ∧ ∈ , +

d

d d

d↓

Here we restrict ourselves to stationary processes, such that 
C

io
(t

1
, t

2
) = C

io
(t

2
 − t

1
) only depends on the relative timing τ = t

2
 − t

1
 

between the presynaptic and the postsynaptic spike. Furthermore, 
we assume the presynaptic spikes to be Poisson events emitted 
at rate ν

i
. The postsynaptic spikes appear with mean rate ν

o
. For 

large τ the cross-correlation function decays to lim ( ) .
| | ∞

=
τ →

τ ν νC i oio  
Hence we can write

C
io
(τ) = ν

i
ν

o
 + c

io
(τ),

where the cross-covariance c
io
 vanishes for large |τ|. We now know the 

conditional probability to observe a presynaptic spike at t
pre

 ∈ [t − τ, 
t − τ + dt] provided that a postsynaptic spike occurs at time t

Pr d post spike at d dpre io( [ ] ) ( )t t t t ci
o

∈ − , − + | = +τ τ τ τ
ν

τ τ.ν
1

 
(9)

For a presynaptic spike to cause a plus-event it must have 
appeared within the potentiation window (see Figure 4A), i.e. 
0 ≤ τ ≤ Δt

+
. So the correlation detector measures the probability 
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FIGURE 5 | (A) Finite reservoir model of CaMKII. Each of the N = 80 
molecules can either be active or inactive. Given a high calcium infl ux a ≥ Θh 
(which occurs with probability p

+
), each CaMKII molecule has the probability 

p = 0.01 to be activated. Given a low calcium infl ux Θb ≤ a < Θl (occurring with 
probability p

−
), the probability of an active molecule to be deactivated is 

q = 0.01. Presynaptic and postsynaptic events are Poisson with rates 
νi = νo = 5 Hz. The transition rates between the inactive and the active state 

are therefore νop+
p(N − x) and νop−

qx, respectively. (B) Equilibrium 
distribution of the number of active molecules x in an ensemble of synapses 
for different correlation coeffi cients ε = {0, 0.1, 0.2}. The activation rate 
increases with the correlation ε, whereas the deactivation rate decreases, 
shifting ρ(x) to the right. The black curves shows simulation results (temporal 
resolution 0.1 ms), the gray curves are Gaussians parameterized by 
Eqs. 8 and 17.
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,

∫ ′, ′0 d  of the number of active molecules 
in an ensemble of synapses averaged over time. Synapses with x < Xd are 
pruned. This threshold acts as an absorbing boundary. Semi-analytic expression 
(Eq. 19) (gray), simulation of N = 10 000 synapses subject to presynaptic 
Poisson activity of νi = 5 Hz and postsynaptically the spiking activity of an 
integrate and fi re neuron with νo = 9 Hz (black). (B) The number of surviving 
synapses as a function of time. Simulation (black) and analytical expectation 

value (gray) (Eq. 29). The death rate (slope) corresponds to the eigenvalue η1. 
Different rates are obtained for the thresholds Xd = 25, 30, 35, where the fastest 
decay belongs to the highest threshold Xd = 35. (The parameters of the integrate 
and fi re neuron are: membrane time constant τm = 20 ms, threshold 
Vth = 15.0 mV,, reset potential Vr = 0 mV. It receives excitatory Poisson input of 
νext = 35400 Hz from synapses with weight w = 0.05 mV and inhibitory Poisson 
inputs of rate νinh = 5600 Hz from synapses of weight −gw = −0.2 mV.)
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ε
eff

 exceeding chance level of fi nding a presynaptic spike within this 
potentiation window, given a postsynaptic event at t = 0. This prob-
ability is ε τ τ

νeff io d= ∫
Δ +1
0o

t c ( ) . The cross-covariance c
io
(τ) decreases 

on a time scale comparable to the membrane time constant of the 
neuron, which is typically shorter than the potentiation window 
Δt

+
 = 20 ms. An example can be seen in Figure 7A. In this case we 

can make the simplifi cation

ε
ν ν

eff io

decays faster than 

iod
io

= ′ ′
Δ

Δ
∞+

+

∫ = ∫
1 1

0 0
o

t c t

o

c t t c( ) (( ) .′ ′t td
 

(10)

The probabilities of plus and minus-events are then given by Eqs. 6 
and 7, respectively, with ε = ε

eff 
. An analytic approximation for the 

effective correlation coeffi cient in the framework of linear response 
theory for an integrate and fi re neuron model can be found in the 
section “Input Output Correlation of an Integrate and Fire Neuron” 
in Appendix. Note that the causal dependence of output spikes on the 
input spikes and the assumed Poisson statistics of the incoming activ-
ity leads to the input–output correlation function (Figure 7A) which 
only deviates from baseline for Δt > 0. Therefore, the position of the 
temporal window for minus events is uncritical in this setup, as long 
as c

io
 is at baseline within this window. Thus we would obtain the same 

results, if the time window for minus events was at negative times.

We now have the tools to investigate synaptic pruning in the 
scenario depicted in Figure 7B. A neuron initially has a number 
k

0
 of synaptic excitatory inputs, each of which reaches the neu-

ron via a spiny synapse with a calcium based correlation detec-
tor as described in the section “A Counter for Correlated Events” 
All synapses are mature and may eventually die depending on the 
correlation variable x: A synapse is pruned as soon as the amount 
x of active CaMKII undercuts a critical threshold x < X

d
. The initial 

distribution of x over the ensemble of synapses is the eigenvector of 
the slowest decaying eigenmode at the initial fi ring frequency ν

o
(0) 

of the neuron. The choice is justifi ed, if we think of the initial con-
nectivity as the outcome of a slow dynamic wiring process, during 
which the synaptic amount x of active CaMKII had enough time 
to settle in this eigenmode. In addition to the excitatory inputs, the 
neuron receives a static confi guration of inhibitory connections. 
Due to the pruning process, excitatory synapses progressively die 
and hence the number of excitatory connections k(t) decays and 
the neuron’s fi ring rate ν

o
 decreases (see Figures 8A,B). The prun-

ing process continues until the postsynaptic neuron stops spiking. 
Thus, pruning is a mechanism to regulate the fi ring rate down-
wards. If the process is slow compared to the dynamics of x, we can 
assume the distribution of x to follow the eigenstate adiabatically. 
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FIGURE 7 | (A) Input–output correlation function normalized to the postsynaptic 
spike rate. The peak drops to baseline (νi = 5 Hz, gray) on a time scale which is 
shorter than the width of the potentiation window Δt

+
 = 20 ms. The area below 

the peak is the effective correlation coeffi cient εeff (see Eq. 10). (B) A neuron 

N receiving k Poisson spiking inputs of rate νi = 5 Hz via synapses s1…sk. Each 
synapse measures the correlation between its input spike train and the spiking 
activity of the neuron N. A synapse is pruned as soon as its number of active 
CaMKII has fallen below a threshold x < Xd = 30.
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Numerical integration of Eq. 11. Initial number of incoming connections 
k0 = 2000. In addition, the neuron receives 5080 excitatory connections and 
1120 inhibitory connections, which are not pruned.
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In this approximation, the development of connectivity obeys the 
differential equation

d

d

k

t
k k k

k k

o= − ,

=

η ν1

00

( ( ) )

( ) ,  (11)

where η
1
(ν

o
, k) is the eigenvalue of the slowest decaying eigenmode. 

All terms are accessible: a derivation of η
1
 is presented in the sec-

tion “Mean First Passage Time Problem for the Number of CaMKII 
Molecules” in Appendix and ν

o
 can be calculated using Eq. 34. 

Therefore, Eq. 11 can be numerically integrated. Figure 8 compares 
this semi-analytic result with a direct simulation of the model.

The negative slope of the pruning curve in Figure 8A is decreas-
ing with decreasing number of incoming synapses k. The reason 
is the dependence of the synapse death rate on the postsynaptic 
fi ring rate: The time scale of activation and deactivation of the 
CaMKII molecules is determined by the postsynaptic fi ring rate 
ν

o
 (compare Eq. 20). Consequently, also the death rate is propor-

tional to ν
o
. This is an interesting feature, since it facilitates a fi ring 

rate homeostasis: If new synapses are created with a constant rate 
the input connectivity to the neuron has a stable fi xed point at k* 
where synaptic death is just compensated by synapse creation. The 
fi ring rate of the neuron assumes a corresponding fi xed fi ring rate 
ν*

o
. A similar example of such a homeostasis will also be shown in 

the section “Synaptic Maturation and Pruning”.

COOPERATION AND COMPETITION BY SPATIAL INPUT CORRELATION
In the previous section we investigated a synaptic pruning proc-
ess, where all excitatory inputs are uncorrelated. However, there is 
evidence that coactive inputs are stabilized (Cohen-Cory, 2002) and 
therefore less likely to be pruned. Here we show, that the calcium 
based correlation detection mechanism naturally leads to coopera-
tion between synapses, which stabilizes coactive inputs.

SYNAPTIC PRUNING
In the fi rst setup, we investigate a neuron receiving excitatory inputs 
from two different sources: A pool of n

p
 presynaptic neurons with 

uncorrelated Poisson spiking activity at rate ν
i
. We call these inputs 

the “independent inputs” in the following. The second pool of n
c
 

Poisson spiking neurons at rate ν
i
, however, generates correlated 

spike trains. We use the multiple interaction process (Kuhn et al., 
2003) to produce the spike trains and call these the “correlated 
inputs”. The correlation coeffi cient 0 < c ≤ 1 is the probability of 
input neuron i having an input spike at time t, given neuron j has a 
spike at the same time. Thus, c = 0 results in uncorrelated Poisson 
processes, whereas for c = 1 all n

c
 spike trains are the same.

Initially (at t = 0) there are n
p
(0) = n

c
(0) = 1000 incoming syn-

apses. Each of the synapses uses the calcium based correlation 
detection mechanism to determine the number of active CaMKII 
molecules x. Whenever x falls below the threshold X

d
, the corre-

sponding synapse dies. Figure 9A illustrates this scenario.
Figure 9B shows the evolution of the number of incoming con-

nections. The synapses from independent sources exhibit a higher 
death rate than synapses from correlated inputs. We can readily 
understand this behavior: Given there is a spike at input i of the 
correlated pool, each of the remaining n

c
 − 1 inputs also delivers a 

spike with probability c at the same time. Thus, given a spike at the 
correlated input i, the expectation value for the sum of all inputs at 
this time is 〈w〉

mip
 = w(1 + c(n

c
 − 1)), where w is the homogeneous 

synaptic weight. In contrast, a spike from the uncorrelated pool 
only carries its own weight w < 〈w〉

mip
. A higher synaptic weight 

results in a higher probability of the target neuron to emit a spike. 
Thus, the probability of the neuron to fi re in response to a spike 
from one of the correlated inputs is higher than for an uncorrelated 
input. This probability is proportional to the correlation coeffi cient 
ε

eff
 between the presynaptic and the postsynaptic spike train (for a 

derivation of an analytic expression for ε
eff

 see Eq. 37 in the section 
“Correlated Poisson Input” in Appendix). With ε

eff,mip
 > ε

eff,Poisson
, 

the number of active molecules x in the synapses from correlated 
inputs is higher than in those from independent inputs (see also 
Figure 5B) and hence their death rate is lower (see also “A Counter 
for Correlated Events”).

Although there is no direct interaction between synapses from 
correlated inputs, cooperativity emerges between them and helps 
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FIGURE 9 | (A) A neuron receiving two pools of excitatory inputs: np synapses 
provide uncorrelated Poisson inputs at νi = 5 Hz, and nc synapses correlated 
Poisson inputs at rate νi = 5 Hz. The correlated events are produced by the 
multiple interaction process parameterized by the pairwise correlation c. 
A continuous pruning process eliminates synapses when the number of active 
CaMKII falls below a threshold x < Xd = 30. (B) Evolution of connectivity 

structure. Initially, both groups have the same number of synapses 
np(0) = nc(0) = 1000. In addition, the neuron receives 5080 excitatory 
connections and 1120 inhibitory connections, which are not pruned. The pruning 
process mainly affects the uncorrelated inputs. The top and the bottom trace are 
for a pair correlation c = 0.01, the intermediate traces for c = 0.005. Black: fi ve 
simulation trials. Gray: Numerical integration of Eq. 12.
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to stabilize these inputs in favor of the uncorrelated inputs. There 
is not only cooperation among synapses of the correlated pool, but 
also competition between the two pools: The number of uncor-
related inputs decreases with increasing correlation among the 
correlated inputs. This is because the synaptic deathrate increases 
with the fi ring rate of the target neuron.

The time evolution of the number of inputs n
p
(t) and n

c
(t) can 

be calculated numerically completely analogous to the section “Rate 
Homeostasis by Synaptic Pruning”. The system of differential equa-
tions governing the dynamics is

d

d
d

d

 Poisson

 mip

n

t
n n n n n

n

t
n n
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c o
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1
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where η
1,Poisson

(ν
o
, n

p
, n

c
) and η

1,mip
(ν

o
, n

p
, n

c
) are the slowest decaying 

eigen-modes calculated according to the section “Mean First Passage 
time Problem for the Number of CaMKII Molecules” in Appendix.

SYNAPTIC MATURATION AND PRUNING
In this section, we extend the scenario of Figure 9A by incorpo-
rating a process of synapse creation. Again we have two pools of 
input neurons: The fi rst pool of N

p
 neurons has Poisson spiking 

activity with rate ν
i
, the second pool of N

c
 neurons has Poisson 

activity with pair correlation c and the same rate ν
i
. Excitatory 

synapses from both pools can exist in either of two states, pre-
mature or mature as depicted in Figure 10A. Newly created syn-
apses are in the premature state, lacking AMPA receptors. Their 
synaptic weight is 0. A synapse becomes mature, if the number 
of active molecules x exceeds a threshold X

m
. The mature synapse 

has the synaptic weight w > 0. This synapse dies, if the number of 
active molecules falls below a threshold X

d
. Initially there are no 

premature synapses n
p,pre

(0) = n
c,pre

(0) = 0, and there are as many 
mature synapses from independent inputs as from correlated 

inputs n
p,mat

(0) = n
c,mat

(0) > 0. Premature synapses are constantly 
created: For each of the N

p
 − n

p,mat
 − n

p,pre
 presently unestablished 

 connections from independent sources, the rate of realization is 
λ

pre
. Premature synapses from correlated sources are created analo-

gously with the same rate λ
pre

.
The evolution of the connectivity in the presence of maturation 

and pruning is shown in Figure 10B. The connectivity approaches 
an equilibrium state after t � 600 s. The number of mature synapses 
from correlated inputs n

c,mat
 increases, while the number of synapses 

from uncorrelated inputs n
p,mat

 decreases (upper two traces). The 
two values saturate at different levels, such that n

c,mat
 > n

p,mat
. Initially, 

the number of premature synapses increases for both input pools 
(lower two traces). In equilibrium, the numbers of premature syn-
apses saturate at different levels n

p,pre
 > n

c,pre
. The explanation for this 

observation is the same as in the previous subsection: Correlatedly 
activated synapses exhibit cooperation, they experience a higher 
correlation coeffi cient between the input spike train and the output 
spike train produced by the neuron. Hence, for synapses from the 
correlated pool, the maturation rate of premature synapses is higher 
and the deathrate of mature synapses is lower as compared to the 
uncorrelated inputs. As in the section “Synaptic Pruning”, the target 
neuron becomes selective for the correlated pool.

A similar differential equation as Eq. 12 quantitatively describes 
the evolution of the connectivity in this model. Its numerical 
 solution (Figure 10B, gray) corresponds well to a direct simulation 
of the system (black). The observed deviations are due to synapse 
maturation: Each synapse entering the mature state has a number 
x of active CaMKII just above threshold X

m
. This perturbs the 

equilibrium distribution of x for the mature synapses and hence 
infl uences their death rate. The direction of this infl uence depends 
on the relative position of X

m
 with respect to the equilibrium 

〈x〉
eq

: For X
m
 > 〈x〉

eq
 the observed death rate is lower than the analytic 

estimate and vice versa.

DISCUSSION
In the present work we describe a novel model of the synaptic 
mechanisms controlling synapse pruning and synapse maturation. 

BA

maturation deathcreation

premature
npre

mature
nmat

x<Xdx > Xm
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FIGURE 10 | (A) Each synapse has two states: In the premature state, its 
synaptic weight is w = 0. If the number x of active CaMKII exceeds a 
threshold Xm = 45, the synapse maturates and exhibits a synaptic weight 
w = 0.05 mV. If x falls below Xd = 30, the synapse dies. (B) Formation of input 
structure of a neuron during constant creation of premature synapses with rate 
λpre = .0 05 1

s  synapses per second in otherwise the same input scenario as in 
Figure 9A. Initially, there are np,mat(0) = nc,mat(0) = 3540 mature excitatory 

synapses from each input pool and np,pre(0) = nc,pre(0) = 0 premature 
synapses. Additionally, there are inputs from 1120 inhibitory synapses not 
subject to pruning. The traces show (top to bottom): mature synapses from 
correlated pool nc,mat, mature synapses from uncorrelated pool np,mat, 
premature synapses from uncorrelated pool np,pre, premature synapses 
from correlated pool nc,pre. Black: simulation, gray: analytical 
approximation.
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To our knowledge, this is the fi rst model of structural plasticity 
based on the microscopic dynamics of the single synapse. Instead 
of constructing a phenomenological model, we use recent experi-
mental fi ndings to identify plausible postsynaptic mechanisms and 
to constrain the choice of model parameters. We analyze the cortical 
scenario of irregular spiking activity and quantify the dependence 
of structural plasticity on the correlation between the presynaptic 
and the postsynaptic activity. Functionally, the dynamics acts as a 
Hebbian learning rule for synaptogenesis and pruning. Our model 
can be understood as a biological plausible implementation of a 
cascade synapse (Rubin and Fusi, 2007) for spiking activity, where 
the number x of active CaMKII molecules plays the role of internal 
states. However, in contrast to the cascade model, once x falls below 
the critical threshold the synapse is lost and cannot be reactivated 
by subsequent potentiating events. Here we provide a full statistical 
treatment of the number of active molecules. This is essential, since 
due to the low number of molecules (N � 80) fl uctuations cannot 
be neglected. Previous work on STDP (Cai et al., 2007; Shouval 
and Kalantzis, 2005) demonstrated, that stochastic fl uctuations can 
change the phenomenology of a learning rule.

We show that there are two distinct rate regimes: In the low 
rate regime up to ν

i
 � 10 Hz, our model works as a correlation 

detector in the sense that synchronously activated synapses on 
the same dendrite stabilize. This frequency limit is a direct con-
sequence of the NMDA unbinding time constant τ

nmda
. Hence the 

model constitutes a viable mechanism for a network using tem-
poral (correlation) codes at low rates. At higher rates (ν

i
 > 10 Hz), 

synapse stabilization occurs irrespective of correlations between 
input and output. This is in accordance with recent experimental 
evidence that higher activity leads to increased synapse formation 
(Le Be and Markram, 2006) and to classical LTP induced by tetanic 
stimulation protocols. Furthermore, we show that by controlling 
synaptic pruning our model exhibits several desirable features for 
a neuronal network: The synaptic pruning rate increases with the 
postsynaptic fi ring rate. This enables the homeostasis of fi ring rate 
while synapses are continuously created, a fi nding obtained earlier 
using abstract rate based models of structural plasticity (van Ooyen 
et al., 1995). Moreover, the synapses targeting the same neuron 
naturally exhibit cooperation and competition. These emerging 
phenomena render the proposed microscopic mechanism relevant 
for the theory of learning in neuronal networks: The evolution of 
connectivity is sensitive to correlations in the inputs and hence 
neurons become selective for coactive inputs. This stabilization of 
coactive inputs has been proposed earlier based on experimental 
evidence, reviewed in (Cohen-Cory, 2002). Our treatment explains, 
how cooperation and competition are mediated solely by the 
identical postsynaptic activity experienced by synapses. Previous 
theoretical work (Kempter et al., 1999, 2001) showed cooperativity 
to emerge from the interplay of spike timing dependent learning 
rules with the spiking dynamics in the framework of spike response 
models. In general, a quantitative understanding of the interaction 
between a spike timing based plasticity rule and the integrate-and-
fi re dynamics is a hard problem. Here we provide such an analysis 
for our specifi c learning rule assuming all-to-all spike interaction. 
The analysis allows us to obtain semi-analytic expressions for the 
evolution of network structure. Specifi cally, we present results for 
the case of incoming irregular Poisson activity as well as for the case 

of  correlated inputs generated by a multiple-interaction-process 
(Kuhn et al., 2003).

SENSITIVITY OF RESULTS TO MODEL ASSUMPTIONS
For analytical convenience we use an integrate and fi re neuron 
model with δ-shaped postsynaptic currents, as commonly used 
in network simulations and theoretical works. These currents can 
cause an immediate spiking response to an incoming spike. More 
realistic neuron models have postsynaptic currents with fi nite rise 
times and hence also the input–output correlation function shows 
a fi nite latency of τ

response
 � 5 ms in response to an input spike. Since 

we aim at a consistent theory of the interaction between learning 
rule and neuronal dynamics, we compensate for the lack of latency 
by reducing the measured glutamate binding time τ

rise
 � 5…10 ms 

to τ
rise

 = 0 ms. As in the natural setting the whole mass of the 
input–output correlation function falls into the time window τ

+
 

of the learning rule. A mismatch of the time constants would not 
change the observed phenomena qualitatively, but slightly reduce 
the sensitivity to correlations. We can extend our analysis to more 
realistic and more complicated neuron models, if an expression for 
the corresponding integral input–output correlation ∫

∞

0 C t tio d( )  is 
known.

The probabilities p and q for activation and deactivation of 
CaMKII molecules by large and small calcium events respectively, 
are set to p = q = 0.01 without experimental reference. Once experi-
mental data are available, these parameters need to be reconsid-
ered. The smaller the values, the narrower the distribution of active 
CaMKII molecules. This increases the sensitivity to correlation but 
also the latency of the distribution in following transient changes 
in the correlation. The threshold X

d
 for the minimum number of 

active CaMKII molecules required for survival can be chosen such 
that the synapse turnover in a neuronal network reaches experi-
mentally observed values of 7% of all synapses per week (Stettler 
et al., 2006). As soon as an experimental value for X

d
 is available we 

can check whether our model consistently relates the two experi-
mental measures. We use a multiple interaction process to generate 
incoming spiking activity with higher order correlations. The choice 
is motivated by analytical convenience rather than by biological 
realism. However, we expect other models of higher order corre-
lation to exhibit qualitatively similar results for cooperation and 
competition between synapses.

Due to our assumption of a point event like bpAP (see also 
“Spike Time Dependence of Postsynaptic Calcium Concentration”) 
there is no calcium infl ux through NMDA receptors, if the post-
synaptic depolarization precedes the presynaptic release of gluta-
mate. For our model the consequence is that post-before-pre 
pairings do not cause deactivation of CaMKII molecules (see also 
“A Counter for Correlated Events”). Hence if the intention was to 
explain STDP, we would not be able to reproduce the part of the 
rule expressing LTD. Experimentally, Nevian and Sakmann (2004) 
observe calcium infl ux through NMDA receptors only for the pre-
before-post condition. Additionally, there is infl ux through voltage 
dependent calcium channels (VDCC) opened by the bpAP. Also 
AMPA receptors depolarize the spine and hence lead to calcium 
entry through coactivated NMDA receptors and VDCCs. However, 
the resulting NMDA conductivity is small (Kampa et al., 2004) 
and calcium transients in spines are not signifi cantly decreased by 
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blocking AMPA receptors (Nevian and Sakmann, 2004). So here 
we assume the main pathway for calcium infl ux into the spine to be 
NMDA receptors and we neglect the additional sources of calcium. 
As long as their contribution to the calcium signal is small, they 
constitute a background elevation of the overall calcium level in 
the spine and we obtain qualitatively similar results. If, however, 
their contributions were of comparable size as the calcium transient 
through NMDA receptors, a temporally close post-before-pre tim-
ing could lead to suffi cient calcium infl ux to deactivate CaMKII 
and hence create a LTD window. Previous biophysical models of 
STDP (Shouval et al., 2002) assumed a fi nite decay time for the 
postsynaptic depolarization. This as well leads to an intermediate 
calcium infl ux for the post-before-pre condition. Our model can 
be extended in the same way. However, as argued in the section 
“Rate Homeostasis by Synaptic Pruning”, for the results presented 
here, the exact temporal position of the LTD window is irrelevant. 
The observed rate homeostasis only depends on the proportion-
ality between the synapse death rate and the postsynaptic fi ring 
rate, resulting from the CaMKII dynamics. The cooperativity 
between synapses (see “Cooperation and Competition by Spatial 
Input Correlation”) only requires a Hebbian type plasticity, i.e. plus 
events are caused by a postsynaptic spike following a presynaptic 
spike in close succession.

SCOPE AND ACCURACY OF THE ANALYTICAL TREATMENT
The treatment of the CaMKII dynamics as a Markov process implic-
itly assumes the high (plus) and low (minus) calcium events to occur 
uncorrelatedly with the respective probabilities p

+
 or p

−
. However, 

the occurrence of a plus event or a minus event depends on the cur-
rent value n(t

post
), the fraction of glutamate bound NMDA recep-

tors at the time of the postsynaptic spike. n(t) has a time constant 
τ

nmda
 = 32 ms. Hence, if postsynaptic spikes occur with arbitrarily 

small inter-spike-intervals, the probability to observe a plus event is 
slightly higher after a previous plus event. Nevertheless, for realistic 
postsynaptic spike trains, small inter-spike-intervals are rare due to 
refractoriness, so the neglect of the temporal correlation of n(t) is 
well justifi ed (see also section “Mean First Passage Time Problem 
for the Number of CaMKII Molecules” in Appendix, Figure 12B). 
A more thorough treatment must take into account the actual 
auto-correlation function of the postsynaptic spiking activity. The 
dynamics of the discrete amount of active CaMKII molecules is 
mapped to a continuous system. By comparing the continuous 
analytic probability density to the discrete numerical solution of 
the probability mass function, we found that this approximation 
is suffi ciently accurate as long as the total number of molecules is 
large enough (N > 30). Furthermore, we approximate the CaMKII 
dynamics as a diffusion with a x-independent diffusion constant, 
whereas the original problem leads to a x-dependent diffusion 
term. Again, the nearly perfect agreement of the numerical solu-
tion (taking into account x-dependent diffusion) with the analyti-
cally obtained Gaussian, proves this approximation adequate (see 
Figure 11). However, if the distribution approaches the saturation 
limits x = 0 or x = N, we observe pronounced deviations. This may 
occur for highly correlated spiking and at excessive fi ring rates. 
The results for the synaptic death and maturation rates are based 
on the slowest decaying eigenvalue η

1
 of the CaMKII activation 

distribution. This component has the largest time constant. If the 

ensemble of synapses is initialized with a distribution containing 
contributions different from the slowest decaying eigenvector, we 
observe transient deviations in the pruning rate. These transients 
decay typically 15 times faster than the slowest eigenvector 

| |

| |( )
η

η

1

2

1
15� . 

So after a suffi ciently long time, the CaMKII distribution obeys 
the analytical solution in good approximation. For calculating the 
equilibrium state of connectivity, the slowest decaying eigenvector 
is the exact description if the number x of active molecules of a new 
synapse is drawn from this eigenvector. But even for non-stationary 
connectivity, the distribution of activated CaMKII across synapses 
follows the structure quasi adiabatically and the approximation is 
well fulfi lled as shown by comparing analytical results with direct 
simulations (see “Rate Homeostasis by Synaptic Pruning” and 
“Cooperation and Competition by Spatial Input Correlation”). The 
larger deviations in Figure 10 are attributed to this approximation: 
Each synapse entering the mature state has a number x of active 
CaMKII just above threshold X

m
. This perturbs the equilibrium 

distribution, explaining the deviation of the simulated from the 
analytically obtained connectivity structure.

FUNCTIONAL ROLE OF STRUCTURAL PLASTICITY
Recent experiments (Stettler et al., 2006) demonstrated synaptogen-
esis and synaptic death to occur even in the adult cortex. However, 
their functional relevance for the neural network still remains to 
be illuminated. Theoretical considerations (Chklovskii et al., 2004; 
Stepanyants et al., 2002) suggest rewiring in networks to provide 
the dominating substrate of information storage. In artifi cial neural 
networks optimization of wiring was already shown to contribute 
signifi cantly to memory capacity (Knoblauch, 2006; Knoblauch 
et al., 2007). More generally, restructuring of connectivity allows 
biological systems to optimize their circuitry to fulfi ll a specifi c set of 
functions. Understanding the mechanisms of  wiring optimization 
will also be benefi cial for technical systems (e.g. integrated circuits), 
since due to their essentially two dimensional nature, the number 
of contacts existing at any point in time is a precious and limited 
resource. For the above purposes a phenomenological model of 
structural plasticity is suffi cient. However, a microscopic model 
is required to uncover the underlying biological mechanisms and 
resulting limitations. Moreover, an understanding of the control 
mechanisms of connectivity may contribute to the development of 
medical protocols to promote plasticity after neural lesions, e.g. as 
experienced after a stroke. How a system can exhibit a plastic struc-
ture and yet acquire and maintain its functionality is still a matter 
of research. To answer this question it is not suffi cient to investigate 
synaptogenesis and synaptic death under conditions of stationary 
activity, but we rather have to consider the close interplay between 
the structural dynamics and the correlation dynamics exposed by 
the present work. The framework presented here provides the tools 
for this endeavor; we are now in the position to investigate struc-
tural plasticity in recurrent neural networks.

APPENDIX
PROBABILITY DISTRIBUTION FOR THE NUMBER OF ACTIVE CaMKII 
MOLECULES
Numeric solution of the equilibrium distribution
Suppose there is a fi nite amount of CaMKII in the PSD. Each of the 
N molecules can either be active or inactive. Transitions between 
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these states are triggered by calcium infl ux, where a high calcium 
amplitude a ≥ Θ

h
 causes each inactive molecule to be activated with 

probability p, and a low calcium amplitude Θ
b
 ≤ a < Θ

l
 causes each 

active molecule to be inactivated with probability q. The rate of 
high calcium events is λ

+
 = ν

o 
p

+
(ε), the rate of low calcium events 

λ
−
 = ν

o 
p

−
(ε), where ν

o
 denotes the postsynaptic fi ring rate. Given 

x active molecules, the number of molecules being activated per 
time is λ

+ 
p(N − x), the current of molecules being deactivated is 

λ
−
qx. Since these rates depend on the state x of the system, the proc-

ess has the Markov property. Thus, the system is uniquely defi ned 
by the transition probability P(x, y) from state x into state y. Let 
λ = ν

o
(p

+
(ε) + p

−
(ε)) be the rate of events that change the state of 

the system, 
+ +

= +

+ −

p p
p p

( )
( ) ( )

ε

ε ε
 the probability that the event was a plus-

event and 
− +

= −

+ −

p p
p p

( )
( ) ( )

ε

ε ε
 be defi ned analogously. Given an event 

(either plus or minus), the transition probability is

P x y H y x p B y x p N x

H x y p B x y q x

( ) ( ) ( )

( ) ( )

, = − − | , −

+ − − | , ,

+

−  (13)

where B k p N p pk
N k N k( ) ( )| , = ( ) −

−1  is the binomial distribution and 
H the Heaviside function. We are interested in the equilibrium 
distribution ρ(x), which must fulfi ll

ρ ρ

ρ δ

( ) ( ) ( )

( )( ( ) ) [ ]

y x P x y

x P x y N

x

N

x

N

x y

= ,

= , − ∈ ,

=

=

,

∑

∑

0

0

0 0∀y

To obtain the non-trivial solution, we have to take into account 
the normalization condition 1 0= .

=
Σ x

N xρ( )  This results in the inho-
mogeneous linear system of N + 1 equations

δ ρ δ δy
x

N

x y yx P x y y N
,

=

, ,
= , − + ∀ ∈ ,∑0

0
0 0( )( ( ) ) [ ],

 
(14)

which can be solved numerically. Since the transition probability 
P(x, y) is a positive stochastic matrix, i.e. it fulfi lls P(x, y) ≥ 0 and 
∀ : , =

=
x P x yy

N
Σ 0 1( ) , according to the Perron-Frobenius theorem 

(MacCluer, 2000) its largest eigenvalue is 1 and the respective 
eigenvector ρ(x) is unique with positive entries. This guarantees 
a unique solution of Eq. 14 with the desired properties of a prob-
ability distribution.

Analytic approximation of the equilibrium distribution
In order to obtain information about the equilibrium density ρ(x) 
we investigate its fi rst and second moments. Suppose, x obeys the 
distribution ρ(x, t) at time t with a well defi ned fi rst and second 
moment. In this case we can determine the infi nitesimal time evo-
lution of μ(t) = 〈x(t)〉 and σ2(t) = 〈(x(t) − 〈x〉)2〉 for short times Δt. 
For the mean we obtain
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where the identity Σk
N

k
N k N kp p k Np

=

−( ) − =0 1( )  (mean of the bino-
mial distribution) was used. The fi rst moment of the distribution 
fulfi lls the differential equation

d

d
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In equilibrium, the mean value is

μeq eq
= =

+

+

+ −

x N
p p

p p p q
.
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In addition, we can calculate its temporal evolution from Eq. 15 
to be

μ μ
λ λ( ) ( ) ( ).( ) ( )t t p p p q t p p p q
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− + − +

+ − + −0 1e eeqμ

So the time scale on which the distribution approaches its equi-
librium is given by
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In equilibrium, we determine

where S(x) denotes the probability fl ux operator. An explicit form 
can be determined under the following assumptions: (1) The proc-
ess can be described as a diffusion. (2) The equilibrium distribution 

of the process is given by a Gaussian ρ
πσ

μ σ
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where μ
eq

 and σ
eq

 are determined by Eqs. 16 and 17. The station-
ary probability density has to fulfi ll ∂ρ

∂t = 0, so from Eq. 19 it follows 
that S(x)ρ

0
(x) = S

0
 = const. The constant must be S

0
 = 0, since the 

probability current vanishes at x = − 1
2 it vanishes for all x. We intend 

to describe the process as a diffusion. Therefore, S should contain 
only fi rst derivatives in x and the fl ux operator must have ρ

0
 as its 

stationary solution, leading to
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The constant D controls the time scale of the process. We deter-
mine D such that the dynamics of the diffusion process Eq. 19 
matches the dynamics of our process for the fi rst moment of ρ. 
In doing so, we follow Ricciardi et al. (1999) and determine the 
infi nitesimal drift term A

1
(x) from the master equation of the proc-

ess, which yields
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Subsequently we require A
1
(x) = −D(x − μ

eq
), which fi xes 

D p p p q= + .
+ −

λ( )
To simplify the notation, we rescale the variable y

x
=

−μ

σ

eq

eq
. The 

fl ux operator now reads S y D y y( ) ( ).= − −σ
∂

∂eq  A separation ansatz 
for the probability density ρ(y, t) = φ(y)eηt turns the Fokker–Planck 
equation 19 into the corresponding eigenvalue problem
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FIGURE 11 | Comparison between the numerically obtained distribution 

of the number of active molecules in an ensemble of synapses solving

Eq. 14 (black dotted curve) and the Gaussian approximation (gray curve) 

using Eqs. 16 and 17 for different pair correlation coeffi cients 

ε = {0, 0.1, 0.2} between the presynaptic and the postsynaptic spiking 

activity. Same parameters as in Figure 5.
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Figure 11 compares the numerical solution of Eq. 14 to a Gaussian 
with mean μ

eq
 and standard deviation σ

eq
, demonstrating that the 

Gaussian approximation is suffi cient.

Mean fi rst passage time problem for the number of 
CaMKII molecules
In the model the number of active CaMKII molecules x determines 
whether a synapse maturates or dies. Both decisions are triggered by 
the crossing of different thresholds. Thus we have to calculate the 
mean time until x passes the threshold X for the fi rst time. This is 
known as the mean fi rst passage time problem with an absorbing 
boundary at x = X. Here we are interested in an approximation 
for the mean fi rst passage time, or equivalently, for the threshold 
passing rate.

Figure 5 shows that the equilibrium distribution ρ(x) in absence 
of any absorbing boundary is well described by a Gaussian distri-
bution. This observation suggests a mapping of the discrete fi rst 
passage time problem to a continuous one with x N∈ , ⊂[ ]0 � and 
the corresponding replacement of the discrete probability distribu-
tion ρ by a continuous probability density function ρ
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(18)

In the following we omit the tilde; x and ρ name the continuous 
variables. The time evolution of the probability density ρ(x) can 
be described by the Fokker–Planck equation

∂ρ

∂

∂

∂
ρ

t x
S x= − ,( )

 
(19)
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To fi nd the eigenvalues of L
FP

, we follow Risken (1996) and 
transform Eq. 21 into a Hermitian operator, using the following 
transformation
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y y
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Let φ(y) be an eigenvector of L
FP

, then obviously ψ = U−1(y)φ(y) 
is an eigenvector of L with the same eigenvalue, so we have to 
solve
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This is the differential equation of the harmonic oscillator known 
from quantum mechanics. The general solution of this differential 
equation is a linear combination of confl uent hypergeometric func-
tions (Abramowitz and Stegun, 1974)

ψ
η η

( )y c M
D

y r yM
D

y
y y

= ; ;
⎛

⎝
⎜

⎞

⎠
⎟ + + ; ;

⎛

⎝

− −e e
1
4

2 1
4

21

2

1

2

1

2

1

2

1

2

3

2

1

2
2 2

⎜⎜
⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

=

= ; ;
⎛

⎝
⎜

⎞

⎠
⎟ +

− −

φ ψ( ) ( ) ( )y U y y

c M
D

y ry ye e
1
2

2 1
2

1

2

1

2

1

2
2η 22 1

2

1

2

3

2

1

2

1

2

1

2

1

2

1

2

2

2

yM
D

y

c M
D

y

η

η

+ ; ;
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

= − + ; ;−
⎛

⎝
⎜

⎞

⎠
⎟ + rr yM

D
y− + ; ;−

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

1

2
1

3

2

1

2
2η

.
 

(22)

The last equality follows from M(a, b, z) = ezM(b − a, b, −z) 
where the constant c must be determined using the normalization 
condition 1 = ∫ φdx. The boundary conditions constrain the choice 
of possible values for η as well as for the constants r. Without loss 
of generality, we assume that the threshold X has to be crossed 
from above (synapse pruning). The case in which the threshold 
represents an upper boundary (synapse maturation) can be han-
dled analogously by interchanging the roles of plus and minus-
events and the associated quantities. At the upper end x N= +

1
2 of 

the interval, the probability fl ux has to vanish, i.e. this is a totally 
refl ecting boundary

x N
S

= +
=1

2

0φ .
 

(23)

The lower end of the interval is given by the threshold X. This 
is an absorbing boundary, but does not require the probability 
density to vanish, since the rate of minus-events is limited and 
hence the threshold passing rate remains fi nite even if φ(X) > 0. 
The probability for the system in state x to cross the threshold X 
after having received a minus-event is

p x
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where the last expression is the cumulative density function of the 
binomial distribution. Figure 12 shows the typical steep increase 
of the exit probability in the vicinity of the threshold X.

The fl ux η through the boundary can be calculated as

S p x xX
x X

N

=
−

=

∑λ ρexit( ) ( )
 

(24)
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FIGURE 12 | (A) Exit probability pexit given a minus-event depending on the 
state x (black) and probability density function ρ (gray) of the number of 
active molecules x. (B) Probability of having k consecutive plus-events given 
at least one plus-event. Expected probability p k p pk( ) ( )= −
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11  for 

independently occurring events (gray). Statistics of events caused by a 
postsynaptic spike train of an integrate and fi re neuron (black dashed line) 
and of events caused by a postsynaptic Poisson spike train 
(black dashed-dotted line).
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The probability density can be approximated by a linear Taylor 
series here, since p

exit
(x) vanishes except in a small range near 

the threshold (see Figure 12). Using the fl ux operator S, the fl ux 
through the boundary can be expressed as

S S

X
X

y
X

X X=

= −
−

+
⎛

⎝
⎜

⎞

⎠
⎟ .

ρ

Dσ
μ

σ
ρ

∂ρ

∂
eq

eq

eq

( ) ( )
 

(26)

Taken together we obtain the boundary condition
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Using the explicit form of ρ given by Eq. 22, and its derivative
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where we exploit the identity ′ , , = + , + ,M a b z M a b za
b( ) ( ),1 1  the 

boundary condition Eq. 23 assumes the form
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which fi xes the constant r as

where η
1
 is called the escape rate or the inverse mean fi rst passage 

time. The eigenvector in Eq. 22 resulting from the considerations 
above is plotted in Figure 6 together with results of direct simula-
tions. The decay rate expected from Eq. 29 agrees well with the 
simulation. In this analytical treatment we have assumed that plus 
and minus-events occur independently of the history of previous 
events with probabilities 

+
p  and 

−
p , respectively. However, this is an 

approximation, since plus and minus-events depend on the signal 
n(t), which has the time scale τ

nmda
. Thus, given a postsynaptic spike 

at t
post,1

 and given n(t
post,1

) > Θ
h
, a plus-event is produced. n(t) then 

decays exponentially with the time constant τ
nmda

 or it jumps to 
even higher values, if a presynaptic spike arrives. Therefore a later 

postsynaptic spike t
post,2

 > t
post,1

 defi nitely generates another plus-

event as long as n t i

t t

h( )
( )/

post e post post nmda

,

− −, ,

> ,
2 1 τ

Θ  i.e. within a fi nite 
time window after the fi rst event. Consequently, the probability 

++
p  for a plus-event to follow another plus-event is slightly higher 
than 

+
p . The same is true for minus-events. But since a neuron’s 

spike train exhibits refractoriness and the probability is low that the 
second spike occurs within the time window determined by τ

nmda
, 

the correlated occurrence of plus (or analogously minus) events has 
only a small impact. This is verifi ed in Figure 12B, where the prob-
ability of k consecutive plus-events is displayed. For events caused 
by the spike train of an integrate and fi re neuron, the curve is near 
its theoretically expected value +

−

+
= −

kp k p p1 1( ) ( ),  while for spikes 
with Poisson statistics, the correlated occurrence of plus-events can 
be explained by p k p pk( ) ( )= −
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1 1  with 
++ +

>p p .

INPUT–OUTPUT CORRELATION OF AN INTEGRATE AND FIRE NEURON
Poisson input
Here we calculate the correlation coeffi cient of the incoming spike 
train at a given excitatory synapse and the output spike train of 
an integrate and fi re neuron, where the correlation coeffi cient is 
defi ned by Eq. 10. If we have incoming Poisson spikes at a sta-
tionary rate ν

i
, the neuron fi res in a stationary fashion with rate 

ν
o
 as well. We can then rewrite the cross-correlation function as 

C
io
(Δt) = ν

o
(Δt | given an input spike at t = 0)ν

i
 and formally the 

correlation coeffi cient in Eq. 10 reads
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(28)

Finally, we simultaneously solve Eqs. 28 and 27 for η by a sim-
ple numerical bisection method. By construction, the solutions 
η

0
 > η

1
>… are eigenvalues of the Fokker–Planck operator Eq. 21. 

Since eventually the system has to pass the threshold, there can-
not be an equilibrium eigenstate with η

0
 = 0; all eigenstates are 

decaying. We are interested in the largest negative eigenvalue, which 
determines the slowest decaying eigenvector Eq. 22, i.e. the largest 
η

1
 < 0 which solves Eq. 21 and fulfi lls the boundary conditions. 

Being initially (t = 0) in this eigenstate, the probability of fi nding 
the system still in the interval [0, X] after time t is
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(30)

For the particular case of δ-shaped postsynaptic currents we 
fi nd an explicit expression for Eq. 30 as follows. The membrane 
potential V is governed by

τ δ
d

d

 if 

V

t
V w t t

V t V V t V
i

i i= − + −

= >

∑

+ −

τ ( )

( ) ( ) ,r th  (31)

with reset potential V
r
 and spike threshold V

th
. Here t

i
 is the time 

of the i-th incoming event and w
i
 its weight. For each event, the 
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weight w
i
 is a random variable with distribution K. This allows us to 

calculate Eq. 30 also for the case where a neuron receives N correlated 
spike trains (see section “Correlated Poisson Input”). The incom-
ing events are assumed to be Poisson events with rate ν. Then the 
membrane potential is a Markov process with distribution P(V, t) 
which obeys the evolution equation

P V t P V t V t P V t V( ) ( ) ( ), = , | ′, ′ ′, ′ ′.∫ trans d

We closely follow the derivation of the Fokker–Planck equation 
for the integrate and fi re neuron given by Gerstner and Kistler 
(2002), but generalize it for arbitrary weight distributions K. As we 
assume stationary input, we set t′ = 0 without loss of generality. For 
short times Δt the transition probability becomes
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A Kramers–Moyal expansion can be made under the assumption 
that the weight w is small and the rate ν is high. This is also known 
as the diffusion limit:
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(32)

In the limit of small 〈w〉
K
 only the fi rst and the second moment 

of K enter the Fokker–Planck equation. This determines the drift 
constant μ and the diffusion constant σ2 to

μ = τν〈w〉
K

σ2 = τν〈w2〉
K 
. (33)

In equilibrium, the fi ring rate ν
o
 of the neuron can be calculated 

by the formula (Brunel, 2000; Brunel and Hakim, 1999; Ricciardi, 
1977)
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Finally, we employ linear response theory to calculate the 
input–output correlation coeffi cient in Eq. 30 for one particular 
incoming synapse in the limit of small weights w. First assume, that 
every event has the same weight w. Since the incoming spike rate 
is stationary, without loss of generality, we can assume an incom-
ing spike to occur at time t = 0. This is a small perturbation of the 
membrane potential and shifts the distribution by weight w to 
the right, which can be taken into account in the Fokker–Planck 
equation 32 as
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To fi rst order in w, the incoming spike can be described as a 
δ-shaped perturbation of the mean input μ(t) = μ + τwδ(t). Since 
the events are Poisson, their auto-correlation is fl at, thus in the 
instant t = 0− before the spike arrives the neuron’s membrane poten-
tial obeys the equilibrium distribution. The effect of the perturba-
tion on the fi ring rate can be treated in the framework of linear 
response theory for small w << V

th
 − μ. The response of the fi ring 

rate can then reads

ν
o
(t | input spike at t = 0) = ν

o
 + wτh(t) t ≥ 0,

where ν
o
 is the equilibrium fi ring rate and h(t) is the impulse 

response of the fi ring rate with respect to a δ-shaped perturba-
tion of the mean input. So Eq. 30 becomes

ε τ
ν

νeff
i

o
d=

∞

∫w h t t
0

( )
 

(35)

where ∫ ′ ′
∞

0 h t t( ) d  is the step-response of the fi ring rate for t → ∞ 
with respect to a unit-step change of the mean input. Up to linear 
order in w
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In the second step we employ Eq. 34 and in the third summarize 
terms by the quantity Ω(μ, σ) called “dc-susceptibility” in linear 
response theory. Using Eq. 36 in Eq. 35 results in the desired explicit 
expression. A related approach can be found in De la Rocha et al. 
(2007).

Correlated poisson input
The input–output correlation coeffi cient can also be calculated in 
the case, where the neuron receives spikes from N excitatory inputs 
of weight w generated by a multiple-interaction-process (mip) 
Kuhn et al. (2003) with mother spike rate ν

mother
 and copy prob-

ability c. In addition, the neuron receives uncorrelated excitatory 
and inhibitory Poisson input which we treat as a Gaussian white 
noise background input with mean μ

bg
 and standard deviation σ

bg
. 

As in “Poission Input” we are interested in the correlation coeffi cient 
in Eq. 30 of a given input i ∈ [1,…,N] and the output spike train. 
A spike at time t

i
 at input i, indicates that there is a mother-spike that 

was successfully copied to input i. Hence, with probability c each 
of the remaining N − 1 inputs also has a spike at time t

i
. Therefore 

the expectation value of the weight of the composed event is 
〈w〉

mip
 = (1 + (N − 1)c)w. For small 〈w〉

mip
 <<V

th
 − μ the we can apply 

the framework of linear response theory as before and calculate 
Eq. 30 using Eqs. 36 and 35 as

ε Ω μ σ
ν

ν
τeff mip

,= ,( ) i w
o  (37)

where

μ μ ν τ

σ σ ν τ

μ

= +

= + − +

bg mother

bg mother

mip

wNc

w Nc c N c2 2 2 2 21( ( ) )

σσmip
2

.

The last two equations using μ
mip

 and σmip
2  result from Eq. 33.

ALGORITHMIC IMPLEMENTATION OF SYNAPSE MATURATION AND 
SYNAPSE DEATH
A synapse connecting an axon of neuron i to the dendrite of  neuron 
j is stored in a list associated with neuron i. Without loss of gen-
erality we restrict the discussion to the case of a single synapse 
between i and j. In a distributed simulation, each process stores 
only the part of the list referring to the resident target neurons 
(see Morrison et al., 2005). The parameters and dynamic vari-
ables stored for each synapse j are: the synaptic weight w

j
, the 

synaptic delay d d dj j
D

j
A

= + , composed of the dendritic delay dj
D 

and the axonal delay dj
A , the number x

j
 of active CaMKII mol-

ecules, and the boolean variable mature
j
 indicating whether the 

synapse is mature (True) or premature (False). Axonal delays and 
the NMDA receptor rise time can be taken into account as long 
as d dj

A
j
D

+ ≤τrise,nmda  (compare Morrison et al., 2005). However, 

in our simulations, we assume dj
A

+ =τrise,nmda 0 for sake of sim-
plicity. We also assume the time constant τ

nmda
 to be identical for 

all synapses. In this case the fraction of glutamate bound NMDA 
receptors n(t) as defi ned in Eq. 3 is the same for all axonal synapses 
of neuron i. In addition, each neuron stores the time t

old
 of its 

last spike. The spike distribution algorithm invokes the method 
spike(t) (see Algorithm 1) for each spike t of the presynaptic 
neuron i. It propagates the dynamics of each synapse in the local 
target list. Here we use the function T(x, n′) (see Algorithm 2) as an 
abbreviation for the transitions of x due to the number n′ = n(t

post
) 

of glutamate bound NMDA receptors as defi ned in the section 
“A Counter for Correlated Events”. To evolve the synaptic dynam-
ics, we need the spike history of the postsynaptic neuron. Here we 

Algorithm 1 spike(t)

Require: t
old

 last presynaptic spike processed, n = n(t
old

)
Ensure: t

old
 = t, n = n(t) on exit

    for all postsynaptic neurons j do
        if mature

j
 then

            send spike(w
j
, d

j
) to neuron j

        end if

        history ← j.get_history( )t d d t d dj
D

j
A

j
D

j
A

old rise,nmda rise,nmda− + + , − + +τ τ

        for all spikes t
j
 ∈ history do

            t t dj j
D

BP ← +

            ′ ← −( )
−n n t texp BP old

nmdaτ

            x
j
 ← T(x

j
, n′)

            mature
j
 ← mature

j
 ∨ (x

j
 > X

m
) {synapse maturates, if x

j
 > X

m
}

            if mature
j
 ∧ (x

j
 < X

d
) then

                j.stop_recording( )t d dj
D

j
A

− + + τrise,nmda

                delete synapse j {mature synapse dies, if x
j
 < X

d
}

            end if
        end for
    end for

    n n t t
← ( )+

−exp old

nmdaτ
1

    t
old

 = t

Algorithm 2 T(x, n)

Require: Binomial(N, p) ∈ [0, N] binomially distributed random number
    if n > Θ

h
 then

        x ← x + Binomial(N − x, p)
    else if n > Θ

b
 ∧ n <= Θ

l
 then

        x ← x − Binomial(x, q)
    end if
    return x

Algorithm 3 start_recording(t
fi rst

)

    start at beginning of spike register
    while t

SP
 <= t

fi rst
 do

        counter
SP

 ← counter
SP

 + 1
        move to next element
    end while
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closely follow Morrison et al. (2007) and use the same defi nition 
of update_register(t) and get_history(t

1
, t

2
). An extension, 

however, is necessary, because in the presence of structural plastic-
ity the number of incoming connections of a  neuron may change 
over time: The access counter counter

SP
 of each entry in the spike 

register has to be adapted whenever a synapse is created or dies. 
We defi ne the method start_recording(t

fi rst
) (see Algorithm 3) 

called on the postsynaptic neuron when a new synapse is created. 
The argument is the earliest t t d dj

D
j
A

first old rise,nmda= − + + τ  the new 
synapse will start accessing the spike history (excluding t

fi rst
). 

Analogously, stop_recording(t
last

) is called when a synapse dies 
(see Algorithm 4). Its argument t t d dj

D
j
A

last rise,nmda= − + + τ  is the 
latest point in the history (including t

last
) considered by the synapse 

before dawn (see Algorithm 1).
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Algorithm 4 stop_recording(t
last

)

    start at beginning of spike register
    while t

SP
< = t

last
 do

        counter
SP

 ← counter
SP

 − 1
        move to next element
    end while
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