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Phase space analysis of networks based on biologically realistic parameters

Nicole Voges, Laurent Perrinet

Institut de Neurosciences Cognitives de la Méditerranée, UMR6193 CNRS - Aix-Marseille Université, Marseille, France

Abstract

We study cortical network dynamics for a spatially embedded network model. It represents, in terms of spatial
scale, a large piece of cortex allowing for long-range connections, resulting in a rather sparse connectivity. The
spatial embedding also permits us to include distance dependent conduction delays. We use two different types of
conductance-based I&F neurons as excitatory and inhibitory units, as well as specific connection probabilities. In
order to remain computationally tractable, we reduce neuron density, modelling part of the missing internal input
via external poissonian spike trains. Compared to previous studies, we observe significant changes in the dynamical
phase space: Altered activity patterns require another regularity measures than the coefficient of variation. Hence, we
compare three different regularity measure on the basis of artifical inter-spike-intervall distributions. We identify two
types of mixed states, where different phases coexist in certain regions of the phase space. More notably, our boundary
between high and low activity states depends predominantly on the relation between excitatory and inhibitory synaptic
strength instead of the input rate.
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1. Introduction

Studying cortical network dynamics on the basis of artificial neural networks requires an appropriate simplification of
the system. The latter should be adapted to cortical reality but remain tractable for simulations. There is a plethora
of detailed information about how to model a cortical network, in addition to a set of appropriate analysis tools. For
example, Brunel [3] examined the phase space of sparsely connected neuronal networks with current-based synapses,
Kumar et al. [13] advanced to conductance-based synapses, and Roxin et al. [18] focussed on synaptic delays. The
benefits of such studies are, for example, the detection of stable ground states, showing which dynamical states occur
under what conditions, and they are most advantageous in identifying the most sensitive parameters. We present an
elaborate analysis of the dynamical states of a 2D spatially embedded cortical network. Compared to previous studies
on the dynamics of randomly connected cortical networks [3, 13, 18] we focus on a biologically realistic spatial
embedding. It is the aim of this paper to provide first insights into the behavior of such a network.

Despite the fact that cortical connectivity is distance-dependent [2, 20], we still consider random networks, but
with three important modifications:
First, we assume a much sparser connectivity than most models [see 14, 16]. These studies are focused on a local
scale of about 1 mm side length, where around 10% of all possible connections are realized. In reality, however,
approximately half of the synapses of most pyramidal neurons are established to cells that are located at a distance
more than 0.5 mm away [2, 9]. We enlarged the spatial scale, so that each neuron is connected to a much smaller
fraction of all other neurons within the network. Assuming a spatial scale of 5 mm side length results in a connectivity
of about one percent instead of ten. The spatial base enables us to consider distance dependent conduction delays.
The disadvantage of such a setting is a strongly reduced and therefore unrealistic neuron density which must be
compensated for by external input assumptions.
Second, we consider specific connection probabilities for the synapses established between excitatory (exc.) and
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inhibitory (inh.) neurons. In purely randomly wired networks [3, 13] the numeric relation between the number
of exc.–exc. (ee), exc.–inh. (ei), inh.–exc. (ie) and inh.–inh. (ii) synapses is merely defined by the corresponding
frequencies of exc. and inh. neurons. We base our network model on the realistic connection probabilities provided
by [1], which describes layers 2/3 in cat primary visual cortex.
Third, with respect to cortical physiology [15, 17], we consider two different types of conductance-based integrate-
and-fire (I&F) neurons, namely fast spiking inh. and regular spiking exc. neurons. Since most of the quantities
characterizing the phase space are directly related to the dynamical properties of a neuron, e.g. the mean firing rate,
we calculate them separately for the two populations. We examine if the two populations exhibit significantly different
activities which would pevent averaging over exc. and inh. neurons.

Following [3, 13], we systematically vary the excitation-inhibition ratio together with the external input rate every
neuron receives. The question is whether the resulting phase space differs from previously published ones: what are
the changes in terms of possible activity patterns? Do new critical parameters emerge due to the new assumptions? In
particular, we investigate the effect of our modifications on the transitions between different activity states.

Characterizing the resulting network activities, we realized that the typical measure to describe regularity in neu-
ronal spiking, the coefficient of variation, CV , is not appropriate for much of our simulated data. To handle the
occurrence of multimodal inter-spike-interval distributions and very low firing rates we evaluate two additional quan-
tities, the so-called ‘local CV’, and a measure that is based on the Kullback-Leibler information, CVKL [10, 11]. In
order to justify and validate the use of CVKL, we compare the results of these three regularity measures for several
artificial distributions. We also estimate the number of samples needed to correctly describe the irregularity of a pois-
sonian spike train. The necessity of this analysis is based on the limited simulation time which, in a sense, corresponds
to limited trial times in biological experiments.

In the next section, we introduce and explain the network and the simulations that are based on it. Then, we define
the measures we use to characterize the dynamical states in network activity. Finally, we elaborate and discuss the
simulation results: the advantage of using CVKL, the changes in network activity compared to previous studies, and,
in particular, the relation between specific, cortically inspired parameters and the real cortical network.

2. Methods

We consider N = 49 163 I&F neurons [6, 19] that are quasi-randomly distributed in a 2D quadratic domain with
periodic boundary conditions1. Following [1] we assume 22% inh. cell types (1042 neurons arranged on jittered lattice
positions), and 78% exc. pyramidal cells ((1042/0.22)∗0.78 neurons with uniformly distributed spatial positions). The
global connectivity of this model is c = k̄/N ≈ 0.0153, with an average number k̄ ' 752 in- and out-going synapses
per neuron. Instead of assuming merely random connections (60.84% ee, 17.16% ei and ie, and 4.84% ii synapses),
our neworks comprise 71.1% ee, 9.96% ei, 16.14% ie and 2.8% ii synapses. Compared to [13, 16] the spatial region
covered here represents a larger piece of cortex than the usually assumed 1×1 mm2: at the expense of an unrealistically
small neuron density, we model a cortical sheet of 5 × 5 mm2.

Differing from [3] we use conductance-based I&F neurons similar to those in [13, 14], but with two different types
of neurons: regular spiking exc. cells and fast spiking inh. cells, similar to [4, 15, 17]. The two neuron populations and
their synaptic time constants are defined by the parameters listed in Table 1. The strength of a synapse is given by its
peak amplitude Je, Ji of the conductance transient. All internal synapses have a distance dependent conduction delay

1Using this number and type of neuron, we can easily compare our results with [13].

Type Vrest, Vreset Vθ τ Vrev Cm Grest τrest

exc. -70 mV -55 mV 1.5 ms 0 mV 289.5 pF 29 nS 10 ms
inh. -70 mV -55 mV 10 ms -80 mV 141 pF 21.2 nS 6.7 ms

Table 1: List of parameters that define exc. and inh. neurons. Identical for both populations are the resting membrane potential Vrest , the reset
potential Vreset , and the spiking threshold Vθ. Differing parameters are the synaptic time constants τe,i, the reversal potentials Ve,i

rev, the membrane
capacitances Ce,i

m , and the membrane conductances at rest Ge,i
rest . The latter two reflect the passive electrical properties of the membrane at rest

leading to the membrane time constants τe,i
rest = Ce,i

m /G
e,i
rest , i.e., fast spiking inh. and regular spiking exc. neurons.

2



calculated for an average conduction velocity of 1.5 m/sec for neurons closer than 0.15 mm and 3 m/sec for larger
distances (representing myelinated axons). In addition, we assume a general synaptic conduction delay, randomly and
uniformly chosen from [1.2, 1.5] ms.

Each exc. neuron receives external poissonian input at a rate νext while inh. neurons receive rates reduced by a
factor fi = 0.66, such that νi = νext · fi. The exc. synaptic weights are drawn from a Gaussian distribution (σ =10%
of µ) to produce EPSPs of on average 0.11 mV peak amplitude in exc. and 0.28 mV peak amplitude in inh. neurons at
Vrest. Inh. synaptic weights are determined by the factor g:

g =
Jiτi|Vrest − V i

rev|

Jeτe|Vrest − Ve
rev|

.

For g = 1, the peak amplitude of an IPSP at resting potential of exc. neurons is 0.055 mV and 0.088 mV for inh.
neurons.

We explore the dynamical phase space via numerical network simulations. Simulations were performed for νext

ranging from 9 to 12 KHz (in steps of 0.5 KHz), and g ranging from 2.5 to 6 (in steps of 0.5), see Figs. 4 and 5. For
each pair (νext, g) a simulation comprehends 2 seconds simulated time. To avoid transient effects, the first 500 ms
are excluded from the analysis. Temporal precision of integration is 0.1 ms, all simulations are performed with
NEST/PyNN [7].

2.1. Phase space analysis
To describe and analyze the activity dynamics of the network, we compute the following observables and measures:
the mean firing rate per neuron FR (based on time bins of 1 ms length), the mean free membrane potential Vm [12], and
the mean change in total conductance G. These observables provide a general description of the neurons’ activities
and their dynamical state, they are directly related to the dynamical properties of a neuron. Due to the fact that we
deal with different types of neurons, these quantities are calculated separately with respect to exc. and inh. neurons.

The correlation coefficient CC and Fano factor FF characterize the amount of synchrony in neuronal spiking
patterns. The former, for a pair of neurons i, j, is defined as

CC(ni, n j) = cov(ni, n j)/
√

var(ni) var(n j),

where ni, n j are the spike counts of neuron i and j, cov denotes their covariance, and var the variance. We estimate
CC for time bins of 2 ms, averaging over as many (disjoint, randomly chosen) pairs as there are spiking neurons in
the simulation. FF is calculated from the population activity, i.e., the variance of the firing rate divided by its mean,
see, e.g., [14]. For the Fano factor, we distinguish between the exc. and inh. population. We simplify the comparison
of these two synchrony measures by computing (FF − 1)/(N − 1) which is identical to CC for a population of N
independent poisson processes in the limit of infinite observation time.

2.1.1. Regularity measures
To describe the irregularity in neuronal spiking we calculate the coefficient of variation

CV = std(IS I)/µ(IS I),

where ISI stands for the Inter-Spike-Interval distribution (based on time bins of 1 ms), and std and µ are the corre-
sponding standard deviation and mean, respectively. For a regularly spiking neuron, we expect CV = 0, whereas
CV = 1 for irregular poissonian spiking. In addition, we compute a local version of the coefficient of variation [8],
CVloc. This means computing the quotient of the standard deviation and mean of every two adjacent inter-spike-
intervals and then averaging over all spike times of all neurons. Therefore, contrary to CV , CVloc is relatively inde-
pendent of slow variations in the mean spike rate.

The third measure to characterize the (ir)regularity in spiking is based on the Kullback-Leibler divergence [10, 11]:

CVKL := exp(−KL) with KL =
∑

P(ISI) ln
(
P(ISI)/Q(ISI)

)
(1)

The idea is to estimate the difference between an unknown ISI distribution P(ISI) and a reference distribution Q(ISI).
We use an exponential Q(ISI) as generated by poissonian spike trains with a mean µ(ISI). This again results in
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CVKL = 1 for irregular poissonian spiking and CVKL = 0 for regular spikes. Inserting an exponential distribution we
can reduce Eq. 1 to

KL = −Hisi + ln(µ(ISI)) + 1 with entropy Hisi = −
∑

P(ISI) ln(P(ISI)).

For any Gaussian P(ISI) this yields CVKL =
√

2π/e CV ≈ 1.5 CV . Note that, instead of calculating CVKL for each
single neuron and then averaging, we use a ‘collapsed’ version (Fig. 5), i.e. we determine CVKL from P(ISI) esti-
mated from all neurons. Therefore, this measure characterizes the regularity of the population activity rather than the
regularity in the spike trains of single neurons.

Finally, we calculate the spike entropy in time, H = −
∑

P(FR) ln(P(FR)). In general, entropy characterizes the
amount of information present in a signal, or alternately, the disorder present in a system. Here, H is used as another
estimate of the disorder in spiking, supplementary to the CV measures. It is computed separately for the exc. and inh.
populations. We expect to see values that correspond to the CV measures: a small H for ordered spike times (H = 0 if
only one bin is occupied, or for no spikes at all) and a larger H for random spiking (Hmax = 7.3 for a uniform P(FR)).

2.1.2. Comparison of excitatory and inhibitory activities
The correlation coefficient, as well as the regularity measures are computeted from all neurons. As it might be not
appropriate to average over exc. and inh. neurons, we additionally calculate FFe, FF i to capture possible differences
in terms of synchrony, as well as the spike entropies He,Hi to account for distinct regularities2. In order to investigate
whether the two populations exhibit significantly different activities, we compare normalized differences between exc.
and inh. neurons. Given a measure X, we determine max(Xe) and max(Xi) with respect to all input parameter pairs,
and then calculate

∆X(νext, g) :=
∣∣∣∣Xe(νext, g)

max(Xe)

∣∣∣∣ − ∣∣∣∣Xi(νext, g)
max(Xi)

∣∣∣∣ ⇒ Dnorm(X) :=
1
n

∑
νext ,g

∆X(νext, g),

where n is the number of all (νext, g) pairs. This normalized difference Dnorm(X) gives a qualitative indication if Xe

and Xi develop differently with respect to changes in (νext, g).

3. Comparison of different regularity measures

In order to compare the three regularity measures described above, we generated several artificial ISI distributions
and computed the corresponding CV , CVloc, and CVKL values. We consider unimodal Gaussians representing ISI
distributions of nearly regular spiking neurons, i.e. similar inter-spike-intervals. In addition, we test with bimodal
distributions, each generated by a simple mixture of two equally weighted single Gaussians. For these bimodal
distributions, we examine the difference in the regularity measures for a varying distance between the single Gaussians
that constitute them, aa well as the effect of varying the relative heights of the single Gaussian peaks (Fig. 1).

Furthermore, we investigate the effect of the sample size on the three regularity measures. In the ideal case, there
is an infinite number of samples for statistical analysis. In reality, however, a limited simulation (or experimental
trial) time can result in very few spikes, i.e. very few inter-spike-interval values per neuron. We calculated CV , CVloc

and CVKL for an exponential distribution in dependence of the number of samples used in generating the distribution
(Fig. 2).

3.1. Results of comparing different regularity measures

The results of computing different regularity measures for the artificial ISI distributions are presented prior to the phase
space analysis because of inconsistencies concerning these measurements. The bottom left part of Fig. 1 shows CVloc

and CVKL for three artificial Gaussian ISI distributions with given CV: µ = 100 and σ1,2,3 = µ/50, µ/25, µ/12.5. This
plot is representative for any other unimodal Gaussian with identical σ/µ relations. Increasing σ for a given µ leads

2The high number of samples necessary to compute the CVKL suggests avoiding the separation between exc. and inh. for this quantity.
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to a proportional increase in all CV measures, as desired, indicating more irregular firing. CVKL gives consistently
higher values than the usual CV (due to CVKL ≈ 1.5CV , see Sec. 2.1.1) while CVloc is only slightly larger than CV .

In case of bimodal artificial ISI distributions this general agreement vanishes. The top plot in Fig. 1 shows the
results of calculating CV,CVloc and CVKL for two bimodal Gaussians with µ1=50 and µ2=150 combined to µ=100
on the left, and µ1=150 and µ2=250 combined to µ=200 on the right. Here, the usual CV yields incongruously large
values. It is easy to see that σ2 = [2σ2

1 +2σ2
2 +(µ1−µ2)2]/4. For σ1,2 << µ, this leads to CV ≈ |µ1−µ2|/(µ1 +µ2). Thus,

CV is practically independent of the σ1,2/µ1,2 quotients, where µ1,2 and σ1,2 denote the means and standard deviations
of the two single mode P(ISI) that are combined to the bimodal one. Instead, CV is mainly inversely proportional
to the distribution’s mean, µ = (µ1 + µ2)/2 (and proportional to the distance between the two peaks at µ1 and µ2).
It does not capture the fact that the bimodal distribution has two well-separated sharp peaks, which we consider as
regular spiking. In contrast, the other two measures yield small values that proportionally increase with σ1,2/µ1,2, but
are independent of µ. Such behavior appropriately reflects the underlying point process: a neuron with two preferred
ISIs still fires regularly if the single mode P(ISI) are narrow enough.

The bottom right part of Fig. 1 indicates that the usual CV , contrary to CVloc and CVKL, strongly depends on the
gap d between the peaks at µ1,2 of the bimodal distribution (d = 130, 160, 190). Likewise, only the CV values differ
with respect to the weights of the single Gaussians: If the first peak at µ1 = 50 provides 75% of all samples (while
µ2 = 150 provides 25%) the resulting mean of combined distribution is µ = 75. If, vice versa, µ1 = 50 provides 25%
of all samples, it is µ = 125 and thus CV is 5/3 times larger in the first case. Such behavior is inappropriate in terms

Figure 1: Comparison of three regularity measures for several Gaussian distributions. On the x-axis a ‘1’ represents the usual CV , a ‘2’ is CVloc and
a ‘3’ stands for CVKL. The top row shows the results of calculating these measures for two bimodal distributions. Each of them is a combination of
two Gaussians with a distance of 100 between the two peaks of the single distributions at µ1 and µ2. For comparison, the left bottom figure shows
CV,CVloc,CVKL of unimodal Gaussian distributions. The right bottom figure shows the measures for bimodal distributions with different distances
between the peaks of their single Gaussians. In addition, it compares the regularity measures for two bimodal distributions with equal distance
between their peaks but different heights. Each data point is determind from an ensemble of 30 realizations.
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Figure 2: Mean and standard deviation of three regularity measures for an exponential distribution (µ = 100) in dependence of the number of
samples n used to generate the distribution: The results for few samples are shown on the left (logarithmic x-axes); the right part shows the results
for larger sample sizes (linear x-axes). Top row displays the usual CV , middle and bottom row the results of computing CVloc and CVKL. Each
data point is determind from an ensemble of 30 realizations.

of characterizing the regularity in spiking neurons: neither the distance between the preferred ISIs nor their weights
should matter.

Fig. 2 shows the resulting CV,CVloc and CVKL values for artificial exponential ISI distributions typical for poisso-
nian spike trains, i.e., ideally, all measures should be equal to one. The most striking observation is CVKL << 1 for
n . 3000, where CVKL = 0.9. Thus, we determine P(ISI) from the ensemble of all neurons to compute the CVKL

measure. Likewise, but clearly less pronounced, the standard CV exhibits values smaller than one in case of smaller
sample sizes n . 100, and CVloc < 1 for n . 4. Concerning the standard deviations (computed from 30 realiza-
tions), CVKL exhibits the smallest variations while CVloc and CV show comparably large fluctuations, in particular for
n . 100.

4. Results of the phase space analysis

The phase space of a network characterizes its activity dynamics depending on the input parameters. Varying the
external input rate, νext, and the ratio between the strength of exc. and inh. synaptic weights, g, we now describe
the results derived from the network simulations elaborated in Sec. 2. First, we show a choice of exemplary raster
plots that captures the possible activity states. Second, we present the phase space, i.e., the results of calculating the
observables and measures introduced in Sec. 2.1 for all parameters. On the basis of our findings, we classify different
dynamical states and compare them to those described in previous studies.

4.1. Characterization of possible dynamical states

Fig. 3 shows exemplary raster plots (each row of dots represents the spike times of a certain neuron) of nine carefully
chosen points in the phase space, marked by roman numerals in Fig. 4 and 5 For each raster plot we additionally
present the mean firing rate over time FR(t) and the corresponding ISI distribution, both from the population of all
neurons. Here, a distinction between exc. and inh. neurons is not necessary because their raster plots exhibit (nearly)

6



Figure 3: Representative network simulations (I) to (IX): raster plot sections (top) with corresponding firing rates (middle, last 1.5 seconds of
simulation time), and ISI probability density distributions (bottom, semilogarithmic plots with a zoom-in with linear axes). In the raster plots, gray
dots represent inh. spikes, and black dots represent exc. spike times while the other two plots do not distinguish between exc. and inh. neurons. The
plots are ordered and numbered according to their occurrence in the phase space: On the top left synchronous regular firing dominates due to low
inhibition (small g) and high input rates. On the bottom right, there is asynchronous irregular firing due to a higher inhibition (large g) and lower
input rates. The corresponding Vm,G, FR,CC, FF,CV values are marked by roman numerals in Fig. 4 and 5.
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identical spike patterns. On the top left (I: small g, large νext) all neurons fire synchronously at very high rates leading
to thin vertical stripes. The ISI distribution shows a narrow, very pronounced peak at very short inter-spike-intervals,
indicating regular firing. We adopt, here and in the following, the notation in [3, 13] where this behavior is called
‘SR’ state, for synchronous regular spiking. More specifically, this is a ‘SR f ast’ state. For slightly lower νext (IV) or
slightly larger g (V) the raster plots exhibit broad vertical stripes corresponding to the maxima in the firing rate. The
corresponding ISI distributions are bimodal, again with a pronounced peak for very small ISI lengths, but a second
peak at about 100 ms (from the periodicity in FR(t)). We classify this spike pattern as ‘SRslow’ [3, 13]. Characteristic
for both SR states is the occurrence of a time interval with no spikes at all. The length of this interval is approx. 8 ms
in SR f ast and up to 50 ms in SRslow.

In contrast, on the bottom right (IX: large g, small νext), all neurons fire at fairly low rates with uncorrelated spike
times and an exponential ISI distribution. Such behavior is called ‘AI’ state, i.e., asynchronous irregular spiking.
Increasing νext combined with comparably high inhibition (III, less so in VI) leads to synchronous irregular firing
patterns, a state called ‘SI’. The corresponding ISI distributions are perturbed exponential ones. Compared to SR
states the firing rates are low, and the neurons fire significantly less synchronously.

Various mixtures exist between these states, e.g., VII, VIII or II, which we classify into the following two cate-
gories: For intermediate values of g and νext the network dynamics may change from AI to SRslow and then, after a
period of no spikes, back to AI and so forth (V, VII), not necessarily periodically. The smaller νext and the higher g,
the longer are the AI periods. Generally, it takes 20 up to 40 ms until the AI spiking accumulates to a SRslow activity
burst which usually lasts for approx. 25–45 ms. In some cases (VIII) AI firing dominates, and is only occasionally
disrupted by a SRslow burst. Another mixed state occurs for g = 2.5 and, more pronounced, for g = 4. Here, we
observe mainly SRslow firing, but at the end of some activity maxima, one (IV, for g = 2.5) or several (II, for g = 4)
SR f ast bursts appear. For g = 4 in combination with νext > 11 KHz some SR f ast intervals last for 20–100 ms.

4.2. Results of the phase space measures

Figures 4 and 5 present an overview of the whole phase space. The labels in Fig 4, top-left, refer to the states described
above. The observables in Fig. 4 and two of the measures in Fig. 5 are determined for exc. neurons3. In general,
the mean firing rate, the mean free membrane potential, the changes in conductances, and their standard deviations
exhibit a similar behavior with respect to the input parameters. Maximal values occur for low inhibition combined
with high input rates, and minimal values for large g and small νext. Ve,i

m is exceptional for (g ∼ 3, νext ≥ 10.5 KHz)
with minimal values but maximal fluctuations. Probably, this behavior is caused by the relatively long quiet periods
and the following transition to high firing rates, typical for the SRslow state. In case of νext . 10 KHz and also for
(g > 3.5, νext ≥ 10.5 KHz), the regime classified as AI state, Ve,i

m weakly fluctuates (small std(Vm)) about 5 mV below
the threshold Vθ. This is in good agreement with [13]. Membrane conductances are increased by a factor 1.2 to 6
relative to the membrane conductance at rest for exc. neurons. For inh. neurons the factor is in the range of 1.2 to 5.
Correspondingly, this leads to a reduction of τe

rest = 10 ms to 2–8 ms and of τi
rest = 6.7 ms to 1.2–5.6 ms. These values

are also not too far from [13].
The SR f ast state only exists for very high νext & 10.25 KHz in combination with very low g ≤ 2.5. It has an

exceptionally high FRe,i, a free membrane potential very close to the threshold, and a huge increase in Ge,i. Likewise,
the corresponding fluctuations are large, see Fig. 4, bottom. Our SR f ast state corresponds to the SRslow state in [13]
with about 11 maxima in FR(t) per 100 ms. The SRslow state in [13], however, differs from our results: Both time
intervals of high firing and intervals with no spikes are much longer in our simulations. In addition, prior to the
maxima in FR(t), we often observe irregular spiking which then switches into a burst of activity, e.g., in raster plots
IV,V,VII and VIII. Likewise, the spike pattern of what we call SI state (plots III,VI) is very different from [13]. In our
simulations the synchrony of SRslow and SI is at a much larger time scale, around 80 ms rather than 9 ms.

Fig. 5 shows the results of measuring synchrony and regularity in neuronal spiking. CC and FFe are in good
agreement and confirm the findings described above: maximal values CC > 0.4 in the SR f ast state (g = 2.5, νext ≈ 10.5
or νext & 11.25 KHz), a range with CC & 0.1 indicating synchronous activity in the SRslow state, and a large region
with asynchronous firing in case of low input rates or high inhibition. To identify what we called an SI state for
(g & 4.5, νext & 10.75 KHz), we have to consider a higher resolution, see Fig. 6, left. A horizontal border ranging

3The corresponding plots for the inh. population are not shown, but are very similar.
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from νext = 10.75 KHz at g = 4.5 up to νext = 11.5 KHz at g = 6 separates the AI from the SI state. Compared to the
SR states, however, CC & 0.01 is rather small. Thus, other than reported in [13], our SI state is not as well-defined.

The regularity measures presented in Fig. 5 yield inconsistent results: We expected CV ∼ CVloc ≈ 1 for the AI state
but found mostly 0.6 . CV . 0.8 or even CV ≈ 0.4 for νext < 9.5 KHz, and CVloc ≈ 0.8. In this latter range, the firing
rates are very low, FR < 5 Hz, resulting in on average less than 7 spikes per neuron per 1.5 s simulation time. This
led to the analysis presented in Sect. 3 (Fig. 2) which confirms the underestimation of CV in case of too few events.
For the SR f ast state, all regularity measures clearly indicate regular spiking neurons (CV ∼ CVloc ∼ CVKL < 0.1).
For the SRslow state we find CV > 1. This clearly contradicts the regular appearance of the spike patterns in the
raster plots, as well as the shape of the corresponding ISI distributions. They sport a bimodal P(ISI) with one strongly
preferred small inter-spike-interval, and a second, larger and less frequent one. A well-known solution for bimodal
P(ISI) is to calculate CVloc instead of CV [8], see Sec. 2.1.1. This works quite well for the artificial P(ISI) in Sec. 3.1,
but not for the simulated data as presented in Fig. 5. Furthermore, as expected from Sec. 3.1, std(CVloc) is large (see
Fig. 6, middle-left) compared to std(CV) < 0.1 for most input parameters and std(CV)max ≈ 0.26. Therefore, we
additionally calculated CVKL. As this measure needs a large sample size (Fig. 2), we determine it from the P(ISI) of
the population of all neurons (‘collapsed’). These results finally agree with our expectation from the exemplary raster
plots and ISI distributions in Fig. 3 for the phase space: irregular spiking occurs for low input rates, as well as for high

Figure 4: Phase space analysis, part one: Shown are the mean FR (FRe
max = 105.6 Hz), the mean free Vm and the mean change from resting to

total conductance G of the exc. population for varying g (x-axis) and νext (y-axis). The bottom row shows the corresponding standard deviations:
std(FRe)max = 55.8, std(Ge) describes the variations in the measured Ge values (Ge

min = 4.8 nS, Ge
max = 153.5 nS). The corresponding values for

the inh. population are: FRi
max = 66.4 Hz, V i

m,min = −61 mV, V i
m,max = −58 mV, and the mean change from resting to total conductance of the inh.

population ranges from 1.15 to 5.1. The inh. standard deviations are std(FRi)max = 19.5, std(V i
m)max = 5.4, std(Gi)max = 53.9 (Gi

min = 3.14 nS,
Gi

max = 86.9 nS). The roman numerals indicate the specific (νext , g) pairs for which the corresponding raster plots, firing rates, and ISI distributions
are shown in Fig. 3.
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νext combined with high inhibition.

4.3. Comparison to previously described phase spaces

We are now in a position to compare our phase space to previously published work. In networks with current-based
synapses [3] the transition from high to low activity states takes place for a certain amount of recurrent inhibition and
is independent of the input rate. This corresponds to a vertical boundary in the corresponding phase space at g = 4.
Kumar et al. [13] state that, for conductance-based synapses, the phase boundary changes. The range of interest for
the recurrent inhibition is shifted to g ∈ [1, 3]. High activity states (SR) with more than 60 spikes/s per neuron, occur
only for high νext nearly independent of g. This corresponds to a horizontal boundary in the phase space. Their border
between SR f ast and SRslow is approx. 2 . g . 2.5. Their SI state appears only in case of νext slightly lower than that
for SR states combined with g & 2.5. Moreover, Kumar et al. [13] found, in contrast to [3], no state with asynchronous
regular (AR) activity – neither did we.

In terms of the mere occurrence of SR, AI and SI states, our results agree with [13]. Yet, our SR and SI activities
exhibit a larger time scale, as well as lower FR in case of SRslow activity. The phase space of our network model
comprises g ∈ [2.5, 6], i.e., larger values than in [13], more similar to [3]. We found a sharp vertical boundary at
g < 3 separating the range where a pure SR f ast state can exist from the SRslow state. In contrast to [13] we observe
no direct transition from AI to SR f ast. Likewise, Figs. 4 and 5 show no extended horizontal boundary, as indicated

Figure 5: Dynamical state space analysis, part two: The top row shows three measures of the regularity in neuronal spiking: the mean CVKL, CVloc,
and CV , averaged over the exc. and inh. populations. The bottom row indicates two measures for synchrony in neuronal spiking: The correlation
coefficient CC (averaged over exc. and inh. neurons) and the Fano factor FF of the exc. population (normalized to be comparable to CC). The plot
on the bottom right indicates the spiking entropy H of the exc. population. The corresponding values for the inh. population are: FFi

max = 0.41,
Hi

min = 4.86, Hi
max = 7.26. Again, all measures are given for varying g (x-axis) and νext (y-axis). The roman numerals indicate the specific (νext , g)

pairs for which the corresponding raster plots, firing rates, and ISI distributions are shown in Fig. 3.
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Figure 6: Details of the phase space analysis. Left: CC for a limited range of g and a cut-off in the color scale. Middle-left: Standard deviation of
CVloc. The two plots on the right show the normalized difference between the exc. and inh. population for the Fano factor ∆FF and the entropy ∆H ,
again for varying g (x-axis) and νext (y-axis).

by [13]. The occurrence of synchronous regular spiking depends on both g and νext: the higher the external input rate
the more inhibition is necessary to stay in the AI state. In particular, for g & 4.5 we observe no regular spiking and
no high firing rates, independent of νext. At about νext & 11 KHz the network dynamics turns into the SI state with
FR . 10 Hz, i.e., a low activity state.

As mentioned before, we observe ‘mixed’ states. The network activity changes within one simulation run between
AI and SRslow. This indicates a gradual transition from SRslow to AI instead of a sharp boundary. Likewise, the SRslow

state may contain bursts of SR f ast activity patterns. Nevertheless, the transition from pure SR f ast activity to SRslow

is much sharper than the AI to SRslow one. Such mixed states, or the coexistence of different phases, especially in a
dynamic sense, have not been mentioned before.

4.4. Comparison of excitatory and inhibitory activities

The observables G, FR and Vm are computed separately for the exc. and inh. population. In the SR f ast state, FRe

may become approximately twice as large as FRi. The same statement holds for the directly measured Ge,i, but not
in terms of the change from resting to total conductance. The maximum increase (for SR f ast) is 6.2 for exc. neurons
versus 5.1 for inh. ones. Ve

m is, in general, closer to the firing threshold than V i
m, at maximum about 2.5 mV above

V i
m. The obvious conflict between considering fast spiking inh. neurons (vs. regular spiking exc. ones) and measuring

higher exc. firing rates is reconciled by reducing the input rates for inh. neurons. This will be discussed in more detail
in Sec. 5. The measures CC, CV , CVloc and CVKL do not distinguish between the two populations. In order to capture
possible differences in terms of synchrony and/or regularity in spiking, we additionally calculated FFe, FF i and the
spike entropies He,Hi. Fig. 6 shows the normalized differences introduced in Sec. 2.1.2 for the Fano factor, for which
Dn(FF) = 0.04, and for the spike entropy with Dn(H) = 0.03. The other measures yield even smaller normalized
differences: Dn(FR) = 0.014, Dn(Vm) = 0.015, and Dn(G) = 0.011. Thus, in principle, the exc. and inh. populations
exhibit a very similar behavior with respect to variations of (νext, g), even though their absolute FRe, FRi values are
(very) different.

5. Discussion

We analyzed the changes in the activity dynamics of a cortical network with conductance-based synapses that are
induced by the following assumptions: a spatially extended network architecture with distance dependent delays,
the distinction between fast spiking inh. and regular spiking exc. neurons, and a very sparse global connectivity that
comprehends specific connection probabilities for different synaptic types. These changes lead to both, different
activity patterns and modified phase transitions.

The general appearance of high SR activity for large input rates combined with low inhibition and weak AI
activity for low ν and small g matches the observations of previous studies. The general properties of the AI state,
e.g., a membrane potential that fluctuates a few millivolts below threshold, are in line with [13]. They are also in
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good agreement with in vivo intracellularly recorded neurons [5]. Likewise, our changes in membrane conductances
and the corresponding reduction of membrane time constants in the AI state are in line with in vivo physiological
obeservations [5]. Other than reported in [13, 3] the occurence of strongly oscillating SR f ast states is limited to a
small parameter range. Note that such highly synchronized and regular firing is far from physiological observations
in healthy animals. Instead, we mainly observe distinct activity patterns with slower changes in the firing rate and
bimodal ISI distributions, i.e., SRslow states. In particular, our phase space reveals a parameter range where the
network activity may dynamically switch from AI to SRslow and then back to AI, and so forth. Likewise, there is a
certain parameter range where SRslow bursts contain SR f ast fast oscillations. This behavior can be considered as the
coexistence of two states, a bistable regime, which has not been reported in [13, 3]. Alternately, the SRslow state may
simply represent the transition from AI to SR f ast. Note that Roxin et al. [18] show that the phase diagram of a simpler
1D network model strongly depends on both conduction delays and spatial modulation of synaptic weights. Including
the latter two features gives rise to various new activity patterns. Recalling the large distance-dependent conduction
delays in our model, this might explain the coexistence of phases we described.

In addition, we found other phase boundaries between high and low activity states: Contrary to the predominantly
ν-dependent horizontal boundary in [13] our simulation results reveal a prevailing vertically oriented border, i.e.,
g-dependent, between SR and AI activity. This is rather typical for networks with current-based synapses [3] where
the border separating SR from AI is gcrit ' 4. In [13], νext,crit determines the transition from low to high activity: If the
input is larger than νext,crit the network switches into SR f ast (g . 2) or SRslow (g & 2). We found no direct transition
from AI to SR f ast, instead, we observe the following three boundaries: one at g < 3, separating the possibility of pure
SR f ast from SRslow activity, and another one at about 3.5 . g . 5 capturing the transition range between SRslow and
AI or SI states. For νext . 10 KHz only AI or SI activity occurs.

5.1. The ratio between external and internal connections

We did not address the absolute values of νext, neither the corresponding number of input synapses, nor their firing
rates. Likewise, we used a reduced input rate for inh. neurons without further explanation. Recall that [16, 13, 14]
focus on local connections within a small cortical patch (around 1 mm side length), where approx. 10% of all possible
connections are realized. Then, the external input rate νext represents synapses from neurons outside the model. We
consider a larger piece of cortex (25 mm2) with fewer internal connections (c ≈ 0.0153). On one hand, we are thus not
limited to local dynamics, but on the other hand, we have an unrealistically low density of neurons. Therefore, while
one fraction of νext represents synapses from neurons outside the network model, another fraction of our external input
rate compensates for the missing internal synapses4

Kumar et al. [13] consider approx. 5000 internal synapses and 4000 external input connections per neuron with a
firing rate of 2.5 ≤ νext ≤ 7 Hz per input connection. This is difficult to compare with approx. 750 internal synapses
per neuron in our network model. According to [1] the average number of synapses a pyramidal neuron in layer 2/3 of
cat primary visual cortex receives from other layer 2/3 pyramidal neurons is approx. 3500. In addition, there are about
1000 to 1500 external exc. inputs. Therefore, our external input rate represents around 4000 synapses, 2750 internal
and 1250 external ones. For 9 ≤ νext ≤ 12 KHz this means an average input firing rate between 2 and 3 Hz per input
connection, which seems a bit on the low side.

The internal synapses are based on specific connection probabilities, as described in Sec. 2. For instance, the
probability for an internal exc. input connection to another exc. neuron is 0.711/0.78=0.911 (due to a higher probability
for ee synapses than expected for purely random connectivity). The probability for an internal exc. input connection
to another inh. neuron is smaller, namely 0.0996/0.22=0.453. Accordingly, inh. neurons should receive only approx.
half of the exc. external input that represents the missing internal synapses. Concerning the external inputs from
outside the cortical patch (e.g., from another cortical layer or white matter connections from another cortical area)
we assume no preferences, i.e., randomly chosen targets. Depending on the numerical relation between input from
inside and outside the network model, the factor fi to reduce the input rate of inh. neurons is 0.5 < fi < 1. We chose
fi = 0.66 for practical reasons: Assuming fi < 0.64 results in strongly synchronized network activity with hardly any
AI dynamics. In contrast, for fi > 0.68 we hardly observed any SR state. Interestingly, with respect to the discussion

4Similar to [13, 14, 3] we neglect inh. inputs and assume them integrated into the external exc. rate.
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above, fi = 0.66 corresponds exactly to reducing the part of νext representing internal synapses for inh. neurons to
50% of that of exc. neurons.

Since the network dynamics strongly depend on fi, we discuss another possibility to justify the assumption of
fi = 0.66. Obviously, fi depends on the neuron parameters that determine their spike rates. As explained in Sec. 2
the EPSP peak amplitudes at resting potential for exc. neurons are approx. 0.61 times smaller than for inh. cells, but
have a larger time constant. In order to compare the spike rates of exc. and inh. neurons, we investigated the number
of incoming action potentials necessary to produce a spike (nspk), in dependence of the integration time: For instance,
exc. cells need 166 spikes and inh. neurons only 90 spikes within 1 ms to produce a spike. Within 40 ms, exc. cells
need 530 spikes and inh. neurons 380 spikes. Thus, the numeric relation (ni

spk/n
e
spk) is between 0.54 and 0.72, a range

that contains the factor fi = 0.66.

5.2. Different regularity measures
Due to difficulties in characterizing the regularity in neuronal spiking, we considered three different measures which
we then compared by means of artificial ISI distributions. The typical CV malfunctions for bimodal distributions.
CVloc performs well for artificial multimodal distributions. For our simulation data, however, the CVloc values are not
in accordance with what we classify as (ir)regular – based on a visual inspection of the spike trains and the correspond-
ing ISI distributions. Moreover, some simulations do not provide enough spikes for statistical analysis. Therefore,
we used another measure, CVKL, and applied it to the ISI distribution for the population of all neurons. Another
possibility would be to extend the simulation time. We refrain from doing so, because in biological experiments the
recording time is also limited. Too few spikes are presumably the reason for CV ≈ CVloc ≈ 0.6 instead of CVloc ≈ 1 in
case of AI activity. The question remains why CVloc ≈ 1 instead of CVloc near zero for SRslow states. One indication
is the comparably high std(CVloc), another issue might be the still rather low firing rate. From another point of view,
this could reflect an intrinsic property of our simulation data: At the population level, spiking is relatively regular, as
indicated by the ISI distributions and CVKL . 0.3, while it might be more irregular with respect to single neurons.

6. Summary and conclusions

To summarize, our network modifications induce clear changes in the phase space. We require a new regularity
measure to adequately describe different activity states. As the dynamical behavior strongly depends on the network
parameters, it is necessary to identify the most important ones, together with their critical range, i.e., the phase space
region where the network dynamics switch from one state into another. We found a significantly different critical
range than [13]. In addition, we found ‘mixed’ states, which is presumably important in terms of stability analysis.
Assume that the network is tuned to be in the AI state that represents cortical background activity. Then, providing
an external stimulus, the corresponding information may be processed within this AI activity, but it may also turn
the network into another state, e.g., a coexistence of AI and SR activity. In particular, the properties Vm, std(Vm) and
the changes in G of our AI-SRslow activity are more similar to the AI than to the SR f ast state, i.e., similar to cortical
activity. Only our SR f ast state clearly differs from healthy cortical dynamics.

We conclude that including only a few more realistic parameters to simulate cortical network dynamics signifi-
cantly affects the resulting activity patterns. The assumption of local couplings or a distant dependent connectivity
might have an even larger effect. Thus, this study can only be a first step into the direction of improving the analysis
of cortical network dynamics.
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