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I. OVERVIEW 

This report details the execution of the Task1 described in WP6. For this task, ENSEIRB (Partner 3) 

and Alain Destexhe’s Group (CNRS – Partner 6a) work in closed collaboration for the single cell 

simulations and to define network benchmark experiments. In this report, we will first describe the 

single-cell simulations and then we will present the network topologies features and a STDP algorithm 

which is implemented for the experiments. Next, we will describe the experimental protocols for the 

network tests. At last, we will present the associated results. 

 

II. SINGLE CELL SIMULATIONS 

The implemented model is based on the Hodgkin-Huxley formalism. The detailed model presentation 

was already done in D18 (WP6) [1] and the behaviors comparison between our ASIC and software was 

done in D15 (WP5) [2]. We briefly present here the previous results to easier introduce network 

simulations (see Figure 1). 

The hardware neuron contains two ionic channels (sodium and potassium) and one leak channel. This 

configuration authorizes to simulate fast spiking neurons (FS). A third ionic conductance has been 

implemented to simulate regular spiking neurons (RS). This conductance named modulator channel and 

noted Imod emulates the calcium channel and the calcium-dependent potassium channel, in other words 

emulates a slow voltage-dependent potassium conductance for spike-frequency adaptation. The 

maximal conductance value is chosen among four possibilities: RS0 for gmax_Imod = 45,5 mS / cm²; 

RS1 for gmax_Imod = 90,9 mS / cm²; RS2 for gmax_Imod = 136,4 mS / cm² and RS3 for 

gmax_Imod = 181,8 mS / cm². 

A) B)

 

Figure 1: Frequencies vs stimulation current curves for software and hardware models. The behavioral differences 
between software and hardware are due to fabrication process mismatch. A) Software simulations. B) Hardware 

simulations where Vstim is the applied voltage on the ASIC. On this chip generation, we can not measure the current 
stimulation for an applied voltage. 



III. NETWORK AND STDP FEATURES 

NETWORK FEATURES 

The network is composed of 6 excitatory neurons which can be connected by synapses. The modeled 

synapses implement kinetic model of glutamate [3] (only excitatory synapses are functional). This 

synapses model is designed such as to compute any number and frequency of pre-synaptic signals, and 

therefore can represent multiple synapses. This model uses “exponential” synapses, where the synaptic 

conductance increases of a given “quantal conductance” when a pre-synaptic spike occurs, then relaxes 

exponentially to zero. The associated post-synaptic current ISYN is given in (1) and (2), where gMAX is 

the maximal conductance, ESYN the reverse synaptic potential, VMEM the post-synaptic membrane 

potential, r the fraction of receptors in open state, α and β voltage-independent forward and backward 

rate constants, [T] the transmitter concentration. 

( )SYNMEMMAXSYN EV.r.gI −=      (1)   [ ] r.)r1.(T
dt

dr
β−−α=      (2) 

Figure 2 illustrates the time-variation of the synaptic conductance g when a transmitter concentration 

pulse [T] occurs, assuming that the transmitter is released when a pre-synaptic action potential appears. 

As the quantum ∆g is proportional to the ∆t pulse width, this later parameter will be exploited to 

modulate ∆g. 

 

Figure 2: Exponential decay synapse principle 

STDP FEATURES 

Plasticity rules are only applied to excitatory synapses, according to spike-timing dependent plasticity 

algorithms (STDP) [4] [5], where the synaptic weight varies as a function of the relative timing of pre- 

and post-synaptic spikes. For a synaptic weight jiω from pre-synaptic neuron j to post-synaptic neuron 

i, the implemented algorithm follows the equation (3) 
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iε  and jε  are spike eligibility factors account for non-linear interactions arising for multiple pairs. 

They are implemented with the equations (4) and (5) 
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where ms28pre
s =τ , ms88post

s =τ and ( )tt last
k  gives the time of the last spike in neuron k. 

( )tFLTP  and ( )tFLTD  are functions describing the coincidence between pre- and post-synaptic spikes.  
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where ms8,14P =τ , ms8.33Q =τ , 1,0AP = and 05,0AQ = . These functions define time window of 

interactions between spikes, in other words they define the time “STDP function”. 

The hardware system authorizes hard bounds which are digital values: 0 and 255.  

The soft bounds, LTPω  and LTDω , are respectively the maximal and minimal values of the synaptic 

weight that can be computed by STDP algorithm, and their values obviously belong to the interval 

defined by the hard bound limits. We have no possibility to measure the synaptic current following the 

digital synaptic values. Then we can only analyze the results from a qualitative point of view. This 

inconvenient will disappear in the next hardware system generation. 

 

IV. EXPERIMENTS METHODOLOGY 

EXPERIMENTS DESCRIPTION  

We have chosen to study the activity of excitatory neurons network with all-to-all connectivity and 

STDP algorithm, and the influence of synaptic noise inputs with different rates and different 

correlations. 

A) In first time, we define input uncorrelated Poisson-trains with different rates (2.5 , 5 , 7.5 , 10 & 

15 Hz) for each neuron. We use these synaptic noise patterns with all-to-all network, synaptic weights 



initially equal to zero and the STDP described above. For 5 minutes, we record spike trains from all 

neurons and the evolution of synaptic weights. 

B) In second time, we use the same noise patterns and STDP algorithm but the initial synaptic weights 

are not equal to zero. We did one trial with all weights equal to maximal value (soft bound) and three 

trials with randomized initial values. We record the same outputs for the same duration. 

C) In third time, we change the correlation between synaptic inputs noise. With different correlation 

rates, we used the same protocols: different noise rates, different initial weights. These parameters are 

identical than in the both simulations A) and B). 

SYNAPTIC NOISE GENERATION WITH DIFFERENT CORRELATION RATES 

To define the synaptic noise, we generate time intervals following Poisson distribution. The mean value 

of time intervals corresponds to the synaptic noise period. For a network of 6 neurons with uncorrelated 

synaptic noise, we generate 6 independent Poisson distributions. For correlated noise, we generate one 

Poisson distribution of time intervals, and then we add the intervals to obtain an absolute time 

distribution. For each event of the Poisson distribution, we generate 6 events (one event per neuron) 

following Gaussian distribution. The correlation rate between synaptic noises depends on Standard 

Deviation. The correlation decreases when the SD grows. 

 

V. RESULTS 

With all different initial conditions, we obtain more than one hundred results. The computational core 

(ASIC) is analog then it is necessary to performed several simulations for the same initial conditions. 

We obtain then several hundred simulations. We present here some results to illustrate the influence of 

the synaptic noise correlation in STDP efficiency. 

We ran the simulation for different noise frequencies, for different initial weights (null, maximal and 

randomized) and for different correlation rates. The figures 3 to 6 illustrate the instantaneous 

frequencies of the 6 neurons (above) and the 36 synaptic weights (below). Each simulation lasts 360 

seconds in real time.  
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Figure 3: Synaptic noise frequency = 10 Hz; uncorrelated 

noise and null weights initially. 
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Figure 5: Synaptic noise frequency = 10 Hz; uncorrelated 

noise and randomized weights initially. 
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Figure 4: Synaptic noise frequency = 10 Hz; correlation 

noise = 80 % and null weights initially. 
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Figure 6: Synaptic noise frequency = 10 Hz; correlation 

noise = 100 % and maximal weights initially. 
 



The figures 7 to 9 show the output mean frequency of the 6 neurons versus the input synaptic noise 

frequency. In each one, we show the 5 cases: uncorrelated, correlation at 20%, 50 %, 80 % and 100% 

for the synaptic noise patterns. 
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Figure 7: Neurons output mean frequency versus input 

noise frequency with null weights initially.  
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Figure 8: Neurons output mean frequency versus input 

noise frequency with randomized weights initially. 
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Figure 9: Neurons output mean frequency versus input 

noise frequency with maximal weights initially. 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSION 

We present in this deliverable some results among more than one hundred of them. Currently we 

implement a part of these simulations on the Neuron software to establish a benchmark of our hardware 

system with STDP. In collaboration with Partner 6A, we are also working at building tools to analyze 

the results. 
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